1
|
Deschênes M, Durand M, Olivier MA, Pellerin-Viger A, Rodier F, Chabot B. A defective splicing machinery promotes senescence through MDM4 alternative splicing. Aging Cell 2024:e14301. [PMID: 39118304 DOI: 10.1111/acel.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Durand
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marc-Alexandre Olivier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Alicia Pellerin-Viger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Institut du Cancer de Montréal, Montréal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Hawkins S, Mondaini A, Namboori SC, Nguyen GG, Yeo GW, Javed A, Bhinge A. ePRINT: exonuclease assisted mapping of protein-RNA interactions. Genome Biol 2024; 25:140. [PMID: 38807229 PMCID: PMC11134894 DOI: 10.1186/s13059-024-03271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Alexandre Mondaini
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Grady G Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
3
|
Funes S, Jung J, Gadd DH, Mosqueda M, Zhong J, Shankaracharya, Unger M, Stallworth K, Cameron D, Rotunno MS, Dawes P, Fowler-Magaw M, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Nickerson JA, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. Nat Commun 2024; 15:2497. [PMID: 38509062 PMCID: PMC10954694 DOI: 10.1038/s41467-024-46695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Salome Funes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan Jung
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Del Hayden Gadd
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michelle Mosqueda
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Matthew Unger
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karly Stallworth
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Debra Cameron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Melissa S Rotunno
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Megan Fowler-Magaw
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Sivakumar Boopathy
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Worcester, MA, 01605, USA
| | - Cathleen Lutz
- The Jackson Laboratory Center for Precision Genetics, Rare Disease Translational Center, Bar Harbor, ME, 04609, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Elaine T Lim
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P Schafer
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Tzeplaeff L, Seguin J, Le Gras S, Megat S, Cosquer B, Plassard D, Dieterlé S, Paiva I, Picchiarelli G, Decraene C, Alcala-Vida R, Cassel JC, Merienne K, Dupuis L, Boutillier AL. Mutant FUS induces chromatin reorganization in the hippocampus and alters memory processes. Prog Neurobiol 2023; 227:102483. [PMID: 37327984 DOI: 10.1016/j.pneurobio.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France; Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Jonathan Seguin
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Stéphanie Le Gras
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Salim Megat
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Brigitte Cosquer
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Damien Plassard
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | | | - Isabel Paiva
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | | | - Charles Decraene
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Rafael Alcala-Vida
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Karine Merienne
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France.
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France.
| |
Collapse
|
5
|
Llido JP, Jayanti S, Tiribelli C, Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants (Basel) 2023; 12:1525. [PMID: 37627520 PMCID: PMC10451892 DOI: 10.3390/antiox12081525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular redox status has a crucial role in brain physiology, as well as in pathologic conditions. Physiologic senescence, by dysregulating cellular redox homeostasis and decreasing antioxidant defenses, enhances the central nervous system's susceptibility to diseases. The reduction of free radical accumulation through lifestyle changes, and the supplementation of antioxidants as a prophylactic and therapeutic approach to increase brain health, are strongly suggested. Bilirubin is a powerful endogenous antioxidant, with more and more recognized roles as a biomarker of disease resistance, a predictor of all-cause mortality, and a molecule that may promote health in adults. The alteration of the expression and activity of the enzymes involved in bilirubin production, as well as an altered blood bilirubin level, are often reported in neurologic conditions and neurodegenerative diseases (together denoted NCDs) in aging. These changes may predict or contribute both positively and negatively to the diseases. Understanding the role of bilirubin in the onset and progression of NCDs will be functional to consider the benefits vs. the drawbacks and to hypothesize the best strategies for its manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Sri Jayanti
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Claudio Tiribelli
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| | - Silvia Gazzin
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| |
Collapse
|
6
|
Funes S, Gadd DH, Mosqueda M, Zhong J, Jung J, Shankaracharya, Unger M, Cameron D, Dawes P, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.541136. [PMID: 37398081 PMCID: PMC10312575 DOI: 10.1101/2023.06.01.541136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be fully elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited lipid dysmetabolism and deficits in phagocytosis, a critical microglia function. Our cumulative data implicate an effect of ALS-linked PFN1 on the autophagy pathway, including enhanced binding of mutant PFN1 to the autophagy signaling molecule PI3P, as an underlying cause of defective phagocytosis in ALS-PFN1 iMGs. Indeed, phagocytic processing was restored in ALS-PFN1 iMGs with Rapamycin, an inducer of autophagic flux. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and highlight microglia vesicular degradation pathways as potential therapeutic targets for these disorders.
Collapse
|
7
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
9
|
Assoni AF, Foijer F, Zatz M. Amyotrophic Lateral Sclerosis, FUS and Protein Synthesis Defects. Stem Cell Rev Rep 2022; 19:625-638. [PMID: 36515764 DOI: 10.1007/s12015-022-10489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the motor system. It is a very heterogeneous disorder, so far more than 40 genes have been described as responsible for ALS. The cause of motor neuron degeneration is not yet fully understood, but there is consensus in the literature that it is the result of a complex interplay of several pathogenic processes, which include alterations in nucleocytoplasmic transport, defects in transcription and splicing, altered formation and/or disassembly of stress granules and impaired proteostasis. These defects result in protein aggregation, impaired DNA repair, mitochondrial dysfunction and oxidative stress, neuroinflammation, impaired axonal transport, impaired vesicular transport, excitotoxicity, as well as impaired calcium influx. We argue here that all the above functions ultimately lead to defects in protein synthesis. Fused in Sarcoma (FUS) is one of the genes associated with ALS. It causes ALS type 6 when mutated and is found mislocalized to the cytoplasm in the motor neurons of sporadic ALS patients (without FUS mutations). In addition, FUS plays a role in all cellular functions that are impaired in degenerating motor neurons. Moreover, ALS patients with FUS mutations present the first symptoms significantly earlier than in other forms of the disease. Therefore, the aim of this review is to further discuss ALS6, detail the cellular functions of FUS, and suggest that the localization of FUS, as well as protein synthesis rates, could be hallmarks of the ALS phenotype and thus good therapeutic targets.
