1
|
Oda H, Manthiram K, Chavan PP, Rieser E, Veli Ö, Kaya Ö, Rauch C, Nakabo S, Kuehn HS, Swart M, Wang Y, Çelik NI, Molitor A, Ziaee V, Movahedi N, Shahrooei M, Parvaneh N, Alipour-Olyei N, Carapito R, Xu Q, Preite S, Beck DB, Chae JJ, Nehrebecky M, Ombrello AK, Hoffmann P, Romeo T, Deuitch NT, Matthíasardóttir B, Mullikin J, Komarow H, Stoddard J, Niemela J, Dobbs K, Sweeney CL, Anderton H, Lawlor KE, Yoshitomi H, Yang D, Boehm M, Davis J, Mudd P, Randazzo D, Tsai WL, Gadina M, Kaplan MJ, Toguchida J, Mayer CT, Rosenzweig SD, Notarangelo LD, Iwai K, Silke J, Schwartzberg PL, Boisson B, Casanova JL, Bahram S, Rao AP, Peltzer N, Walczak H, Lalaoui N, Aksentijevich I, Kastner DL. Biallelic human SHARPIN loss of function induces autoinflammation and immunodeficiency. Nat Immunol 2024; 25:764-777. [PMID: 38609546 DOI: 10.1038/s41590-024-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.
Collapse
Affiliation(s)
- Hirotsugu Oda
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Kalpana Manthiram
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pallavi Pimpale Chavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Rieser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Önay Veli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Öykü Kaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Charles Rauch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Shuichiro Nakabo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Mariël Swart
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yanli Wang
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nisa Ilgim Çelik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Vahid Ziaee
- Division of Rheumatology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran, Iran
| | - Nasim Movahedi
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Lab, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | - Nima Parvaneh
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Alipour-Olyei
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Qin Xu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Preite
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jae Jin Chae
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Nehrebecky
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrycja Hoffmann
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tina Romeo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hirsh Komarow
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Julie Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Colin L Sweeney
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hiroyuki Yoshitomi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dan Yang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeremy Davis
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Davide Randazzo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wanxia Li Tsai
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Junya Toguchida
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Christian T Mayer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiro Iwai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | | | - Nieves Peltzer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College, London, UK
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Xiao Y, Zhang Y, Xie K, Huang X, Liu X, Luo J, Tan S. Mitochondrial Dysfunction by FADDosome Promotes Gastric Mucosal Injury in Portal Hypertensive Gastropathy. Int J Biol Sci 2024; 20:2658-2685. [PMID: 38725851 PMCID: PMC11077381 DOI: 10.7150/ijbs.90835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Yuelin Xiao
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Kaiduan Xie
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xiaoli Huang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xianzhi Liu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jinni Luo
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| |
Collapse
|
3
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
4
|
Lee J, Ou JHJ. HCV-induced autophagy and innate immunity. Front Immunol 2024; 15:1305157. [PMID: 38370419 PMCID: PMC10874285 DOI: 10.3389/fimmu.2024.1305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.
Collapse
Affiliation(s)
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
5
|
Goncharov T, Kőműves LG, Kist M, Castellanos ER, Witt A, Fedorova AV, Izrael-Tomasevic A, Yu K, Keir M, Matsumoto ML, Vucic D. Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2. Sci Signal 2024; 17:eabn1101. [PMID: 38227684 DOI: 10.1126/scisignal.abn1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1-linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn's disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.
