1
|
Maiullari F, Milan M, Chirivì M, Ceraolo MG, Bousselmi S, Fratini N, Galbiati M, Fortunato O, Costantini M, Brambilla F, Mauri P, Di Silvestre D, Calogero A, Sciarra T, Rizzi R, Bearzi C. Enhancing neovascularization post-myocardial infarction through injectable hydrogel functionalized with endothelial-derived EVs. Biofabrication 2024; 16:045009. [PMID: 38986455 DOI: 10.1088/1758-5090/ad6190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.
Collapse
Affiliation(s)
- Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
| | - Marika Milan
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Maria Grazia Ceraolo
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Salma Bousselmi
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicole Fratini
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Matteo Galbiati
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry-Polish Academy of Sciences, MarcinaKasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesca Brambilla
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| |
Collapse
|
2
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Li W, Liu P, Liu H, Zhang F, Fu Y. Integrative analysis of genes reveals endoplasmic reticulum stress-related immune responses involved in dilated cardiomyopathy with fibrosis. Apoptosis 2023; 28:1406-1421. [PMID: 37462883 PMCID: PMC10425499 DOI: 10.1007/s10495-023-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the mechanisms underlying the fibrotic process in dilated cardiomyopathy (DCM) and results in disease exacerbation; however, the molecular details of this mechanism remain unclear. Through microarray and bioinformatic analyses, we explored genetic alterations in myocardial fibrosis (MF) and identified potential biomarkers related to ER stress. We integrated two public microarray datasets, including 19 DCM and 16 control samples, and comprehensively analyzed differential expression, biological functions, molecular interactions, and immune infiltration levels. The immune cell signatures suggest that inflammatory immune imbalance may promote MF progression. Both innate and adaptive immunity are involved in MF development, and T-cell subsets account for a considerable proportion of immune infiltration. The immune subtypes were further compared, and 103 differentially expressed ER stress-related genes were identified. These genes were mainly enriched in neuronal apoptosis, protein modification, oxidative stress reaction, glycolysis and gluconeogenesis, and NOD-like receptor signaling pathways. Furthermore, the 15 highest-scoring core genes were identified. Seven hub genes (AK1, ARPC3, GSN, KPNA2, PARP1, PFKL, and PRKC) might participate in immune-related mechanisms. Our results offer a new integrative view of the pathways and interaction networks of ER stress-related genes and provide guidance for developing novel therapeutic strategies for MF.
Collapse
Affiliation(s)
- Wanpeng Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, P.R., China
| | - Peiling Liu
- Department of Rheumatology, First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, 450000, P.R., China
| | - Huilin Liu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Fuchun Zhang
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Yicheng Fu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China.
| |
Collapse
|
4
|
Hamami R, Simaan-Yameen H, Gargioli C, Seliktar D. Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
7
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
8
|
Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41:226678. [PMID: 33057659 PMCID: PMC8209171 DOI: 10.1042/bsr20200833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.
Collapse
|
9
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
10
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
11
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Cardiac Regenerative Therapy in Diabetes: Challenges and Potential Therapeutics. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Gao L, Yi M, Xing M, Li H, Zhou Y, Xu Q, Zhang Z, Wen Z, Chang J. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B 2020; 8:7713-7722. [PMID: 32724972 DOI: 10.1039/d0tb01320j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem-cell therapy has been proved as a promising strategy for myocardial infarction (MI) treatment. However, the therapeutic efficacy is mainly limited by the cellular activity of transplanted mesenchymal stem cells (MSCs). In this study, a novel bioglass (BG)/γ-polyglutamic acid (γ-PGA)/chitosan (CS) hydrogel was obtained by in situ adding BG to stimulate the imine bond formation. And the effect of the composite hydrogel on MI therapeutic efficacy was evaluated in a rat acute myocardial infarction (AMI) model in vivo and the possible mechanism of the BG/γ-PGA/CS hydrogel for the stimulation of the intercellular interaction between MSCs and cardiomyocytes (CMs) was explored by a MSC and CM co-culture experiment in vitro. The implantation of the MSC loaded BG/γ-PGA/CS composite hydrogel in the mice AMI model showed a significant improvement in the therapeutic efficacy with improved cardiac function, attenuation of heart remodeling, reduced cardiomyocyte apoptosis and accelerated vascularization. The in vitro cell experiments demonstrated that the BG/γ-PGA/CS hydrogel activated the intercellular interaction between MSCs and CMs, which resulted in reduced cell apoptosis and enhanced angiogenesis. Silicate based bioactive hydrogels activated MSCs and cell-cell interactions in cardiac tissue after AMI and significantly enhanced the efficacy, which suggests that this bioactive hydrogel based approach is an effective way to enhance stem-cell therapy.