Collapse
Affiliation(s)
- Amanda Faria Assoni
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.,European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.
| |
Collapse
|
10
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
11
|
Yin Z, Shen H, Gu CM, Zhang MQ, Liu Z, Huang J, Zhu Y, Zhong Q, Huang Y, Wu F, Ou R, Zhang Q, Liu S. MiRNA-142-3P and FUS can be Sponged by Long Noncoding RNA DUBR to Promote Cell Proliferation in Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:754936. [PMID: 34746238 PMCID: PMC8570042 DOI: 10.3389/fmolb.2021.754936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) represents a frequently occurring adulthood acute leukemia (AL). Great progresses have been achieved in the treatment of AML, but its pathogenic mechanism remains unclear. This study reported the biological functions of lncRNA DUBR in AML pathogenic mechanism. As a result, lncRNA DUBR showed high expression level within AML, resulting in poor prognosis, especially in M4 AML. In vitro studies elucidated that knockdown of DUBR with small interfering RNA (siRNA) resulted in the suppression of survival and colony formation ability, as well as induction of apoptosis, in AML cells. RNA pull-down assay and computational revealed that DUBR could sponge with miRNA-142-3P and interact with FUS protein. MiRNA-142-3P have a negative correlation with DUBR and overexpression of miRNA-142-3P inhibited cell growth in AML. Meanwhile, DUBR promoted the expression of FUS protein, targeting inhibition of FUS significantly promoted cell apoptosis in AML cell lines. In conclusion, these results revealed new mechanism of lncRNA DUBR in AML malignant behavior, and suggested that the manipulation of DUBR expression could serve as a potential strategy in AML therapy.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - HuiJuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun Ming Gu
- Clinical Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ming Qi Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yizhen Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
12
|
Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. Int J Mol Sci 2021; 22:ijms22147566. [PMID: 34299185 PMCID: PMC8304973 DOI: 10.3390/ijms22147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.
Collapse
|
13
|
Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, Reber S, Mechtersheimer J, Ronchi AE, Mühlemann O, Leonhardt H, Cardoso MC, Ruepp MD, Barabino SM. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol 2021; 220:e202008030. [PMID: 33704371 PMCID: PMC7953258 DOI: 10.1083/jcb.202008030] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.
Collapse
Affiliation(s)
- Brunno R. Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Silvia C. Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Antonaci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Alexander Rapp
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Francesca Conte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefan Reber
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonas Mechtersheimer
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Antonella E. Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marc-David Ruepp
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Silvia M.L. Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
Yang L, Zou X, Zou J, Zhang G. Functions of circular RNAs in bladder, prostate and renal cell cancer (Review). Mol Med Rep 2021; 23:307. [PMID: 33649838 PMCID: PMC7974260 DOI: 10.3892/mmr.2021.11946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs formed by covalently closed loops through back-splicing and exon-skipping. circRNAs have been confirmed to play a vital role in various biological functions, acting as microRNA sponges and reservoirs, as well as combining with RNA-binding proteins during the progression of multiple cancer types. Therefore, the present review evaluated recent research articles in PubMed that were published between November 2017 and September 2020. Key word search strings included: ‘Circular RNA (circRNA) AND bladder cancer (BC)’, ‘circular RNA (circRNA) AND prostate cancer (PCa)’ and ‘circular RNA (circRNA) AND renal cell cancer (RCC)’. In total, >58 circRNAs were found to be implicated in urological cancers, with several of the circRNAs targeting common carcinogenic pathways, such as the AKT, TGF-β, MAPK, VEGF and even metabolic pathways. circRNAs are important modulators of BC, PCa and RCC. circRNAs are functionally implicated in the pathogenesis of these cancer types, and have been found to act as biomarkers for the diagnosis and prognosis of urological cancer. However, to the best of our knowledge, the functions of circRNAs in tumors of the urinary system remain largely unknown and require further research.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
15
|
Lanteri P, Meola I, Canosa A, De Marco G, Lomartire A, Rinaudo MT, Albamonte E, Sansone VA, Lunetta C, Manera U, Vasta R, Moglia C, Calvo A, Origone P, Chiò A, Mandich P. The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiol Aging 2021; 103:130.e1-130.e7. [PMID: 33637330 DOI: 10.1016/j.neurobiolaging.2021.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
We report a case of childhood-onset ALS with a FUS gene mutation presenting cognitive impairment and a rapid clinical progression. The patient, an 11-year-old girl, presented with right distal upper limb weakness and mild intellectual disability at the Griffith Mental Development Scales. The disease rapidly worsened and the patient became tetraplegic and bed-ridden 2 years after symptom onset. A c.1509_1510delAG mutation in exon 14 of the FUS gene was detected, resulting in a predicted truncated protein, p.G504Wfs*12, lacking the nuclear localization signal. The levels of FUS mRNA in the proband were not significantly different compared to controls. Western immunoblot analysis showed that one antibody (500-526) detected in the proband ~50% of the amount of FUS protein compared to controls, while 3 other antibodies (2-27, 400-450 and FUS C-terminal), which recognize both wild type and the mutated FUS, detected 60% to 75% of the amount of the protein. These findings indicate that p.G504Wfs*12 FUS is more prone to undergo post-translational modification respect to wild type FUS.