Collapse
Affiliation(s)
- Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - László G Kőműves
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Erick R Castellanos
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Axel Witt
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Anna V Fedorova
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Mary Keir
- Department of Human Pathobiology and OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Zhou X, Zhao M, Fan Y, Xu Y. Identification of a necroptosis-related gene signature for making clinical predictions of the survival of patients with lung adenocarcinoma. PeerJ 2024; 12:e16616. [PMID: 38213773 PMCID: PMC10782958 DOI: 10.7717/peerj.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major pathological subtype of malignant lung cancer with a poor prognosis. Necroptosis is a caspase-independent programmed cell death mode that plays a pivotal role in cancer oncogenesis and metastasis. Here, we explore the prognostic values of different necroptosis-related genes (NRGs) in LUAD. Methods mRNA expression data and related clinical information for LUAD samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. NRGs were identified using the GeneCards database. Least absolute shrinkage and selection operator Cox regression and multivariate Cox analysis were used to construct a prognostic risk model. Time-dependent receiver-operating characteristic curves and a nomogram were constructed to validate the predictive values of the prognostic signatures. A necroptosis-related protein-protein interaction network was visualised using the STRING database and Cytoscape software. Functional analyses, including Gene Ontology, Kyoto Encyclopaedia of Genes and Genomes pathway enrichment, gene set enrichment, and gene set variation analyses, were conducted to explore the underlying molecular mechanisms. Finally, the mRNA expression of the prognostic signatures in LUAD cell lines was assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Results A prognostic model was established for eight NRGs (CALM1, DDX17, FPR1, OGT, PGLYRP1, PRDX1, TUFM, and CPSF3) based on TCGA-cohort data and validated with the GSE68465 cohort. Patients with low-risk scores had better survival outcomes than those with high-risk scores (p = 0.00013). The nomogram was used to predict the prognosis of patients with LUAD. The prediction curves for 1-, 3-, and 5-year OS showed good predictive performance and the accuracy of the nomograms increased over time. RT-qPCR results demonstrated that these eight genes, especially CALM1, PRDX1, and PGLYRP1, were differentially expressed in LUAD cells. Conclusion We constructed a reliable eight-NRG signature that provides new insights for guiding clinical practice in the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xiaoping Zhou
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yingzi Fan
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Gao L, Zhang W, Shi XH, Chang X, Han Y, Liu C, Jiang Z, Yang X. The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis 2023; 14:659. [PMID: 37813853 PMCID: PMC10562472 DOI: 10.1038/s41419-023-06183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Linear ubiquitination is a specific post-translational modification in which ubiquitin is linked through M1 residue to form multiple types of polyubiquitin chains on substrates in order to regulate cellular processes. LUBAC comprised by HOIP, HOIL-1L, and SHARPIN as a sole E3 ligase catalyzes the generation of linear ubiquitin chains, and it is simultaneously adjusted by deubiquitinases such as OTULIN and CYLD. Several studies have shown that gene mutation of linear ubiquitination in mice accompanied by different modalities of cell death would develop relative diseases. Cell death is a fundamental physiological process and responsible for embryonic development, organ maintenance, and immunity response. Therefore, it is worth speculating that linear ubiquitin mediated signaling pathway would participate in different diseases. The relative literature search was done from core collection of electronic databases such as Web of Science, PubMed, and Google Scholar using keywords about main regulators of linear ubiquitination pathway. Here, we summarize the regulatory mechanism of linear ubiquitination on cellular signaling pathway in cells with apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Intervening generation of linear ubiquitin chains in relative signaling pathway to regulate cell death might provide novel therapeutic insights for various human diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wei Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiao Hui Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiaoyan Chang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chundi Liu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
10
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Mello-Vieira J, Bopp T, Dikic I. Ubiquitination and cell-autonomous immunity. Curr Opin Immunol 2023; 84:102368. [PMID: 37451128 DOI: 10.1016/j.coi.2023.102368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Cell-autonomous immunity is the first line of defense by which cells recognize and contribute to eliminating invasive pathogens. It is composed of immune signaling networks that sense microbial pathogens, promote pathogen restriction, and stimulate their elimination, including host cell death. Ubiquitination is a pivotal orchestrator of these pathways, by changing the activity of signal transducers and effector proteins in an efficient way. In this review, we will focus on how ubiquitin connects the pathways that sense pathogens to the cellular responses to invaders and shed light on how ubiquitination impacts the microenvironment around the infected cell, stimulating the appropriate immune response. Finally, we discuss therapeutic options directed at favoring cell-autonomous immune responses to infection.
Collapse
Affiliation(s)
- João Mello-Vieira
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute for Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Priem D, Huyghe J, Bertrand MJM. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023; 19:2585-2589. [PMID: 37014272 PMCID: PMC10392734 DOI: 10.1080/15548627.2023.2197760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.