Collapse
Affiliation(s)
- Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Baci D, Chirivì M, Pace V, Maiullari F, Milan M, Rampin A, Somma P, Presutti D, Garavelli S, Bruno A, Cannata S, Lanzuolo C, Gargioli C, Rizzi R, Bearzi C. Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells. Cells 2020; 9:cells9061527. [PMID: 32585911 PMCID: PMC7349204 DOI: 10.3390/cells9061527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The recent advances, offered by cell therapy in the regenerative medicine field, offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors, such as myoblasts or satellite cells, possess a marked regenerative capacity, but the exploitation of this potential still encounters significant challenges in clinical application, due to low rate of proliferation in vitro, as well as a reduced self-renewal capacity. In this scenario, induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches, but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs, generated from pericytes and fibroblasts, exploiting skeletal muscle-derived extracellular vesicles (EVs), in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological "shuttles" to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches.
Collapse
Affiliation(s)
- Denisa Baci
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Maila Chirivì
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Valentina Pace
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | | | - Marika Milan
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Andrea Rampin
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Paolo Somma
- Flow Cytometry Core, Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Dario Presutti
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
| | - Silvia Garavelli
- Institute for Endocrinology and Oncology “Gaetano Salvatore”, National Research Council, 80131 Naples, Italy;
| | | | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.C.); (C.G.)
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy;
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.C.); (C.G.)
| | - Roberto Rizzi
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy;
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
- Correspondence: (R.R.); (C.B.); Tel.: +39-02-0066-0230 (R.R.); +39-02-0066-0230 (C.B.)
| | - Claudia Bearzi
- Institute of Biochemistry and Cell Biology, National Research Council, 00015 Rome, Italy; (D.B.); (M.C.); (V.P.); (M.M.); (A.R.); (D.P.)
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
- Correspondence: (R.R.); (C.B.); Tel.: +39-02-0066-0230 (R.R.); +39-02-0066-0230 (C.B.)
| |
Collapse
|
15
|
Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine 2020; 15:4205-4224. [PMID: 32606673 PMCID: PMC7314574 DOI: 10.2147/ijn.s245936] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and renewability but have some significant drawbacks such as rapid degradation, insufficient electrical conductivity, immunological reaction, and poor mechanical properties for cardiac tissue engineering. Synthetic biodegradable polymers have some advantages such as strong mechanical properties, controlled structure, great processing flexibility, and usually no immunological concerns; however, they have some drawbacks such as a lack of cell attachment and possible low biocompatibility. Some applications have combined the best of both and exciting new natural/synthetic composites have been utilized. Recently, the use of nanostructured polymers and polymer nanocomposites has revolutionized the field of cardiac tissue engineering due to their enhanced mechanical, electrical, and surface properties promoting tissue growth. In this review, recent research on the use of biodegradable natural/synthetic nanocomposite polymers in cardiac tissue engineering is presented with forward looking thoughts provided for what is needed for the field to mature.