Collapse
Affiliation(s)
- Paola Lanteri
- Neurophysiopathology Centre, Department of Diagnostics and Applied Technology, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Irene Meola
- Child Neurology Unit, Cesare Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Annarosa Lomartire
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria Teresa Rinaudo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Emilio Albamonte
- The NEMO Clinical Center (NEuroMuscular Onmicenter), Milan, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center (NEuroMuscular Onmicenter), Milan, Italy; Neurorehabilitation Unit, University of Milan, Milan, Italy
| | | | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI) University of Genoa and IRCCS Policlinico San Martino, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy.
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI) University of Genoa and IRCCS Policlinico San Martino, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| |
Collapse
|
16
|
Rybin MJ, Ramic M, Ricciardi NR, Kapranov P, Wahlestedt C, Zeier Z. Emerging Technologies for Genome-Wide Profiling of DNA Breakage. Front Genet 2021; 11:610386. [PMID: 33584810 PMCID: PMC7873462 DOI: 10.3389/fgene.2020.610386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage-the principal driver of genome instability-was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the "breakome" in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Rybin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Melina Ramic
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natalie R Ricciardi
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Abd Raboh NM, Hakim SA, Abd El Atti RM. Implications of androgen receptor and FUS expression on tumor progression in urothelial carcinoma. Histol Histopathol 2020; 36:325-337. [PMID: 33354760 DOI: 10.14670/hh-18-295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Androgen receptor (AR) interact with many pathways involved in bladder cancer development and progression. FUS (fused in liposarcoma), a multifunctional protein essential for different cellular processes, has been demonstrated as a key link between androgen receptor signaling and cell-cycle progression in prostate cancer but has not been examined in urothelial carcinoma (UC) despite an intimate association between prostate and bladder carcinogenesis. AIM To examine the immunohistochemical expression of AR and FUS in urothelial carcinoma in relation to prognostic parameters and to extrapolate any possible link between the expression of both markers and tumor progression. STUDY DESIGN Retrospective study using immunohistochemical staining for AR and FUS on (88) cases of urothelial carcinoma. RESULTS AR shows statistically significant relations with late tumor stage, high tumor grade, and non-papillary tumor pattern. On the other hand, FUS expression correlates with early tumor stage, low tumor grade and papillary pattern. An inverse relation is found between AR and FUS expression (p=0.001). Cases with high AR IHC expression show statistically significant shorter OS, RFS and PFS compared to cases with low AR expression. Cases with high FUS IHC expression reveal statistically significant longer OS, RFS and PFS compared to cases with low FUS expression. CONCLUSION FUS expression is associated with favorable prognostic parameters of UC. A possible interaction is suggested between FUS and AR pathways involved in urothelial cancer progression. Manipulating FUS levels and androgen deprivation therapy can provide new promising targets for treatment trials.
Collapse
Affiliation(s)
| | - Sarah Adel Hakim
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
18
|
Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, Liu T, Wei C, Zhang X, Qiu X. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer 2020; 23:449-463. [PMID: 31673844 DOI: 10.1007/s10120-019-01019-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly investigated in numerous carcinomas containing gastric cancer (GC). The aim of our research is to inquire about the expression profile and role of LBX2-AS1 in GC. METHODS The expressions of LBX2-AS1, miR-219a-2-3p, FUS and LBX2 were measured by qRT-PCR. Western blot evaluated FUS and LBX2 protein levels. Cell proliferation and apoptosis were, respectively, evaluated by CCK-8, colony formation, EdU, flow cytometry and TUNEL assays. FISH and subcellular fractionation assays examined the position of LBX2-AS1. The binding between genes were certified by RIP, RNA pull-down, ChIP and luciferase reporter assays. Pearson correlation analysis analyzed the association of genes. Kaplan-Meier method detected the relationship of LBX2-AS1 expression with overall survival. RESULTS The up-regulation of LBX2-AS1 in GC tissues and cells was verified. Function assays proved that LBX2-AS1 down-regulation restricted the proliferation ability. Then, we unveiled the LBX2-AS1/miR-219a-2-3p/FUS axis. Additionally, LBX2-AS1 positively regulated LBX2 mRNA stability via FUS. LBX2 transcriptionally modulated LBX2-AS1. In the end, rescue and in vivo experiments validated the whole regulatory mechanism. CONCLUSION LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop mainly affected the proliferation and apoptosis abilities of GC cells, offering novel therapeutic targets for the treatment of patients with GC.