Collapse
Affiliation(s)
- Dario Priem
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jon Huyghe
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu JM Bertrand
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Wu D, Xia M, Yan A, Jiang H, Fan J, Zhou S, Wei X, Liu S, Chen B. Carvacrol attenuated lipopolysaccharide-induced intestinal injury by down-regulating TLRs gene expression and regulating the gut microbiota in rabbit. Sci Rep 2023; 13:11447. [PMID: 37454126 PMCID: PMC10349838 DOI: 10.1038/s41598-023-38577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Carvacrol (CAR) is a plant extract that has been reported to enhance antioxidant activity in animals. However, the effect of CAR on the intestinal health of rabbits is poorly understood. Here, we investigated whether CAR exerts protective effects on the intestinal health of rabbits following lipopolysaccharide (LPS) challenge and whether these effects were mediated via the reduction of intestinal inflammation and the regulation of the intestinal flora. Intestinal damage was assessed in LPS-challenged rabbits treated or not with CAR. The serum levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay. Histopathological changes in the ileum and cecum were examined using hematoxylin and eosin staining. The relative gene expression levels of inflammatory factors and tight junction proteins in the rabbit cecum were determined by qRT-PCR. High-throughput sequencing analysis of the microbial 16S rRNA gene was performed using the Illumina NovaSeq Platform. The results showed that CAR can prevent intestinal inflammation and damage as well as mitigate gut dysbiosis in rabbits following LPS challenge. Our study provides a theoretical reference for the application of dietary CAR in rabbit production.
Collapse
Affiliation(s)
- Diange Wu
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Miao Xia
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - An Yan
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Haotian Jiang
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Jiaqi Fan
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Siyuan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Xu Wei
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China.
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China.
| |
Collapse
|
14
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
15
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
16
|
Peng ZM, Zhang YY, Wei D, Zhang XJ, Liu B, Peng J, Luo XJ. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch Biochem Biophys 2023; 735:109502. [PMID: 36603698 DOI: 10.1016/j.abb.2023.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Necroptosis has been demonstrated to contribute to brain injury in ischemic stroke, whereas A20 can exert anti-necroptosis effect via deubiquitinating receptor-interacting protein kinase (RIPK3) at k63 and it can be cleaved by MALT1. This study aims to explore whether MALT1 is upregulated in the brain during ischemic stroke and promotes brain cell necroptosis through enhancing the degradation of A20. Ischemic stroke model was established in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion, which showed brain injury (increase in neurological deficit score and infarct volume) concomitant with an upregulation of MALT1, a decrease in A20 level, and increases in necroptosis-associated protein levels [RIPK3, mixed lineage kinase domain-like protein (MLKL) and p-MLKL] and k63-ubiquitination of RIPK3 in brain tissues. Administration of MALT1 inhibitor (Ml-2) at 8 or 15 mg/kg (i.p.) at 1 h after ischemia significantly improved neurological function and reduced infarct volume together with a downregulation of MALT1, an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Similarly, knockdown of MALT1 could also reduce oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in the cultured HT22 cells coincident with an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Based on these observations, we conclude that MALT1 promotes necroptosis in stroke rat brain via enhancing the degradation of A20, which leads to a decrease in the capability of A20 to deubiquitinate RIPK3 at k63 and a subsequent compromise in counteraction against the brain cell necroptosis.
Collapse
Affiliation(s)
- Zi-Mei Peng
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Bin Liu
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
17
|
Huyghe J, Priem D, Van Hove L, Gilbert B, Fritsch J, Uchiyama Y, Hoste E, van Loo G, Bertrand MJM. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 2022; 378:1201-1207. [PMID: 36520901 DOI: 10.1126/science.add6967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.
Collapse
Affiliation(s)
- Jon Huyghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lisette Van Hove
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 113-8654 Tokyo, Japan
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
18
|
Guo Y, He J, Zhang H, Chen R, Li L, Liu X, Huang C, Qiang Z, Zhou Z, Wang Y, Huang J, Zhao X, Zheng J, Chen GQ, Yu J. Linear ubiquitination of PTEN impairs its function to promote prostate cancer progression. Oncogene 2022; 41:4877-4892. [PMID: 36192478 DOI: 10.1038/s41388-022-02485-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
PTEN is frequently mutated in human cancers, which leads to the excessive activation of PI3K/AKT signaling and thus promotes tumorigenesis and drug resistance. Met1-linked ubiquitination (M1-Ubi) is also involved in cancer progression, but the mechanism is poorly defined. Here we find that HOIP, one important component of linear ubiquitin chain assembly complex (LUBAC), promotes prostate cancer (PCa) progression by enhancing AKT signaling in a PTEN-dependent manner. Mechanistically, PTEN is modified by M1-Ubi at two sites K144 and K197, which significantly inhibits PTEN phosphatase activity and thus accelerates PCa progression. More importantly, we identify that the high-frequency mutants PTENR173H and PTENR173C in PCa patients showed the enhanced level of M1-Ubi, which impairs PTEN function in inhibition of AKT phosphorylation and cell growth. We also find that HOIP depletion sensitizes PCa cells to therapeutic agents BKM120 and Enzalutamide. Furthermore, the clinical data analyses confirm that HOIP is upregulated and positively correlated with AKT activation in PCa patient specimen, which may promote PCa progression and increase the risk of PCa biochemical relapse. Together, our study reveals a key role of PTEN M1-Ubi in regulation of AKT activation and PCa progression, which may propose a new strategy for PCa therapy.