Collapse
Affiliation(s)
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sakineh Hajebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoumehossadat Hosseini
- Department of Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
- Soroush Mana Pharmed, Pharmaceutical Holding, Golrang Industrial Group, Tehran, Iran
| | | | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, United States
| |
Collapse
|
16
|
Abdel Fattah AR, Ranga A. Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Front Bioeng Biotechnol 2020; 8:240. [PMID: 32363177 PMCID: PMC7180186 DOI: 10.3389/fbioe.2020.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Organoids are 3D multicellular constructs that rely on self-organized cell differentiation, patterning and morphogenesis to recapitulate key features of the form and function of tissues and organs of interest. Dynamic changes in these systems are orchestrated by biochemical and mechanical microenvironments, which can be engineered and manipulated to probe their role in developmental and disease mechanisms. In particular, the in vitro investigation of mechanical cues has been the focus of recent research, where mechanical manipulations imparting local as well as large-scale mechanical stresses aim to mimic in vivo tissue deformations which occur through proliferation, folding, invagination, and elongation. However, current in vitro approaches largely impose homogeneous mechanical changes via a host matrix and lack the required positional and directional specificity to mimic the diversity of in vivo scenarios. Thus, while organoids exhibit limited aspects of in vivo morphogenetic events, how local forces are coordinated to enable large-scale changes in tissue architecture remains a difficult question to address using current techniques. Nanoparticles, through their efficient internalization by cells and dispersion through extracellular matrices, have the ability to provide local or global, as well as passive or active modulation of mechanical stresses on organoids and tissues. In this review, we explore how nanoparticles can be used to manipulate matrix and tissue mechanics, and highlight their potential as tools for fate regulation through mechanotransduction in multicellular model systems.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Kossover O, Cohen N, Lewis JA, Berkovitch Y, Peled E, Seliktar D. Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using an Acellular, Biodegradable Polyethylene Glycol-Albumin Hydrogel Implant. ACS Biomater Sci Eng 2019; 6:100-111. [PMID: 33463206 DOI: 10.1021/acsbiomaterials.9b00672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth factor delivery using acellular matrices presents a promising alternative to current treatment options for bone repair in critical-size injuries. However, supra-physiological doses of the factors can introduce safety concerns that must be alleviated, mainly by sustaining delivery of smaller doses using the matrix as a depot. We developed an acellular, biodegradable hydrogel implant composed of poly(ethylene glycol) (PEG) and denatured albumin to be used for sustained delivery of bone morphogenic protein-2 (BMP2). In this study, poly(ethylene glycol)-albumin (PEG-Alb) hydrogels were produced and loaded with 7.7 μg/mL of recombinant human BMP2 (rhBMP2) to be tested for safety and performance in a critical-size long-bone defect, using a rodent model. The hydrogels were formed ex situ in a 5 mm long cylindrical mold of 3 mm diameter, implanted into defects made in the tibia of Sprague-Dawley rats and compared to non-rhBMP2 control hydrogels at 13 weeks following surgery. The hydrogels were also compared to the more established PEG-fibrinogen (PEG-Fib) hydrogels we have tested previously. Comprehensive in vitro characterization as well as in vivo assessments that include: histological analyses, including safety parameters (i.e., local tolerance and toxicity), assessment of implant degradation, bone formation, as well as repair tissue density using quantitative microCT analysis were performed. The in vitro assessments demonstrated similarities between the mechanical and release properties of the PEG-Alb hydrogels to those of the PEG-Fib hydrogels. Safety analysis presented good local tolerance in the bone defects and no signs of toxicity. A significantly larger amount of bone was detected at 13 weeks in the rhBMP2-treated defects as compared to non-rhBMP2 defects. However, no significant differences were noted in bone formation at 13 weeks when comparing the PEG-Alb-treated defects to PEG-Fib-treated defects (with or without BMP2). The study concludes that hydrogel scaffolds made from PEG-Alb containing 7.7 μg/mL of rhBMP2 are effective in accelerating the bridging of boney defects in the tibia.
Collapse
Affiliation(s)
- Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalie Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Jacob A Lewis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa 3200000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
18
|
Draker N, Torry DS, Torry RJ. Placenta growth factor and sFlt-1 as biomarkers in ischemic heart disease and heart failure: a review. Biomark Med 2019; 13:785-799. [DOI: 10.2217/bmm-2018-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronary heart disease (CHD) and heart failure (HF) produce significant morbidity/mortality but identifying new biomarkers could help in the management of each. In this article, we summarize the molecular regulation and biomarker potential of PIGF and sFlt-1 in CHD and HF. PlGF is elevated during ischemia and some studies have shown PlGF, sFlt-1 or PlGF:sFlt-1 ratio, when used in combination with standard biomarkers, strengthens predictions of outcomes. sFlt-1 and PlGF are elevated in HF with sFlt-1 as a stronger predictor of outcomes. Although promising, we discuss additional study criteria needed to confirm the clinical usefulness of PlGF or sFlt-1 in the detection and management of CHD or HF.