Collapse
Affiliation(s)
- Zhen Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinhua Dong
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Minglong Pu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hongwei Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weilong Chang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Feihong Ji
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tao Liu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Chongqing Wei
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xiefu Zhang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinguang Qiu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China. .,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
19
|
Baron DM, Matheny T, Lin YC, Leszyk JD, Kenna K, Gall KV, Santos DP, Tischbein M, Funes S, Hayward LJ, Kiskinis E, Landers JE, Parker R, Shaffer SA, Bosco DA. Quantitative proteomics identifies proteins that resist translational repression and become dysregulated in ALS-FUS. Hum Mol Genet 2020; 28:2143-2160. [PMID: 30806671 DOI: 10.1093/hmg/ddz048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant translational repression is a feature of multiple neurodegenerative diseases. The association between disease-linked proteins and stress granules further implicates impaired stress responses in neurodegeneration. However, our knowledge of the proteins that evade translational repression is incomplete. It is also unclear whether disease-linked proteins influence the proteome under conditions of translational repression. To address these questions, a quantitative proteomics approach was used to identify proteins that evade stress-induced translational repression in arsenite-treated cells expressing either wild-type or amyotrophic lateral sclerosis (ALS)-linked mutant FUS. This study revealed hundreds of proteins that are actively synthesized during stress-induced translational repression, irrespective of FUS genotype. In addition to proteins involved in RNA- and protein-processing, proteins associated with neurodegenerative diseases such as ALS were also actively synthesized during stress. Protein synthesis under stress was largely unperturbed by mutant FUS, although several proteins were found to be differentially expressed between mutant and control cells. One protein in particular, COPBI, was downregulated in mutant FUS-expressing cells under stress. COPBI is the beta subunit of the coat protein I (COPI), which is involved in Golgi to endoplasmic reticulum (ER) retrograde transport. Further investigation revealed reduced levels of other COPI subunit proteins and defects in COPBI-relatedprocesses in cells expressing mutant FUS. Even in the absence of stress, COPBI localization was altered in primary and human stem cell-derived neurons expressing ALS-linked FUS variants. Our results suggest that Golgi to ER retrograde transport may be important under conditions of stress and is perturbed upon the expression of disease-linked proteins such as FUS.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tyler Matheny
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Yen-Chen Lin
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Kevin Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Katherine V Gall
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - David P Santos
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maeve Tischbein
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Salome Funes
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence J Hayward
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, Worcester, MA, USA
| |
Collapse
|
20
|
Wang Q, Yang Y, Fu X, Wang Z, Liu Y, Li M, Zhang Y, Li Y, Li PF, Yu T, Chu XM. Long noncoding RNA XXYLT1-AS2 regulates proliferation and adhesion by targeting the RNA binding protein FUS in HUVEC. Atherosclerosis 2020; 298:58-69. [PMID: 32171981 DOI: 10.1016/j.atherosclerosis.2020.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The endothelium is crucially involved in the pathogenesis of atherosclerosis according to accumulating evidence. Moreover, recent studies have showed that lncRNAs could serve as biomarkers of cardiovascular diseases, in particular atherosclerosis. However, the underlying mechanism of endothelial dysfunction involving lncRNAs in atherosclerosis remains unknown. This study investigated the mechanism of lncRNA XXYLT1-AS2 in endothelial dysfunction in atherosclerosis. METHODS The levels of lncRNA XXYLT1-AS2, FUS, VCAM-1, MCP-1, p-AKT, and p-P65 were measured in arteries and HUVEC cell lines via quantitative real-time PCR or Western blot. FISH assay demonstrated that XXYLT1-AS2 and FUS are localized in the nucleus. HUVECs were transfected with si-XXYLT1-AS2 or XXYLT1-AS2 to further assess cell proliferation, migration, and adhesion. Furthermore, bioinformatics analysis, RNA immunoprecipitation and immunofluorescence were performed to investigate the target genes of XXYLT1-AS2 and possible signal pathways. RESULTS Overexpression of XXYLT1-AS2 inhibited cell proliferation and migration, reduced the expression of adhesion molecules (VCAM-1) and chemoattractant proteins (MCP-1), and restrained monocyte adhesion to endothelial cells. Mechanistic investigations indicated that XXYLT1-AS2 directly interacts with the target gene FUS/cyclin D1 and modulates the proliferation and migration of endothelial cells (ECs). Moreover, XXYLT1-AS2 exerts a protective role against the inflammatory response in atherosclerosis by blocking NF-κB activity. Clinically, the involvement of XXYLT1-AS2/FUS was also observed in human arteries and the results were consistent with the in vitro analysis. CONCLUSIONS Our study identified a novel long non-coding RNA (XXYLT1-AS2) and suggests that it might act as an underlying therapeutic target in atherosclerosis-related diseases by regulating ECs functions.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Min Li
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Yinfeng Zhang
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, 266000, China
| | - Pei-Feng Li
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Tao Yu
- Institute for translational medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China; Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266000, China.
| |
Collapse
|
21
|
Liu Y, Zhang Z, Li T, Li X, Zhang S, Li Y, Zhao W, Gu Y, Guo Z, Qi L. A Qualitative Transcriptional Signature for Predicting Recurrence Risk for High-Grade Serous Ovarian Cancer Patients Treated With Platinum-Taxane Adjuvant Chemotherapy. Front Oncol 2019; 9:1094. [PMID: 31681618 PMCID: PMC6813654 DOI: 10.3389/fonc.2019.01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum and taxane adjuvant chemotherapy (ACT) is the main cause of the recurrence and poor prognosis of high-grade serous ovarian cancer (HGS-OvCa) patients receiving platinum-taxane ACT after surgery. However, currently reported quantitative transcriptional signatures, which are commonly based on risk scores summarized from gene expression, are unsuitable for clinical application because of their high sensitivity to experimental batch effects and quality uncertainties of clinical samples. Using 226 samples of HGS-OvCa patients receiving platinum-taxane ACT in TCGA, we developed a qualitative transcriptional signature, consisting of four gene pairs whose within-samples relative expression orderings could robustly predict patient recurrence-free survival (RFS). In two independent test datasets, the predicted non-responders had significantly shorter RFS than the predicted responders (log-rank p < 0.05). In a test dataset containing data for patient pathological response state, the signature reclassified 12 out of 22 pathological complete response patients as non-responders and two out of 16 pathological non-complete response patients as responders. Notably, the 12 predicted non-responders in the pathological complete response group had significantly shorter RFS than the predicted responders (log-rank p = 0.0122). This qualitative transcriptional signature, which is insensitive to experimental batch effects and quality uncertainties of clinical samples, can individually identify HGS-OvCa patients who are more likely to benefit from platinum-taxane adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yixin Liu
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zheyang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tianhao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenyuan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Medical Bioinformatics, Fuzhou, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis 2019; 10:792. [PMID: 31624242 PMCID: PMC6797747 DOI: 10.1038/s41419-019-2028-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is one of the major men's malignancies with high mortality worldwide. Circular RNAs (circRNAs) have been shown to serve as essential regulators in human cancers. CircRNA can exert their functions by cooperating with their host genes. In the present study, microarray analysis revealed an upregulated mRNA in PCa samples. X-linked inhibitor of apoptosis protein (XIAP), a key regulator in the progression of human cancers. Through bioinformatics analysis, we determined that XIAP is a host gene for circRNA0005276. Therefore, this study focused on the interaction between circ0005276 and XIAP as well as their functions in PCa progression. The upregulation of XIAP and circ0005276 was determined in PCa tissues and cell lines. Moreover, we confirmed the positive regulation of circ0005276 on XIAP expression. Functionally, we validated that circ0005276 and XIAP promoted cell proliferation, migration and epithelial-mesenchymal transition. Mechanistically, we verified that circ0005276 interacted with FUS binding protein (FUS) so as to activate the transcription of XIAP. Rescue assays were conducted to determine the crucial role of XIAP in circ0005276 and FUS-mediated PCa cellular processes. Collectively, our study revealed the mechanism and function of circ0005276 and its host gene XIAP in PCa progression.