Collapse
Affiliation(s)
- Yanmin Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Qiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
20
|
Deubiquitinases in cell death and inflammation. Biochem J 2022; 479:1103-1119. [PMID: 35608338 PMCID: PMC9162465 DOI: 10.1042/bcj20210735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part of the cell death machinery undergo ubiquitination, a post-translational modification made by ubiquitin ligases that modulates protein abundance, localization, and/or activity. For example, some ubiquitin chains target proteins for degradation, while others function as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein substrates. Here, we review the DUBs that have been found to suppress or promote apoptosis, pyroptosis, or necroptosis.
Collapse
|
21
|
Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z. Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:1697-1713. [PMID: 35607807 DOI: 10.1021/acschemneuro.2c00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder featured by memory loss and cognitive default. However, there has been no effective therapeutic approach to prevent the development of AD and the available therapies are only to alleviate some symptoms with limited efficacy and severe side effects. Necroptosis is a new kind of cell death, being regarded as a genetically programmed and regulated pattern of necrosis. Increasing evidence reveals that necroptosis is tightly related to the occurrence and development of AD. This review aims to summarize the potential role of necroptosis in AD progression and the therapeutic capacity of targeting necroptosis for AD patients.
Collapse
Affiliation(s)
- Wenli Zhao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Zhenyu Cai
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
22
|
Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol 2022; 169:74-83. [PMID: 35597275 DOI: 10.1016/j.yjmcc.2022.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Cell death is a crucial event underlying cardiac ischemic injury, pathological remodeling, and heart failure. Unlike apoptosis, necrosis had long been regarded as a passive and unregulated process. However, recent studies demonstrate that a significant subset of necrotic cell death is actively mediated through regulated pathways - a process known as "regulated necrosis". As a form of regulated necrosis, necroptosis is mediated by death receptors and executed through the activation of receptor interacting protein kinase 3 (RIPK3) and its downstream substrate mixed lineage kinase-like domain (MLKL). Recent studies have provided compelling evidence that necroptosis plays an important role in myocardial homeostasis, ischemic injury, pathological remodeling, and heart failure. Moreover, it has been shown that genetic and pharmacological manipulations of the necroptosis signaling pathway elicit cardioprotective effects. Important progress has also been made regarding the molecular mechanisms that regulate necroptotic cell death in vitro and in vivo. In this review, we discuss molecular and cellular mechanisms of necroptosis, potential crosstalk between necroptosis and other cell death pathways, functional implications of necroptosis in heart disease, and new therapeutic strategies that target necroptosis signaling.
Collapse
|
23
|
RIP1 post-translational modifications. Biochem J 2022; 479:929-951. [PMID: 35522161 DOI: 10.1042/bcj20210725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Receptor interacting protein 1 (RIP1) kinase is a critical regulator of inflammation and cell death signaling, and plays a crucial role in maintaining immune responses and proper tissue homeostasis. Mounting evidence argues for the importance of RIP1 post-translational modifications in control of its function. Ubiquitination by E3 ligases, such as inhibitors of apoptosis (IAP) proteins and LUBAC, as well as the reversal of these modifications by deubiquitinating enzymes, such as A20 and CYLD, can greatly influence RIP1 mediated signaling. In addition, cleavage by caspase-8, RIP1 autophosphorylation, and phosphorylation by a number of signaling kinases can greatly impact cellular fate. Disruption of the tightly regulated RIP1 modifications can lead to signaling disbalance in TNF and/or TLR controlled and other inflammatory pathways, and result in severe human pathologies. This review will focus on RIP1 and its many modifications with an emphasis on ubiquitination, phosphorylation, and cleavage, and their functional impact on the RIP1's role in signaling pathways.