Collapse
Affiliation(s)
- Nicole Draker
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology, & Cell Biology, Department of OB/GYN, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - Ronald J Torry
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| |
Collapse
|
19
|
Wang H, Zhu Y, Chi Y, Dong S. A human embryonic stem cell-based model for benzo[a]pyrene-induced embryotoxicity. Reprod Toxicol 2019; 85:26-33. [DOI: 10.1016/j.reprotox.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
20
|
Ludwinski FE, Patel AS, Damodaran G, Cho J, Furmston J, Xu Q, Jayasinghe SN, Smith A, Modarai B. Encapsulation of macrophages enhances their retention and angiogenic potential. NPJ Regen Med 2019; 4:6. [PMID: 30911410 PMCID: PMC6426993 DOI: 10.1038/s41536-019-0068-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023] Open
Abstract
Cell therapies to treat critical limb ischaemia have demonstrated only modest results in clinical trials, and this has been partly attributed to poor cell retention following their delivery directly into the ischaemic limb. The aim of this study was to determine whether alginate encapsulation of therapeutic pro-angio/arteriogenic macrophages enhances their retention and ultimately improves limb perfusion. A reproducible GMP-compliant method for generating 300 µm alginate capsules was developed to encapsulate pro-angio/arteriogenic macrophages. Longitudinal analysis revealed no detrimental effect of encapsulation on cell number or viability in vitro, and macrophages retained their pro-angio/arteriogenic phenotype. Intramuscular delivery of encapsulated macrophages into the murine ischaemic hindlimb demonstrated increased cell retention compared with injection of naked cells (P = 0.0001), and that this was associated both enhanced angiogenesis (P = 0.02) and arteriogenesis (P = 0.03), and an overall improvement in limb perfusion (P = 0.0001). Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell retention and subsequent limb reperfusion in vivo. Encapsulation may therefore represent a means of improving the efficacy of cell-based therapies currently under investigation for the treatment of limb ischaemia. Blood vessel-promoting immune cells stay longer in the body and help promote blood flow to the feet and toes of mice with critical limb ischemia when the therapeutic cells are packaged inside tiny bubbles of a biocompatible seaweed derivative called alginate. A team led by Bijan Modarai from King’s College London, UK, developed a reliable method for placing artery-stimulating macrophage cells inside alginate capsules measuring 300 micrometres in diameter, about the thickness of a postcard. In culture, the alginate coating had no effect on the macrophage viability; and when injected into the muscles of mice with artery blockages to their hindlimbs, the encapsulated cells were retained longer and offered greater therapeutic benefit than uncoated cells. This encapsulation strategy may improve the efficacy of comparable cell-based therapies for humans with limb ischemia.
Collapse
Affiliation(s)
- Francesca E Ludwinski
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Ashish S Patel
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Gopinath Damodaran
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Jun Cho
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joanna Furmston
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Qingbo Xu
- 2King's College London, Vascular Biology Section, School of Cardiovascular Medicine & Sciences, BHF Centre of Excellence, King's College London, London, UK
| | - Suwan N Jayasinghe
- 3BioPhysics Group, UCL Centre for Stem Cells and Regenerative Medicine, UCL Department of Mechanical Engineering and UCL Institute of Healthcare Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Alberto Smith
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bijan Modarai
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
21
|
A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 2018; 8:13532. [PMID: 30201959 PMCID: PMC6131510 DOI: 10.1038/s41598-018-31848-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host’s vasculature.
Collapse
|
22
|
Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24459-24468. [PMID: 29974744 DOI: 10.1021/acsami.8b08659] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation. The iPS cells labeled with CM-Dil were transplanted into the MI hearts of mice with or without FA hydrogel encapsulation. The results corroborated that the FA hydrogel significantly improved the retention and survival of iPS cells in MI hearts post injection, leading to augmentation of the therapeutic efficacy of iPS cells including better cardiac function and much less adverse heart remodeling, by subsequent differentiation toward cardiac cells and stimulation of neovascularization. This study reported a novel supramolecular hydrogel based on FA-peptides capable of improving the therapeutic capacity of iPS cells, which held big potential in the treatment of MI.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yongquan Hua
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Min Ye
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Caiwen Ou
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Minsheng Chen
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| |
Collapse
|
23
|
Sheffield C, Meyers K, Johnson E, Rajachar RM. Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels 2018; 4:E51. [PMID: 30674827 PMCID: PMC6209271 DOI: 10.3390/gels4020051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The development of biomaterials for the restoration of the normal tissue structure⁻function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in general, and more specifically in composite hydrogel materials, each of these properties provide unique qualities that are essential for proper augmentation and repair following disease and injury. The broad focus of this review is on physical properties in particular, static and dynamic mechanical properties provided by composite hydrogel materials and their link to native tissue architecture and, ultimately, tissue-specific applications for composite hydrogels.