Collapse
|
23
|
Wu Q, Ma J, Meng W, Hui P. DLX6-AS1 promotes cell proliferation, migration and EMT of gastric cancer through FUS-regulated MAP4K1. Cancer Biol Ther 2019; 21:17-25. [PMID: 31591939 DOI: 10.1080/15384047.2019.1647050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the second most prevalent carcinoma resulting in cancer-related deaths in the world, with differences among geographic areas. Although the incidence and mortality rates of GC in Asia are decreasing, the search for diverse and effective therapies of GC is still needed to be fully inquired. The present research explored the expression pattern, functional role and underlying mechanism of DLX6-AS1 in GC. Firstly, we measured DLX6-AS1 expression in GC and then found the elevated level of DLX6-AS1. To further inspect the function role of DLX6-AS1 involved in GC, we performed lost-of-function assays. The silencing of DLX6-AS1 suppressed cell proliferation, migration and EMT process of GC cells. Subsequently, we uncovered that MAP4K1 was also up-regulated in GC and could be positively regulated by DLX6-AS1. Moreover, MAP4K1 down-regulation similarly inhibited GC progression. In addition, DLX6-AS1 stabilized MAP4K1 via modulating FUS. In summary, DLX6-AS1 modulated GC progression through FUS-regulated MAP4K1. Our paper exposed the role and regulatory mechanism of DLX6-AS1 in GC, which suggested a novel and valid therapy for GC patients.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Meng
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingping Hui
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, Tang Y, Mallaredy V, Ibetti J, Grisanti L, Schumacher SM, Gao E, Rajan S, Wilusz JE, Goukassian D, Houser SR, Koch WJ, Kishore R. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 2019; 10:4317. [PMID: 31541092 PMCID: PMC6754461 DOI: 10.1038/s41467-019-11777-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI. Circular RNAs (circRNAs) are non-coding RNAs generated from pre-mRNAs of coding genes by the splicing machinery whose function in the heart is poorly understood. Here the authors show that AAV-mediated delivery of the circRNA circFndc3b prevents cardiomyocyte apoptosis, enhances angiogenesis, and attenuates LV dysfunction post-MI in mice by regulating FUS-VEGF-A signalling.
Collapse
Affiliation(s)
| | - Suresh Kumar Verma
- Division of Cardiovascular Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zhongjian Cheng
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - May M Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yujia Yue
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Grace Huang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chunlin Wang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Cindy Benedict
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yan Tang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Vandana Mallaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Laurel Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah M Schumacher
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - David Goukassian
- Zena & Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
25
|
Ferreira D, Martins B, Soares M, Correia J, Adega F, Ferreira F, Chaves R. Gene expression association study in feline mammary carcinomas. PLoS One 2019; 14:e0221776. [PMID: 31461477 PMCID: PMC6713336 DOI: 10.1371/journal.pone.0221776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Works on cancer-related genes expression using feline mammary carcinomas (FMCs) are scarce but crucial, not only to validate these tumours as models for human breast cancer studies but also to improve small animal practice. Here, the expression of the cancer-related genes TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2 was evaluated by real-time RT-qPCR, in a population of FMCs clinically characterized and compared with the disease-free tissue of the same individual. In most of the FMCs analysed, RNA quantification revealed normal expression levels for TP53, c-MYC, YBX1 and FUS, but overexpression in the genes CCND1, PTBP1 and PKM2. The expression levels of these cancer-related genes are strongly correlated with each other, with exception of c-MYC and PKM2 genes. The integration of clinicopathological data with the transcriptional levels revealed several associations. The oral contraceptive administration showed to be positively related with the TP53, YBX1, CCND1, FUS and PTBP1 RNA levels. Positive associations were found between tumour size and YBX1 RNA, and lymph node metastasis with c-MYC RNA levels. This work allowed to verify that many of these cancer-related genes are associated but may also, indirectly, influence other genes, creating a complex molecular cancer network that in the future can provide new cancer biomarkers.
