1
|
Adekiya TA, Hudson T, Bakare O, Ameyaw EE, Adebayo A, Olajubutu O, Adesina SK. PSMA-targeted combination brusatol and docetaxel nanotherapeutics for the treatment of prostate cancer. Biomed Pharmacother 2024; 177:117125. [PMID: 39002444 PMCID: PMC11384235 DOI: 10.1016/j.biopha.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Active targeting to cancer involves exploiting specific interactions between receptors on the surface of cancer cells and targeting moieties conjugated to the surface of vectors such that site-specific delivery is achieved. Prostate specific membrane antigen (PSMA) has proved to be an excellent target for active targeting to prostate cancer. We report the synthesis and use of a PSMA-specific ligand (Glu-NH-CO-NH-Lys) for the site-specific delivery of brusatol- and docetaxel-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles to prostate cancer. The PSMA targeting ligand covalently linked to PLGA-PEG3400 was blended with methoxyPEG-PLGA to prepare brusatol- and docetaxel-loaded nanoparticles with different surface densities of the targeting ligand. Flow cytometry was used to evaluate the impact of different surface densities of the PSMA targeting ligand in LNCaP prostate cancer cells at 15 min and 2 h. Cytotoxicity evaluations of the targeted nanoparticles reveal differences based on PSMA expression in PC-3 and LNCaP cells. In addition, levels of reactive oxygen species (ROS) were measured using the fluorescent indicator, H2DCFDA, by flow cytometry. PSMA-targeted nanoparticles loaded with docetaxel and brusatol showed increased ROS generation in LNCaP cells compared to PC-3 at different time points. Furthermore, the targeted nanoparticles were evaluated in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors. Evaluation of the percent relative tumor volume show that brusatol-containing nanoparticles show great promise in inhibiting tumor growth. Our data also suggest that the dual drug-loaded targeted nanoparticle platform improves the efficacy of docetaxel in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | - Tamaro Hudson
- Cancer Center, Howard University, Washington, DC 20059, USA
| | - Oladapo Bakare
- Department of Chemistry, Howard University, Washington, DC, USA
| | - Edmund E Ameyaw
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
2
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Developed simvastatin chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate for ASGPR-mediated targeted HCC delivery with enhanced oral bioavailability. Saudi Pharm J 2020; 28:1851-1867. [PMID: 33424274 PMCID: PMC7783227 DOI: 10.1016/j.jsps.2020.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Simvastatin (SV) repurposing has emerged as an alternative approach for the treatment of cancer. In this study, SV chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate (SVCSChSNPs) were developed in order to maximize SV therapeutic efficiency. The hepatic targeting was realized using N-acetylgalactosamine (GalNAc) residues of ChS, which can be identified by the ASGPR receptors specifically expressed in hepatocytes. SV was repurposed as an anticancer agent against hepatocellular carcinoma (HCC). NPs were fabricated by the ionic gelation method, and the formulation variables (CS concentration, CS:ChS ratio, and CS solution pH) were optimized using a three-factor, three-level Box-Behnken design. The optimized NPs were investigated for particle size, size distribution, zeta potential, morphology, in vitro cytotoxicity, apoptotic effects against human hepatocellular carcinoma HepG2 cells, and detection of intracellular localization. The NPs were further evaluated for in vitro release behavior of SV and pharmacokinetics using Wister albino rats. Transmission electron microscopy (TEM) imaging showed a spherical shape with regular surface NPs of < 100 nm diameter. In vitro cytotoxicity testing showed that the SVCSChSNPs exhibited greater inhibition of proliferation in HepG2 cells and high cellular uptake through ASGPR-mediated endocytosis. The in vitro dissolution profile was 2.1-fold greater than that of pure SV suspension. Furthermore, in vivo oral pharmacokinetics revealed that the obtained NPs enhanced the bioavailability of SV by up to 2- and 1.6-fold for SV and SVA, respectively, compared to the pure SV suspension. These findings demonstrated that hepatic-targeted CSChSNPs delivering SV could potentially serve as a promising platform for HCC and other liver-related diseases.