Collapse
Affiliation(s)
- Cassidy Sheffield
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Emil Johnson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
24
|
Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering. Biologicals 2018; 53:10-18. [PMID: 29625872 DOI: 10.1016/j.biologicals.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the scaffold composed of 3.5% (w/w) CS and 0.5% ECM has the best potential in providing cardiac progenitor cells (CPCs) with a suitable microenvironmental condition for both attachment and growth. This study demonstrates that the fabricated scaffold is capable of transmitting both mechanical and chemical cues that is native to myocardial tissue and supports efficient growth of the CPCs.
Collapse
|
25
|
Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater 2018; 70:71-83. [PMID: 29341932 DOI: 10.1016/j.actbio.2018.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. METHODS AND RESULTS In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90% at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p < .001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p < .05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. CONCLUSIONS Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. STATEMENT OF SIGNIFICANCE Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.
Collapse
Affiliation(s)
- Maria Chiara Ciuffreda
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Giuseppe Malpasso
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Cindy Chokoza
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Kyle P Goetsch
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Manuela Mura
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Federica Pisano
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Neil H Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Massimiliano Gnecchi
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy; Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
26
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
27
|
Ni J, Sun Y, Liu Z. The Potential of Stem Cells and Stem Cell-Derived Exosomes in Treating Cardiovascular Diseases. J Cardiovasc Transl Res 2018. [PMID: 29525884 DOI: 10.1007/s12265-018-9799-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the cardiac protective mechanisms of stem cells have become a research focus. Increasing evidence has suggested that stem cells release vesicles, including exosomes and micro-vesicles. The content of these vesicles relies on an extracellular stimulus, and active ingredients are extensively being studied. Previous studies have confirmed that stem cell-derived exosomes have a cardiac protective function similar to that of stem cells, and promote angiogenesis, decrease apoptosis, and respond to stress. Compared to stem cells, exosomes are more stable without aneuploidy and immune rejection, and may be a promising and effective therapy for cardiovascular diseases. In this review, the biological functions and molecular mechanisms of stem cells and stem cell-derived exosomes are discussed.
Collapse
Affiliation(s)
- Jing Ni
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Yuxi Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai, China. .,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Milan M, Pace V, Maiullari F, Chirivì M, Baci D, Maiullari S, Madaro L, Maccari S, Stati T, Marano G, Frati G, Puri PL, De Falco E, Bearzi C, Rizzi R. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis 2018; 9:108. [PMID: 29371598 PMCID: PMC5833837 DOI: 10.1038/s41419-017-0174-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics – hereditable changes of chromatin that do not alter the DNA sequence itself – is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.
Collapse
Affiliation(s)
- Marika Milan
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Valentina Pace
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Fabio Maiullari
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy.,Operational Research Unit, Fondazione di Ricerca e Cura Giovanni Paolo II, Largo Gemelli 1, Campobasso, Italy
| | - Maila Chirivì
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Denisa Baci
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Silvia Maiullari
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy
| | - Luca Madaro
- IRCCS Fondazione Santa Lucia, Rome, 00142, Italy
| | - Sonia Maccari
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Tonino Stati
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Giuseppe Marano
- Centro di Riferimento per la Medicina di Genere Istituto Superiore di Sanità Viale Regina Elena, 299, Roma, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli (IS), Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy
| | - Claudia Bearzi
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy.
| | - Roberto Rizzi
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, 00015, Italy. .,Operational Research Unit, Fondazione di Ricerca e Cura Giovanni Paolo II, Largo Gemelli 1, Campobasso, Italy.
| |
Collapse
|
29
|
Goldshmid R, Seliktar D. Hydrogel Modulus Affects Proliferation Rate and Pluripotency of Human Mesenchymal Stem Cells Grown in Three-Dimensional Culture. ACS Biomater Sci Eng 2017; 3:3433-3446. [DOI: 10.1021/acsbiomaterials.7b00266] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Revital Goldshmid
- The
Faculty of Biomedical Engineering and ‡The Interdisciplinary Program for
Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dror Seliktar
- The
Faculty of Biomedical Engineering and ‡The Interdisciplinary Program for
Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
30
|
Seeto WJ, Tian Y, Winter RL, Caldwell FJ, Wooldridge AA, Lipke EA. Encapsulation of Equine Endothelial Colony Forming Cells in Highly Uniform, Injectable Hydrogel Microspheres for Local Cell Delivery. Tissue Eng Part C Methods 2017; 23:815-825. [DOI: 10.1089/ten.tec.2017.0233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Wen J. Seeto
- Department of Chemical Engineering, Auburn University, Auburn, Alabama
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, Alabama
| | - Randolph L. Winter
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Fred J. Caldwell
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Anne A. Wooldridge
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | |
Collapse
|
31
|
Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017; 120:1487-1500. [PMID: 28450366 DOI: 10.1161/circresaha.117.310738] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.