Collapse
Affiliation(s)
- Daniela Ferreira
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bárbara Martins
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Soares
- CBiOS - Research Center for Biosciences & Health Technologies, Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Jorge Correia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Filomena Adega
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Raquel Chaves
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
26
|
Tischbein M, Baron DM, Lin YC, Gall KV, Landers JE, Fallini C, Bosco DA. The RNA-binding protein FUS/TLS undergoes calcium-mediated nuclear egress during excitotoxic stress and is required for GRIA2 mRNA processing. J Biol Chem 2019; 294:10194-10210. [PMID: 31092554 DOI: 10.1074/jbc.ra118.005933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Excitotoxic levels of glutamate represent a physiological stress that is strongly linked to amyotrophic lateral sclerosis (ALS) and other neurological disorders. Emerging evidence indicates a role for neurodegenerative disease-linked RNA-binding proteins (RBPs) in the cellular stress response. However, the relationships between excitotoxicity, RBP function, and disease have not been explored. Here, using primary cortical and motor neurons, we found that excitotoxicity induced the translocation of select ALS-linked RBPs from the nucleus to the cytoplasm within neurons. RBPs affected by excitotoxicity included TAR DNA-binding protein 43 (TDP-43) and, most robustly, fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS). We noted that FUS is translocated through a calcium-dependent mechanism and that its translocation coincides with striking alterations in nucleocytoplasmic transport. Furthermore, glutamate-induced up-regulation of glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type subunit 2 (GRIA2) in neurons depended on FUS expression, consistent with a functional role for FUS in excitotoxic stress. These findings reveal molecular links among prominent factors in neurodegenerative diseases, namely excitotoxicity, disease-associated RBPs, and nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Maeve Tischbein
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Desiree M Baron
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yen-Chen Lin
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Katherine V Gall
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - John E Landers
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Claudia Fallini
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Daryl A Bosco
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
27
|
Das AB. Disease association of human tumor suppressor genes. Mol Genet Genomics 2019; 294:931-940. [PMID: 30945018 DOI: 10.1007/s00438-019-01557-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
The multifactorial disease, cancer, frequently emerges due to perturbations in tumor suppressor genes (TSGs). However, a growing number of noncanonical target genes of TSGs and the highly interconnected nature of the human interactome reveal that the functions of TSGs are not limited to cancer-specific events. The various functions of TSGs lead to the assumption that cancer is linked with other human disorders. Therefore, a disease-gene association network of TSGs (TSDN) was constructed by integrating protein-protein interaction networks of TSGs (TSN) with Morbid Map in Online Mendelian Inheritance in Man. The TSDN revealed links between TSGs and 22 different human disorders including cancer and indicated disease-disease associations. In addition, high-density functional protein clusters in the TSN showed cohesive and overlapping disease-TSG associations, which proved the prevalent role of TSGs in various human diseases beyond cancer. The presence of overlapping disease-gene modules and disease-disease associations via the TSN demonstrated that other diseases can serve as possible roots of the life-threatening disease cancer. Therefore, a disease association map of TSGs could be a promising tool for exploring intricate relationships between cancer and other diseases for the early prediction of cancer and the understanding of disease etiology.
Collapse
Affiliation(s)
- Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
28
|
Cheng C, Yang K, Wu X, Zhang Y, Shan S, Gitler A, Ghosh A, Qiu Z. Loss of CREST leads to neuroinflammatory responses and ALS-like motor defects in mice. Transl Neurodegener 2019; 8:13. [PMID: 30976389 PMCID: PMC6444434 DOI: 10.1186/s40035-019-0152-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a late onset neurodegenerative disease with fast progression. ALS has heavy genetic components in which a series of genetic mutations have been identified. In 2013, Mutations of the CREST gene (also known as SS18L1), which functions as a calcium-regulated transcriptional activator, were found in sporadic ALS patients. However, the pathogenic causality and mechanisms of ALS-associated mutations of CREST remain to be determined. Methods In this study, we constructed CREST knockout and Q394X knock-in mice with CRISPR/Cas9 system. Using biochemical and imaging tools, we illustrated core pathological phenotypes in CREST mutant mice and claimed the possible pathogenic mechanisms. Furthermore, we also observed locomotion defects in CREST mutant mice with behavioural tests. Results We demonstrate that ALS-related CREST-Q388X mutation exhibits loss-of-function effects. Importantly, the microglial activation was prevalent in CREST haploinsufficiency mice and Q394X mice mimicking the human CREST Q388X mutation. Furthermore, we showed that both CREST haploinsufficiency and Q394X mice displayed deficits in motor coordination. Finally, we identified the critical role of CREST-BRG1 complex in repressing the expression of immune-related cytokines including Ccl2 and Cxcl10 in neurons, via histone deacetylation, providing the molecular mechanisms underlying inflammatory responses within mice lack of CREST. Conclusion Our findings indicate that elevated inflammatory responses in a subset of ALS may be caused by neuron-derived factors, suggesting potential therapeutic methods through inflammation pathways.