Collapse
|
4
|
Cell Theranostics on Mesoporous Silicon Substrates. Pharmaceutics 2020; 12:pharmaceutics12050481. [PMID: 32466284 PMCID: PMC7284777 DOI: 10.3390/pharmaceutics12050481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
The adhesion, proliferation, and migration of cells over nanomaterials is regulated by a cascade of biochemical signals that originate at the interface of a cell with a substrate and propagate through the cytoplasm to the nucleus. The topography of the substrate plays a major role in this process. Cell adhesion molecules (CAMs) have a characteristic size of some nanometers and a range of action of some tens of nanometers. Controlling details of a surface at the nanoscale-the same dimensional over which CAMs operate-offers ways to govern the behavior of cells and create organoids or tissues with heretofore unattainable precision. Here, using electrochemical procedures, we generated mesoporous silicon surfaces with different values of pore size (PS≈11 nm and PS≈21 nm), roughness (Ra≈7 nm and Ra≈13 nm), and fractal dimension (Df≈2.48 and Df≈2.15). Using electroless deposition, we deposited over these substrates thin layers of gold nanoparticles. Resulting devices feature (i) nanoscale details for the stimulation and control of cell assembly, (ii) arrays of pores for drug loading/release, (iii) layers of nanostructured gold for the enhancement of the electromagnetic signal in Raman spectroscopy (SERS). We then used these devices as cell culturing substrates. Upon loading with the anti-tumor drug PtCl (O,O'-acac)(DMSO) we examined the rate of adhesion and growth of breast cancer MCF-7 cells under the coincidental effects of surface geometry and drug release. Using confocal imaging and SERS spectroscopy we determined the relative importance of nano-topography and delivery of therapeutics on cell growth-and how an unbalance between these competing agents can accelerate the development of tumor cells.
Collapse
|
5
|
[Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cell Mol Neurobiol 2020; 41:563-587. [PMID: 32430779 DOI: 10.1007/s10571-020-00873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.
Collapse
|
6
|
Xu M, Almasi S, Yang Y, Yan C, Sterea AM, Rizvi Syeda AK, Shen B, Richard Derek C, Huang P, Gujar S, Wang J, Zong WX, Trebak M, El Hiani Y, Dong XP. The lysosomal TRPML1 channel regulates triple negative breast cancer development by promoting mTORC1 and purinergic signaling pathways. Cell Calcium 2019; 79:80-88. [PMID: 30889511 PMCID: PMC6698368 DOI: 10.1016/j.ceca.2019.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
The triple-negative breast cancer (TNBC) that comprises approximately 10%-20% of breast cancers is an aggressive subtype lacking effective therapeutics. Among various signaling pathways, mTORC1 and purinergic signals have emerged as potentially fruitful targets for clinical therapy of TNBC. Unfortunately, drugs targeting these signaling pathways do not successfully inhibit the progression of TNBC, partially due to the fact that these signaling pathways are essential for the function of all types of cells. In this study, we report that TRPML1 is specifically upregulated in TNBCs and that its genetic downregulation and pharmacological inhibition suppress the growth of TNBC. Mechanistically, we demonstrate that TRPML1 regulates TNBC development, at least partially, through controlling mTORC1 activity and the release of lysosomal ATP. Because TRPML1 is specifically activated by cellular stresses found in tumor microenvironments, antagonists of TRPML1 could represent anticancer drugs with enhanced specificity and potency. Our findings are expected to have a major impact on drug targeting of TNBCs.
Collapse
Affiliation(s)
- Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shekoufeh Almasi
- Department of Biology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Yiming Yang
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Chi Yan
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Andra Mihaela Sterea
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Bing Shen
- Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Clements Richard Derek
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Peng Huang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shashi Gujar
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Jun Wang
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey PA 17033, USA
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Abstract
AbstractPlatinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.
Collapse
|
8
|
Apoptosis by [Pt(O,O'-acac)(γ-acac)(DMS)] requires PKC-δ mediated p53 activation in malignant pleural mesothelioma. PLoS One 2017; 12:e0181114. [PMID: 28704484 PMCID: PMC5507537 DOI: 10.1371/journal.pone.0181114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma cancer cells have epithelioid or sarcomatoid morphology. The worst prognosis is associated with sarcomatoid phenotype and resistance to therapy is affected by cells heterogeneity. We recently showed that in ZL55 mesothelioma cell line of epithelioid origin [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has an antiproliferative effect in vitro and in vivo. Aim of this work was to extend the study on the effects of Ptac2S on ZL34 cell line, representative of sarcomatoid mesothelioma. ZL34 cells were used to assay the antitumor activity of Ptac2S in a mouse xenograft model in vivo. Then, both ZL34 and ZL55 cells were used in order to assess the involvement of p53 protein in (a) the processes underlying the sensitivity to chemotherapy and (b) the activation of various transduction proteins involved in apoptosis/survival processes. Ptac2S increases ZL34 cell death in vivo compared with cisplatin and, in vitro, Ptac2S was more efficacious than cisplatin in inducing apoptosis. In Ptac2S-treated ZL34 and ZL55 cells, p53 regulated gene products of apoptotic BAX and anti-apoptotic Bcl-2 proteins via transcriptional activation. Ptac2S activated PKC-δ and PKC-ε; their inhibition by PKC-siRNA decreased the apoptotic death of cells. PKC-δ was responsible for JNK1/2 activation that has a role in p53 activation. In addition, PKC-ε activation provoked phosphorylation of p38MAPK, concurring to apoptosis. In ZL34 cells, Ptac2S also activated PKC-α thus provoking ERK1/2 activation; inhibition of PKC-α, or ERK1/2, increased Ptac2S cytotoxicity. Results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, giving a substantial starting point for its further validation.