Collapse
Affiliation(s)
- Florian Weinberger
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
32
|
Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 2017; 523:454-475. [DOI: 10.1016/j.ijpharm.2016.10.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
|
33
|
Liu H, Paul C, Xu M. Optimal Environmental Stiffness for Stem Cell Mediated Ischemic Myocardium Repair. Methods Mol Biol 2017; 1553:293-304. [PMID: 28229425 DOI: 10.1007/978-1-4939-6756-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases related to myocardial infarction (MI) contribute significantly to morbidity and mortality worldwide. The loss of cardiomyocytes during MI is a key factor in the impairment of cardiac-pump functions. Employing cell transplantation has shown great potential as a therapeutic approach in regenerating ischemic myocardium. Several studies have suggested that the therapeutic effects of stem cells vary based on the timing of cell administration. It has been clearly established that the myocardium post-infarction experiences a time-dependent stiffness change, and many studies have highlighted the importance of stiffness (elasticity) of microenvironment on modulating the fate and function of stem cells. Therefore, this chapter outlines our studies and other experiments designed to establish the optimal stiffness of microenvironment that maximizes benefits for maintaining cell survival, promoting phenotypic plasticity, and improving functional specification of the engrafted stem cells.
Collapse
Affiliation(s)
- Honghai Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA.
| |
Collapse
|
34
|
|
35
|
Pradhan S, Clary JM, Seliktar D, Lipke EA. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 2016; 115:141-154. [PMID: 27889665 DOI: 10.1016/j.biomaterials.2016.10.052] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) in vitro cancer models offer an attractive approach towards the investigation of tumorigenic phenomena and other cancer studies by providing dimensional context and higher degree of physiological relevance than that offered by conventional two-dimensional (2D) models. The multicellular tumor spheroid model, formed by cell aggregation, is considered to be the "gold standard" for 3D cancer models, due to its ease and simplicity of use. Although better than 2D models, tumor spheroids are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of surrounding extracellular matrix components and heterogeneity in shape, size and aggregate forming tendencies. In order to address this issue, we have developed a 3D "tumor microsphere" model, formed by a dual-photoinitiator, aqueous-oil emulsion technique, for the encapsulation of cancer cells within PEG-fibrinogen hydrogel microspheres and for subsequent long-term 3D culture. In comparison to self-aggregated tumor spheroids, the tumor microspheres displayed a higher degree of size and shape homogeneity throughout long-term culture. In sharp contrast to cells in tumor spheroids, cells within tumor microspheres demonstrated significant loss in apico-basal polarity and cellular architecture, cellular and nuclear atypia, increased disorganization, elevated nuclear cytoplasmic ratio and nuclear volume density and reduction in cell-cell junction length, all of which are hallmarks of malignant transformation and tumorigenic progression. Additionally, the tumor microsphere model was extended for the 3D encapsulation and maintenance of a wide range of other cancer cell (metastatic and non-metastatic) types. Taken together, our results reinforce the importance of incorporating a biomimetic matrix in the cellular microenvironment of 3D tumor models and the influential effects of the matrix on the tumorigenic morphology of 3D cultured cells. The tumor microsphere system established in this study has the potential to be used in future investigations of 3D cancer cell-cell and cell-ECM interactions and in drug-testing applications.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jacob M Clary
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
36
|
Kerscher P, Kaczmarek JA, Head SE, Ellis ME, Seeto WJ, Kim J, Bhattacharya S, Suppiramaniam V, Lipke EA. Direct Production of Human Cardiac Tissues by Pluripotent Stem Cell Encapsulation in Gelatin Methacryloyl. ACS Biomater Sci Eng 2016; 3:1499-1509. [PMID: 33429637 DOI: 10.1021/acsbiomaterials.6b00226] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Direct stem cell encapsulation and cardiac differentiation within supporting biomaterial scaffolds are critical for reproducible and scalable production of the functional human tissues needed in regenerative medicine and drug-testing applications. Producing cardiac tissues directly from pluripotent stem cells rather than assembling tissues using pre-differentiated cells can eliminate multiple cell-handling steps that otherwise limit the potential for process automation and production scale-up. Here we asked whether our process for forming 3D developing human engineered cardiac tissues using poly(ethylene glycol)-fibrinogen hydrogels can be extended to widely used and printable gelatin methacryloyl (GelMA) hydrogels. We demonstrate that low-density GelMA hydrogels can be formed rapidly using visible light (<1 min) and successfully employed to encapsulate human induced pluripotent stem cells while maintaining high cell viability. Resulting constructs had an initial stiffness of approximately 220 Pa, supported tissue growth and dynamic remodeling, and facilitated high-efficiency cardiac differentiation (>70%) to produce spontaneously contracting GelMA human engineered cardiac tissues (GEhECTs). GEhECTs initiated spontaneous contractions on day 8 of differentiation, with synchronicity, frequency, and velocity of contraction increasing over time, and displayed developmentally appropriate temporal changes in cardiac gene expression. GEhECT-dissociated cardiomyocytes displayed well-defined and aligned sarcomeres spaced at 1.85 ± 0.1 μm and responded appropriately to drug treatments, including the β-adrenergic agonist isoproterenol and antagonist propranolol, as well as to outside pacing up to 3.0 Hz. Overall results demonstrate that GelMA is a suitable biomaterial for the production of developing cardiac tissues and has the potential to be employed in scale-up production and bioprinting of GEhECTs.