Collapse
Affiliation(s)
- Cheng Cheng
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Kan Yang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xinwei Wu
- 2Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Yuefang Zhang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shifang Shan
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Aaron Gitler
- 3Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Anirvan Ghosh
- 4Research and Early Development, Biogen, Cambridge, MA 02142 USA
| | - Zilong Qiu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
29
|
Bennett SA, Tanaz R, Cobos SN, Torrente MP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 2019; 204:19-30. [PMID: 30391475 PMCID: PMC6331271 DOI: 10.1016/j.trsl.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, microRNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here, we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Seth A Bennett
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York
| | - Royena Tanaz
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork
| | - Samantha N Cobos
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, New York.
| |
Collapse
|
30
|
Xiong D, Wu YB, Jin C, Li JJ, Gu J, Liao YF, Long X, Zhu SQ, Wu HB, Xu JJ, Ding JY. Elevated FUS/TLS expression is negatively associated with E-cadherin expression and prognosis of patients with non-small cell lung cancer. Oncol Lett 2018; 16:1791-1800. [PMID: 30008867 DOI: 10.3892/ol.2018.8816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Fused in sarcoma/translocated in liposarcoma (FUS/TLS), a ubiquitous and multifunctional DNA and RNA-binding protein, contributes an important function in cancer and neurodegenerative disease; however, its role in lung cancer remains unclear. In the present study, the expression of FUS/TLS in non-small cell lung cancer (NSCLC) and the significance of FUS/TLS for predicting the clinical outcome of patients with NSCLC, was examined. FUS/TLS expression was investigated in NSCLC tissues and their matched adjacent non-tumorous tissues by reverse transcription-quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Tissue microarrays representing 208 patients with NSCLC were used to determine the expression pattern and associations with FUS/TLS using immunohistochemistry. Prognostic significance was assessed by Kaplan-Meier survival estimates and log-rank tests. Data revealed that FUS/TLS expression was elevated in NSCLC tissues compared with corresponding normal tissue mRNA (9.27±0.73 vs. 6.15±0.60) and protein (3.32±0.75 vs. 0.30±0.07) levels. In tissue microarrays, FUS/TLS was highly expressed in 103 (49.5%, 103/208) NSCLC tissues compared with adjacent normal lung tissues (28.4%, 59/208). Overexpression of FUS/TLS was associated with higher tumor node metastasis stage (P=0.016), poorer differentiation (P=0.008), large tumor size (P=0.019) and predicted poor prognosis (P=0.005) in patients with NSCLC. Notably, correlation analysis revealed a significant inverse association between the expression of FUS/TLS and E-cadherin (r2=0.51; P=0.036). Furthermore, patients with NSCLC with high FUS/TLS and impaired E-cadherin expression had a notably poor prognosis (P=4.01×10-4). Thus, the results from the present study indicate that elevated FUS/TLS expression promotes NSCLC progression. FUS/TLS, alone or in combination with E-cadherin, is a novel prognostic predictor for patients with NSCLC.
Collapse
Affiliation(s)
- Dian Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China.,Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Chun Jin
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Ji-Jun Li
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China.,Department of Cardio-Thoracic Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang 844000, P.R. China
| | - Jie Gu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yun-Fei Liao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hai-Bo Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Abstract
Just like all matter, proteins can also switch between gas, liquid and solid phases. Protein phase transition has claimed the spotlight in recent years as a novel way of how cells compartmentalize and regulate biochemical reactions. Moreover, this discovery has provided a new framework for the study of membrane-less organelle biogenesis and protein aggregation in neurodegenerative disorders. We now argue that this framework could be useful in the study of cell cycle regulation and cancer. Based on our work on phase transitions of arginine-rich proteins in neurodegeneration, via combining mass spectroscopy with bioinformatics analyses, we found that also numerous proteins involved in the regulation of the cell cycle can undergo protein phase separation. Indeed, several proteins whose function affects the cell cycle or are associated with cancer, have been recently found to phase separate from the test tube to cells. Investigating the role of this process for cell cycle proteins and understanding its molecular underpinnings will provide pivotal insights into the biology of cell cycle progression and cancer.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Peter Tompa
- VIB, Center for Structural Biology (CSB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| |
Collapse
|
33
|
Ge Z, Cheng Z, Yang X, Huo X, Wang N, Wang H, Wang C, Gu D, Zhao F, Yao M, Fan J, Qin W. Long noncoding RNA SchLAH suppresses metastasis of hepatocellular carcinoma through interacting with fused in sarcoma. Cancer Sci 2017; 108:653-662. [PMID: 28196303 PMCID: PMC5406589 DOI: 10.1111/cas.13200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/26/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence has indicated that deregulation of long non‐coding RNAs (lncRNAs) can contribute to the progression and metastasis of human cancer, including hepatocellular carcinoma (HCC). However, the roles of most lncRNAs in HCC remain largely unknown. Here we found a long noncoding RNA termed SchLAH (seven chromosome locus associated with HCC; also called BC035072) was generally downregulated in HCC. Low expression of SchLAH was significantly correlated with shorter overall survival of HCC patients. In vitro and in vivo assays indicated that overexpression of SchLAH inhibited the migration and lung metastasis of HCC cells. Knockdown of SchLAH by siRNA pool promoted the migration of HCC cells. RNA pull‐down and RNA immunoprecipitation assays demonstrated SchLAH physically interacted with fused in sarcoma (FUS). PCR array analysis showed that RhoA and Rac1 were the downstream effector molecules of SchLAH during HCC metastasis. Knockdown of FUS rescued the mRNA levels of RhoA and Rac1 that were repressed by SchLAH. These results suggest that SchLAH may suppress the metastasis of HCC cells by interacting with FUS, which indicates potential of SchLAH for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhouhong Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xisong Huo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
35
|
Wang W, Yang F, Zhang L, Chen J, Zhao Z, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J, Zhao J. LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget 2016; 7:77225-77236. [PMID: 27764782 PMCID: PMC5363582 DOI: 10.18632/oncotarget.12624] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022] Open
Abstract
Anaplastic glioma is Grade III and the median overall survival is about 37.6 months. However, there are still other factors that affect the prognosis for anaplastic glioma patients due to variable overall survival. So we screened four-lncRNA signature (AGAP2-AS1, TPT1-AS1, LINC01198 and MIR155HG) from the lncRNA expression profile from the GSE16011, CGGA and REMBRANDT datasets. The patients in low risk group had longer overall survival than high risk group (median OS 2208.25 vs. 591.30 days; P < 0.0001). Moreover, patients in the low risk group showed similar overall survival to Grade II patients (P = 0.1669), while the high risk group showed significant different to Grade IV (P = 0.0005) with similar trend. So based on the four-lncRNA, the anaplastic gliomas could be divided into grade II-like and grade IV-like groups. On the multivariate analysis, it showed the signature was an independent prognostic factor (P = 0.000). The expression of four lncRNAs in different grades showed that AGAP2-AS1, LINC01198 and MIR155HG were increased with tumor grade, while TPT1-AS1 was decreased. Knockdown of AGAP2-AS1 can inhibit the cell proliferation, migration and invasion, while increase the apoptosis cell rates in vitro. In conclusion, our results showed that the four-lncRNA signature has prognostic value for anaplastic glioma. Moreover, clinicians should conduct corresponding therapies to achieve best treatment with less side effects for two groups patients.