Collapse
|
24
|
The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death Dis 2022; 13:291. [PMID: 35365636 PMCID: PMC8976052 DOI: 10.1038/s41419-022-04740-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
Abstract
Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.
Collapse
|
25
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Dan W, Zhong L, Zhang Z, Wan P, Lu Y, Wang X, Liu Z, Chu X, Liu B. RIP1-dependent Apoptosis and Differentiation Regulated by Skp2 and Akt/GSK3β in Acute Myeloid Leukemia. Int J Med Sci 2022; 19:525-536. [PMID: 35370472 PMCID: PMC8964317 DOI: 10.7150/ijms.68385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by variations in cytogenetics and molecular abnormalities, which result in variable response to therapy. Receptor-interacting serine/threonine kinase 1 (RIP1)-mediated necroptosis has been reported to have a potential role in the treatment of AML. We obtained Skp2 and RIP1 are significantly overexpressed in AML samples using original published data, and identified that Skp2-depletion in AML cells significantly suppressed RIP1. Functional analysis showed that the inhibition of RIP1 caused by necrostatin-1 (Nec-1) inhibited the proliferation, simultaneously facilitate both the apoptosis and differentiation of AML cells. Mechanistical analysis elucidated that knockdown of Skp2 suppresses RIP1 by transcriptional regulation but not by proteasome degradation. Additionally, Skp2 regulated the function of RIP1 by decreasing K63-linked ubiquitin interaction with RIP1. Moreover, the suppression of Akt/GSK3β was observed in Skp2 knockdown stable NB4 cells. Also, GSK3β inactivation via small-molecule inhibitor treatment remarkably decreased RIP1 level. RIP1 regulates differentiation by interacting with RARα, increasing RA signaling targets gene C/EBPα and C/EBPβ. In conclusion, our study provides a novel insight into the mechanism of tumorigenesis and the development of AML, for which the Skp2-Akt/GSK3β-RIP1 pathway can be developed as a promising therapeutic target.
Collapse
Affiliation(s)
- Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Wan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
27
|
Roberts JZ, Crawford N, Longley DB. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ 2021; 29:272-284. [PMID: 34912054 PMCID: PMC8817035 DOI: 10.1038/s41418-021-00922-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.
Collapse
Affiliation(s)
- Jamie Z Roberts
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Nyree Crawford
- Almac Discovery Laboratories, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
28
|
Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K. Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 2021; 40:125-134. [PMID: 36100321 PMCID: PMC9481937 DOI: 10.1016/j.jare.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/04/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
29
|
Speir M, Chan AH, Simpson DS, Khan T, Saunders TL, Poon IK, Atkin-Smith GK. The Australasian Cell Death Society (ACDS): celebrating 50 years of Australasian cell death research. Immunol Cell Biol 2021; 100:9-14. [PMID: 34761822 DOI: 10.1111/imcb.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Amy H Chan
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel S Simpson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tashbib Khan
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Tahnee L Saunders
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ivan Kh Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Georgia K Atkin-Smith
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
30
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
31
|
Mei P, Xie F, Pan J, Wang S, Gao W, Ge R, Gao B, Gao S, Chen X, Wang Y, Wu J, Ding C, Li J. E3 ligase TRIM25 ubiquitinates RIP3 to inhibit TNF induced cell necrosis. Cell Death Differ 2021; 28:2888-2899. [PMID: 33953350 PMCID: PMC8481267 DOI: 10.1038/s41418-021-00790-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/02/2022] Open
Abstract
Receptor interacting protein kinase 3 (RIP3 or RIPK3), the critical executor of cell programmed necrosis, plays essential roles in maintaining immune responses and appropriate tissue homeostasis. Although the E3 ligases CHIP and PELI1 are reported to promote RIP3 degradation, however, how post-translational modification regulates RIP3 activity and stability is poorly understood. Here, we identify the tripartite motif protein TRIM25 as a negative regulator of RIP3-dependent necrosis. TRIM25 directly interacts with RIP3 through its SPRY domain and mediates the K48-linked polyubiquitination of RIP3 on residue K501. The RING domain of TRIM25 facilitates the polyubiquitination chain on RIP3, thereby promoting proteasomal degradation of RIP3. Also, TRIM25 deficiency inhibited the ubiquitination of RIP3, thus promoting TNF-induced cell necrosis. Our current finding reveals the regulating mechanism of polyubiquitination on RIP3, which might be a potential therapeutic target for the intervention of RIP3-dependent necrosis-related diseases.