Collapse
Affiliation(s)
- Petra Kerscher
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Jennifer A Kaczmarek
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Sara E Head
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Morgan E Ellis
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Joonyul Kim
- Proximity Biosciences LLC, Auburn, Alabama 36832, United States
| | - Subhrajit Bhattacharya
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 2316 Walker Building, Auburn, Alabama 36829, United States
| | - Vishnu Suppiramaniam
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 2316 Walker Building, Auburn, Alabama 36829, United States
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| |
Collapse
|
37
|
Pradhan S, Hassani I, Seeto WJ, Lipke EA. PEG‐fibrinogen hydrogels for three‐dimensional breast cancer cell culture. J Biomed Mater Res A 2016; 105:236-252. [DOI: 10.1002/jbm.a.35899] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/08/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | - Iman Hassani
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | - Wen J. Seeto
- Department of Chemical EngineeringAuburn UniversityAuburn Alabama36849
| | | |
Collapse
|
38
|
Pradhan S, Hassani I, Clary JM, Lipke EA. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:470-484. [PMID: 27302080 DOI: 10.1089/ten.teb.2015.0567] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic polymers and materials have been widely used in tissue engineering for regeneration and replication of diverse types of both normal and diseased tissues. Cancer, being a prevalent disease throughout the world, has initiated substantial interest in the creation of tissue-engineered models for anticancer drug testing. The development of these in vitro three-dimensional (3D) culture models using novel biomaterials has facilitated the investigation of tumorigenic and associated biological phenomena with a higher degree of complexity and physiological context than that provided by established two-dimensional culture models. In this review, an overview of a wide range of natural, synthetic, and hybrid biomaterials used for 3D cancer cell culture and investigation of cancer cell behavior is presented. The role of these materials in modulating cell-matrix interactions and replicating specific tumorigenic characteristics is evaluated. In addition, recent advances in biomaterial design, synthesis, and fabrication are also assessed. Finally, the advantages of incorporating polymeric biomaterials in 3D cancer models for obtaining efficacy data in anticancer drug testing applications are highlighted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Iman Hassani
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Jacob M Clary
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| |
Collapse
|
39
|
Egozi D, Shandalov Y, Freiman A, Rosenfeld D, Ben-Shimol D, Levenberg S. Engineered Vascularized Muscle Flap. J Vis Exp 2016. [PMID: 26779840 DOI: 10.3791/52984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications.
Collapse
Affiliation(s)
- Dana Egozi
- Department of Plastic Surgery, Kaplan Medical Center
| | - Yulia Shandalov
- Biomedical Engineering, Technion Israel Institute of Technology
| | - Alina Freiman
- Biomedical Engineering, Technion Israel Institute of Technology; Interdepartmental Program in Biotechnology, Technion Israel Institute of Technology
| | - Dekel Rosenfeld
- Biomedical Engineering, Technion Israel Institute of Technology
| | | | | |
Collapse
|
40
|
Kerscher P, Turnbull IC, Hodge AJ, Kim J, Seliktar D, Easley CJ, Costa KD, Lipke EA. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials 2015; 83:383-95. [PMID: 26826618 DOI: 10.1016/j.biomaterials.2015.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023]
Abstract
Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.