Collapse
Affiliation(s)
- Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Lu Zhang
- Department of Ophthalmology, School of Medicine, Shandong University, Jinan, China
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Xiaoyan Yan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
36
|
Wang Y, Liu H, Liang D, Huang Y, Zeng Y, Xing X, Xia J, Lin M, Han X, Liao N, Liu X, Liu J. Reveal the molecular signatures of hepatocellular carcinoma with different sizes by iTRAQ based quantitative proteomics. J Proteomics 2016; 150:230-241. [PMID: 27693406 DOI: 10.1016/j.jprot.2016.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/03/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Tumor size of hepatocellular carcinoma (HCC) is a key parameter for predicting prognosis of HCC patients. The biological behaviors of HCC, such as tumor growth, recurrence and metastasis are significantly associated with tumor size. However, the underlying molecular mechanisms remain unclear. Here, we applied iTRAQ-based proteomic strategy to analyze the proteome differences among small, media, large and huge primary HCC tissues. In brief,88 proteins in small HCC, 69 proteins in media HCC, 118 proteins in large HCC and 215 proteins in huge HCC, were identified by comparing the proteome of cancerous tissues with its corresponding non-cancerous tissues. Further analysis of dysregulated proteins involved in signaling revealed that alteration of ERK1/2 and AKT signaling played important roles in the tumorigenesis or tumor growth in all subtypes. Interestingly, alteration of specific signaling was discovered in small and huge HCC, which might reflect specific molecular mechanisms of tumor growth. Furthermore, the dysregulation degree of a group of proteins has been confirmed to be significantly correlated with the tumor size; these proteins might be potential targets for studying tumor growth of HCC. Overall, we have revealed the molecular signatures of HCC with different tumor sizes, and provided fundamental information for further in-depth study. BIOLOGICAL SIGNIFICANCE In this study, we compared the protein expression profiles among different HCC subtypes, including small HCC, media HCC, large HCC and huge HCC for the first time. The results clearly proved that different molecular alterations and specific signaling pathways were indeed involved in different HCC subtypes, which might explain the different malignancy biological behaviors. In addition, the dysregulation degree of a group of proteins has been confirmed to be significantly correlated with the tumor size. We believe that these findings would help us better understand the underlying molecular mechanisms of the tumorigenesis and development of HCC.
Collapse
Affiliation(s)
- Yingchao Wang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Hongzhi Liu
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Dong Liang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Yao Huang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Yongyi Zeng
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Xiaohua Xing
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jiangbao Xia
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Minjie Lin
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Naishun Liao
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China.
| | - Jingfeng Liu
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
37
|
Sarver AE, Sarver AL, Thayanithy V, Subramanian S. Identification, by systematic RNA sequencing, of novel candidate biomarkers and therapeutic targets in human soft tissue tumors. J Transl Med 2015; 95:1077-88. [PMID: 26121316 DOI: 10.1038/labinvest.2015.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023] Open
Abstract
Human sarcomas comprise a heterogeneous group of more than 50 subtypes broadly classified into two groups: bone and soft tissue sarcomas. Such heterogeneity and their relative rarity have made them challenging targets for classification, biomarker identification, and development of improved treatment strategies. In this study, we used RNA sequencing to analyze 35 primary human tissue samples representing 13 different sarcoma subtypes, along with benign schwannoma, and normal bone and muscle tissues. For each sarcoma subtype, we detected unique messenger RNA (mRNA) expression signatures, which we further subjected to bioinformatic functional analysis, upstream regulatory analysis, and microRNA (miRNA) targeting analysis. We found that, for each sarcoma subtype, significantly upregulated genes and their deduced upstream regulators included not only previously implicated known players but also novel candidates not previously reported to be associated with sarcoma. For example, the schwannoma samples were characterized by high expression of not only the known associated proteins GFAP and GAP43 but also the novel player GJB6. Further, when we integrated our expression profiles with miRNA expression data from each sarcoma subtype, we were able to deduce potential key miRNA-gene regulator relationships for each. In the Ewing's sarcoma and fibromatosis samples, two sarcomas where miR-182-5p is significantly downregulated, multiple predicted targets were significantly upregulated, including HMCN1, NKX2-2, SCNN1G, and SOX2. In conclusion, despite the small number of samples per sarcoma subtype, we were able to identify key known players; concurrently, we discovered novel genes that may prove to be important in the molecular classification of sarcomas and in the development of novel treatments.
Collapse
Affiliation(s)
- Anne E Sarver
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Venugopal Thayanithy
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Subbaya Subramanian
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|