Collapse
Affiliation(s)
- Pucheng Mei
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Feiyan Xie
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Jiasong Pan
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Sen Wang
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Rui Ge
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Baocai Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
32
|
Tukaramrao DB, Malla S, Saraiya S, Hanely RA, Ray A, Kumari S, Raman D, Tiwari AK. A Novel Thienopyrimidine Analog, TPH104, Mediates Immunogenic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13081954. [PMID: 33919653 PMCID: PMC8074041 DOI: 10.3390/cancers13081954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer that lacks an estrogen receptor, the progesterone receptor and the human epidermal growth factor receptor 2 (HER2), making it unsuitable for hormonal- or HER2-based therapy. TNBC is known for its higher relapse rate, poorer prognosis and higher rate of metastasis compared to non-TNBC because although patients initially respond to chemotherapy that kills cancer cells through a form of programmed cell death called apoptosis, they later develop chemoresistance and stop responding to the treatment, accounting for one fourth of all breast cancer deaths. In this study, we report a novel compound, TPH104, that elicits a unique, non-apoptotic cell death in TNBC cells. Upon treatment with TPH104, TNBC cells swell and burst, releasing immunogenic markers that alert and activate the immune system to further recognize and attack the neighboring breast cancer cells. Abstract Enhancing the tumor immunogenic microenvironment has been suggested to circumvent triple-negative breast cancer (TNBC) resistance and increase the efficacy of conventional chemotherapy. Here, we report a novel chemotherapeutic compound, TPH104, which induces immunogenic cell death in the TNBC cell line MDA-MB-231, by increasing the stimulatory capacity of dendritic cells (DCs), with an IC50 value of 140 nM. TPH104 (5 µM) significantly increased ATP levels in the supernatant and mobilized intracellular calreticulin to the plasma membrane in MDA-MB-231 cells, compared to cells incubated with the vehicle. Incubating MDA-MB-231 cells for 12 h with TPH104 (1–5 µM) significantly increased TNF-α mRNA levels. The supernatants of dying MDAMB-231 cells incubated with TPH104 increased mouse bone marrow-derived DC maturation, the expression of MHC-II and CD86 and the mRNA expression of TNF-α, IL-6 and IL-12. Overall, these results indicate that TPH104 induces immunogenic cell death in TNBC cells, in part, by activating DCs.
Collapse
Affiliation(s)
- Diwakar Bastihalli Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Siddharth Saraiya
- Department of Radiation Oncology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Ross Allen Hanely
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Aniruddha Ray
- Department of Physics, College of Natural Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
- Correspondence: ; Tel.: +1-419-383-1913
| |
Collapse
|
33
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
34
|
Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD, Vucic D. Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ 2021; 28:985-1000. [PMID: 32999468 PMCID: PMC7937686 DOI: 10.1038/s41418-020-00629-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Receptor-interacting protein 1 (RIP1; RIPK1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. TNF-TNFR1 triggered signaling complex formation, subsequent NF-κB and MAPK activation and induction of cell death involve RIPK1 ubiquitination at several lysine residues including Lys376 and Lys115. Here we show that mutating the ubiquitination site K376 of RIPK1 (K376R) in mice activates cell death resulting in embryonic lethality. In contrast to Ripk1K376R/K376R mice, Ripk1K115R/K115R mice reached adulthood and showed slightly higher responsiveness to TNF-induced death. Cell death observed in Ripk1K376R/K376R embryos relied on RIPK1 kinase activity as administration of RIPK1 inhibitor GNE684 to pregnant heterozygous mice effectively blocked cell death and prolonged survival. Embryonic lethality of Ripk1K376R/K376R mice was prevented by the loss of TNFR1, or by simultaneous deletion of caspase-8 and RIPK3. Interestingly, elimination of the wild-type allele from adult Ripk1K376R/cko mice was tolerated. However, adult Ripk1K376R/cko mice were exquisitely sensitive to TNF-induced hypothermia and associated lethality. Absence of the K376 ubiquitination site diminished K11-linked, K63-linked, and linear ubiquitination of RIPK1, and promoted the assembly of death-inducing cellular complexes, suggesting that multiple ubiquitin linkages contribute to the stability of the RIPK1 signaling complex that stimulates NF-κB and MAPK activation. In contrast, mutating K115 did not affect RIPK1 ubiquitination or TNF stimulated NF-κB and MAPK signaling. Overall, our data indicate that selective impairment of RIPK1 ubiquitination can lower the threshold for RIPK1 activation by TNF resulting in cell death and embryonic lethality.