Collapse
Affiliation(s)
- Petra Kerscher
- Department of Chemical Engineering, Auburn University, AL, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Joonyul Kim
- Department of Chemistry and Biochemistry, Auburn University, AL, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
41
|
Vannozzi L, Ricotti L, Cianchetti M, Bearzi C, Gargioli C, Rizzi R, Dario P, Menciassi A. Self-assembly of polydimethylsiloxane structures from 2D to 3D for bio-hybrid actuation. BIOINSPIRATION & BIOMIMETICS 2015; 10:056001. [PMID: 26292037 DOI: 10.1088/1748-3190/10/5/056001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work aims to demonstrate the feasibility of a novel approach for the development of 3D self-assembled polydimethylsiloxane structures, to be used as engineered flexible matrices for bio-hybrid actuation. We described the fabrication of engineered bilayers, organized in a 3D architecture by means of a stress-induced rolling membrane technique. Such structures were provided with ad hoc surface topographies, for both cell alignment and cell survival after membrane rolling. We reported the results of advanced finite element model simulations, predicting the system behavior in terms of overall contraction, induced by the contractile activity of muscle cells seeded on the membrane. Then, we tested in vitro the structure with primary cardiomyocytes to evaluate the real bio-actuator contraction, thus validating the simulation results. At a later stage, we provided the samples with a stable fibronectin coating, by covalently binding the protein on the polymer surface, thus enabling long-term cultures with C2C12 skeletal muscle cells, a more controllable cell type. These tests revealed cell viability and alignment on the rolled structures, but also the ability of cells to differentiate and to form multinucleated and oriented myotubes on the polymer surface, also supported by a fibroblast feeder layer. Our results highlighted the possibility of developing 3D rolled PDMS structures, characterized by different mechanical properties, as novel bio-hybrid actuators.
Collapse
Affiliation(s)
- L Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (PI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tratwal J, Mathiasen AB, Juhl M, Brorsen SK, Kastrup J, Ekblond A. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells. Stem Cell Res Ther 2015; 6:62. [PMID: 25889587 PMCID: PMC4431456 DOI: 10.1186/s13287-015-0062-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/05/2014] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns of ASCs. Methods Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. Results Compared to ASCs in complete medium, 190 and 108 genes were significantly altered by serum deprivation and serum deprivation combined with VEGF, respectively. No significant differences in gene expression patterns between serum-deprived ASCs and serum-deprived ASCs combined with VEGF stimulation were found. Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). Conclusion The decisive factor for the observed change in ASC gene expression proves to be serum starvation rather than VEGF stimulation. Changes in expression of growth factors, matricellular proteins and matrix metalloproteinases in concert, diverge from direct pro-angiogenic paracrine mechanisms as a primary consequence of the used protocol. In vitro serum starvation (with or without VEGF present) appears to favour cardioprotection, extracellular matrix remodelling and blood vessel maturation relevant for the late maturation phase in infarct healing.
Collapse
Affiliation(s)
- Josefine Tratwal
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Anders Bruun Mathiasen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Sonja Kim Brorsen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| |
Collapse
|
43
|
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto M. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015; 203:23-38. [DOI: 10.1016/j.jconrel.2015.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
44
|
Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method. Acta Biomater 2015; 13:78-87. [PMID: 25462849 DOI: 10.1016/j.actbio.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/23/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
A new methodology is reported for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photoreactive poly(ethylene glycol) (PEG)-fibrinogen (PF) polymer was transported through a transparent injector exposed to light irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data revealed the crosslinking kinetics of the PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture just prior to atomization. The partially polymerized drops of PF/cells fell into a gelation bath for further crosslinking until fully polymerized hydrogel microparticles were formed. As the drops of solution exited the air-in-jet nozzle, their viscosity was designed to be sufficiently high so as to prevent rapid mixing and/or dilution in the gelation bath, but without undergoing complete gelation in the nozzle. Several parameters of this system were varied to control the size and polydispersity of the microparticles, including the cell density, the flow rate and the air pressure in the nozzle. The system was capable of producing cell-laden microparticles with an average diameter of between 88.1 to 347.1 μm, and a dispersity of between 1.1 and 2.4, depending on the parameters chosen. Varying the precursor flow rate and/or cell density was beneficial in controlling the size and polydispersity of the microparticles; all microparticles exhibited very high cell viability, which was not affected by these parameters. In conclusion, this dropwise photopolymerization methodology for preparing cell-laden microparticles is an attractive alternative to existing techniques that use harsh solvents/oils and offer limited control over particle size and polydispersity.
Collapse
|