Collapse
|
9
|
Marzo T, De Pascali SA, Gabbiani C, Fanizzi FP, Messori L, Pratesi A. ESI-MS studies of the reactions of novel platinum(II) complexes containing O,O'-chelated acetylacetonate and sulfur ligands with selected model proteins. Biometals 2017; 30:609-614. [PMID: 28677079 DOI: 10.1007/s10534-017-0031-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/05/2023]
Abstract
A group of mixed-ligand Pt(II) complexes bearing acetylacetonate and sulphur ligands were recently developed in the University of Lecce as a new class of prospective anticancer agents that manifested promising pharma-cological properties in preliminary in vitro and in vivo tests. Though modelled on the basis of cisplatin, these Pt(II) complexes turned out to exhibit a profoundly distinct mode of action as they were found to act mainly on non-genomic targets rather than on DNA. Accordingly, we have explored here their reactions with two representative model proteins through an established ESI-MS procedure with the aim to describe their general interaction mechanism with protein targets. A pronounced reactivity with the tested proteins was indeed documented; the nature of the resulting metallodrug-protein interactions could be characterised in depth in the various cases. Preferential binding to protein targets compared to DNA is supported by independent ICP-OES measurements. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.,Laboratory of Metals in Medicine (MetMed), Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Sandra A De Pascali
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesco P Fanizzi
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | - Alessandro Pratesi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Muscella A, Vetrugno C, Cossa LG, Antonaci G, De Nuccio F, De Pascali SA, Fanizzi FP, Marsigliante S. In Vitro and In Vivo Antitumor Activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in Malignant Pleural Mesothelioma. PLoS One 2016; 11:e0165154. [PMID: 27806086 PMCID: PMC5091852 DOI: 10.1371/journal.pone.0165154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/09/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O′-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC–siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
- * E-mail:
| | - Carla Vetrugno
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| | - Giovanna Antonaci
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| | - Francesco De Nuccio
- Laboratory of Human Anatomy and Neuroscience, Di.S.Te.B.A., University of Salento, Lecce, Italy
| | | | | | - Santo Marsigliante
- Laboratory of Cell Physiology Di.S.Te.B.A., University of Salento, Lecce, Italy
| |
Collapse
|
11
|
Muscella A, Vetrugno C, Biagioni F, Calabriso N, Calierno MT, Fornai F, De Pascali SA, Marsigliante S, Fanizzi FP. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma. Br J Pharmacol 2016; 173:2633-44. [PMID: 27351124 DOI: 10.1111/bph.13543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. EXPERIMENTAL APPROACH Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. KEY RESULTS Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. CONCLUSIONS AND IMPLICATIONS The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing.
Collapse
Affiliation(s)
- A Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - C Vetrugno
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Biagioni
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - N Calabriso
- Laboratory of Nutrigenomics and Vascular Biology, Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - M T Calierno
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - F Fornai
- Laboratory of Neurobiology of Movement Disorders, Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S A De Pascali
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - S Marsigliante
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - F P Fanizzi
- Laboratory of Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
12
|
Lopes EDO, Oliveira CGD, Silva PBD, Eismann CE, Suárez CA, Menegário AA, Leite CQF, Deflon VM, Pavan FR. Novel Zinc(II) Complexes [Zn(atc-Et)₂] and [Zn(atc-Ph)₂]: In Vitro and in Vivo Antiproliferative Studies. Int J Mol Sci 2016; 17:E781. [PMID: 27213368 PMCID: PMC4881598 DOI: 10.3390/ijms17050781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/11/2023] Open
Abstract
Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (Zn(II)) thiosemicarbazone complexes [Zn(atc-Et)₂] (1) and [Zn(atc-Ph)₂] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (¹H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research.
Collapse
Affiliation(s)
- Erica de O Lopes
- Faculdade de Ciencias Farmaceuticas, UNESP-Univ Estadual Paulista, Campus Araraquara, Araraquara, São Paulo 14800-903, Brazil.
| | - Carolina G de Oliveira
- Instituto de Química de São Carlos, USP-Univ de São Paulo, São Carlos, São Paulo 13560-970, Brazil.
| | - Patricia B da Silva
- Faculdade de Ciencias Farmaceuticas, UNESP-Univ Estadual Paulista, Campus Araraquara, Araraquara, São Paulo 14800-903, Brazil.
| | - Carlos E Eismann
- Centro de Estudos Ambientais, UNESP-Univ Estadual Paulista, Campus Rio Claro, Rio Claro, São Paulo 13506-900, Brazil.