Collapse
Affiliation(s)
- Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - László G Kőműves
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tatiana Goncharov
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Charles Yu
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
35
|
Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers (Basel) 2021; 13:cancers13040684. [PMID: 33567618 PMCID: PMC7914991 DOI: 10.3390/cancers13040684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary A new form of programmed necrosis called necroptosis has emerged. This new and well-documented type of programmed cell death is involved in several human diseases, including cancer. RIPK1, the main mediator of necroptosis, in response to different stimuli, activates several molecular pathways leading to inflammation, cell survival, or cell death. Targeting necroptosis could be a new strategy for advanced therapies. In this review, we focus on the biological relevance of this type of programmed cell death and its main executor RIPK1 in pathogenesis to find novel potential clinical intervention strategies. Abstract Regulated cell death mechanisms are essential for the maintenance of cellular homeostasis. Evasion of cell death is one of the most important hallmarks of cancer. Necroptosis is a caspase independent form of regulated cell death, investigated as a novel therapeutic strategy to eradicate apoptosis resistant cancer cells. The process can be triggered by a variety of stimuli and is controlled by the activation of RIP kinases family as well as MLKL. The well-studied executor, RIPK1, is able to modulate key cellular events through the interaction with several proteins, acting as strategic crossroads of several molecular pathways. Little evidence is reported about its involvement in tumorigenesis. In this review, we summarize current studies on the biological relevance of necroptosis, its contradictory role in cancer and its function in cell fate control. Targeting necroptosis might be a novel therapeutic intervention strategy in anticancer therapies as a pharmacologically controllable event.
Collapse
Affiliation(s)
- Laura Della Torre
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Joost H. A. Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Vincenzo Carafa
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| |
Collapse
|
36
|
Roedig J, Kowald L, Juretschke T, Karlowitz R, Ahangarian Abhari B, Roedig H, Fulda S, Beli P, van Wijk SJL. USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination. EMBO Rep 2021; 22:e50163. [PMID: 33369872 PMCID: PMC7857539 DOI: 10.15252/embr.202050163] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.
Collapse
Affiliation(s)
- Jens Roedig
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Lisa Kowald
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | | | - Rebekka Karlowitz
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Behnaz Ahangarian Abhari
- Lighthouse Core FacilityZentrum für Translationale ZellforschungUniversitaetsklinikum FreiburgKlinik für Innere Medizin IFreiburgGermany
| | - Heiko Roedig
- Pharmazentrum FrankfurtInstitut für Allgemeine Pharmakologie und ToxikologieGoethe‐UniversityFrankfurt am MainGermany
| | - Simone Fulda
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Petra Beli
- Institute of Molecular Biology (IMB)MainzGermany
| | - Sjoerd JL van Wijk
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| |
Collapse
|
37
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
38
|
Varfolomeev E, Goncharov T, Vucic D. Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by c-IAP Proteins. Methods Mol Biol 2021; 2366:109-123. [PMID: 34236635 DOI: 10.1007/978-1-0716-1669-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proper maintenance of organismal homeostasis, development, and immune defense requires precise regulation of survival and signaling pathways. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Although initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cell survival. Cellular IAP1 and 2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and themselves thus enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent proteasomal degradation of the NF-κB-inducing kinase NIK. Here we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining functional roles of c-IAPs in these pathways.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
39
|