| | - Carlos A Suárez
- Centro de Estudos Ambientais, UNESP-Univ Estadual Paulista, Campus Rio Claro, Rio Claro, São Paulo 13506-900, Brazil.
| | - Amauri A Menegário
- Centro de Estudos Ambientais, UNESP-Univ Estadual Paulista, Campus Rio Claro, Rio Claro, São Paulo 13506-900, Brazil.
| | - Clarice Q F Leite
- Faculdade de Ciencias Farmaceuticas, UNESP-Univ Estadual Paulista, Campus Araraquara, Araraquara, São Paulo 14800-903, Brazil.
| | - Victor M Deflon
- Instituto de Química de São Carlos, USP-Univ de São Paulo, São Carlos, São Paulo 13560-970, Brazil.
| | - Fernando R Pavan
- Faculdade de Ciencias Farmaceuticas, UNESP-Univ Estadual Paulista, Campus Araraquara, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
13
|
Mehra NK, Jain NK. One Platform Comparison of Estrone and Folic Acid Anchored Surface Engineered MWCNTs for Doxorubicin Delivery. Mol Pharm 2015; 12:630-43. [DOI: 10.1021/mp500720a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Neelesh Kumar Mehra
- Pharmaceutics
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar 470 003, India
- Pharmaceutical
Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga 142 001, India
| | - N. K. Jain
- Pharmaceutics
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar 470 003, India
- Pharmaceutical
Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga 142 001, India
| |
Collapse
|
14
|
Tundo GR, Sbardella D, De Pascali SA, Ciaccio C, Coletta M, Fanizzi FP, Marini S. Novel Platinum(II) compounds modulate insulin-degrading enzyme activity and induce cell death in neuroblastoma cells. J Biol Inorg Chem 2015; 20:101-108. [PMID: 25450414 DOI: 10.1007/s00775-014-1217-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/02/2014] [Indexed: 01/12/2023]
Abstract
The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i = 0.95 ± 0.21 μM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 μM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 μM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Sandra A De Pascali
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Francesco P Fanizzi
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.
| |
Collapse
|
15
|
Muscella A, Vetrugno C, Calabriso N, Cossa LG, De Pascali SA, Fanizzi FP, Marsigliante S. [Pt(O,O'-acac)(γ-acac)(DMS)] alters SH-SY5Y cell migration and invasion by the inhibition of Na+/H+ exchanger isoform 1 occurring through a PKC-ε/ERK/mTOR Pathway. PLoS One 2014; 9:e112186. [PMID: 25372487 PMCID: PMC4221608 DOI: 10.1371/journal.pone.0112186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.
Collapse
Affiliation(s)
- Antonella Muscella
- Cell Pathology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Carla Vetrugno
- Neuropathology Unit, Istituto di Neurologia sperimentale e Divisione di Neuroscienze, Istituto Scientifico IRCCS San Raffaele (sezione di Lecce), Milano, Italy
| | - Nadia Calabriso
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Luca Giulio Cossa
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Sandra Angelica De Pascali
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Francesco Paolo Fanizzi
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Santo Marsigliante
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
- * E-mail:
| |
Collapse
|
16
|
Jayakumar MKG, Bansal A, Huang K, Yao R, Li BN, Zhang Y. Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo. ACS NANO 2014; 8:4848-4858. [PMID: 24730360 DOI: 10.1021/nn500777n] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Current nanoparticle-based gene delivery techniques face two major limitations, namely, endosomal degradation and poor cytosolic release of the nanoparticles and nonspecificity of treatment. These limitations can be overcome with certain light-based techniques, such as photochemical internalization to enable endosomal escape of the delivered nanoparticles and light-controlled gene expression to overcome the nonspecific effects. However, these techniques require UV/visible light, which is either phototoxic and/or has low tissue penetration capabilities, thus preventing their use in deep tissues in a clinical setting. In an effort to overcome these barriers, we have successfully demonstrated a light-based gene delivery system that significantly boosts cytosolic gene delivery, with precise control over gene expression and the potential for use in nonsuperficial tissues. Core-shell fluorescent upconversion nanoparticles excited by highly penetrating near-infrared radiation and emitting simultaneously in the ultraviolet and visible ranges were synthesized and used as remote nanotransducers to simultaneously activate endosomal escape and gene knockdown. Gene knockdown using photomorpholinos was enhanced as much as 30% in vitro compared to the control without endosomal escape facilitation. A similar trend was seen in vivo in a murine melanoma model, demonstrating the enormous clinical potential of this system.
Collapse
|
17
|
De Pascali SA, Muscella A, Vetrugno C, Marsigliante S, Fanizzi FP. Synthesis, characterization and cytotoxicity of novel Pt(II) κ2O,O′-acetylacetonate complexes with nitrogen ligands. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|