Weinelt N, van Wijk SJL. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Cell Death Differ 2020; 28:493-504. [PMID: 33288901 PMCID: PMC7862380 DOI: 10.1038/s41418-020-00675-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination, and its control by deubiquitinating enzymes (DUBs), mediates protein stability, function, signaling and cell fate. The ovarian tumor (OTU) family DUB OTULIN (FAM105B) exclusively cleaves linear (Met1-linked) poly-ubiquitin chains and plays important roles in auto-immunity, inflammation and infection. OTULIN regulates Met1-linked ubiquitination downstream of tumor necrosis factor receptor 1 (TNFR1), toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) receptor activation and interacts with the Met1 ubiquitin-specific linear ubiquitin chain assembly complex (LUBAC) E3 ligase. However, despite extensive research efforts, the receptor and cytosolic roles of OTULIN and the distributions of multiple Met1 ubiquitin-associated E3-DUB complexes in the regulation of cell fate still remain controversial and unclear. Apart from that, novel ubiquitin-independent OTULIN functions have emerged highlighting an even more complex role of OTULIN in cellular homeostasis. For example, OTULIN interferes with endosome-to-plasma membrane trafficking and the OTULIN-related pseudo-DUB OTULINL (FAM105A) resides at the endoplasmic reticulum (ER). Here, we discuss how OTULIN contributes to cell fate control and highlight novel ubiquitin-dependent and -independent functions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Najafov A, Luu HS, Mookhtiar AK, Mifflin L, Xia HG, Amin PP, Ordureau A, Wang H, Yuan J. RIPK1 Promotes Energy Sensing by the mTORC1 Pathway. Mol Cell 2020; 81:370-385.e7. [PMID: 33271062 DOI: 10.1016/j.molcel.2020.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
Collapse
Affiliation(s)
- Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Hoang Son Luu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan K Mookhtiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Guang Xia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Palak P Amin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Li L, Tong A, Zhang Q, Wei Y, Wei X. The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis. J Mol Cell Biol 2020; 13:3-14. [PMID: 33064829 PMCID: PMC8035999 DOI: 10.1093/jmcb/mjaa055] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023] Open
Abstract
Necrosis, a type of unwanted and passive cell demise, usually occurs under the excessive external stress and is considered to be unregulated. However, under some special conditions such as caspase inhibition, necrosis is regulable in a well-orchestrated way. The term 'regulated necrosis' has been proposed to describe such programed necrosis. Recently, several forms of necrosis, including necroptosis, pyroptosis, ferroptosis, parthanatos, oxytosis, NETosis, and Na+/K+-ATPase-mediated necrosis, have been identified, and some crucial regulators governing regulated necrosis have also been discovered. Mixed lineage kinase domain-like pseudokinase (MLKL), a core regulator in necroptosis, acts as an executioner in response to ligands of death receptor family. Its activation requires the receptor-interacting protein kinases, RIP1 and RIP3. However, MLKL is only involved in necroptosis, i.e. MLKL is dispensable for necrosis. Therefore, this review is aimed at summarizing the molecular mechanisms of MLKL-dependent and MLKL-independent necrosis.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - An Tong
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Simpson DS, Gabrielyan A, Feltham R. RIPK1 ubiquitination: Evidence, correlations and the undefined. Semin Cell Dev Biol 2020; 109:76-85. [PMID: 32980239 DOI: 10.1016/j.semcdb.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
Over the last two decades the mechanisms that underpin cell survival and cell death have been intensively studied. One molecule in particular, Receptor Interacting Protein Kinase 1 (RIPK1), has gained interest due to the ability to function upstream of both NF-κB signaling and caspase-dependent and -independent cell death. RIPK1 is critical in determining cell fate downstream of cytokine signaling receptors such as the Tumour Necrosis Factor Receptor Super Family (TNFRSF) and the innate immune Toll-like receptors. Various studies have attempted to untangle how ubiquitination of RIPK1 dictates signaling outcomes; however, due to the complex nature of ubiquitin signaling it has been difficult to prove that ubiquitination of RIPK1 does in fact influence signaling outcomes. Therefore, we ask the question: What do we really know about RIPK1 ubiquitination, and, to what extent can we conclude that ubiquitination of RIPK1 impacts RIPK1-mediated signaling events?
Collapse
Affiliation(s)
- Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Anna Gabrielyan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
43
|
Post-translational Modification of OTULIN Regulates Ubiquitin Dynamics and Cell Death. Cell Rep 2020; 29:3652-3663.e5. [PMID: 31825842 DOI: 10.1016/j.celrep.2019.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022] Open
Abstract
Linear ubiquitination has emerged as an important post-translational modification that regulates NF-κB activation, inflammation, and cell death in both immune and non-immune compartments, including the skin. The deubiquitinase OTULIN specifically disassembles linear ubiquitin chains generated by the linear ubiquitin assembly complex (LUBAC) and is necessary to prevent embryonic lethality and autoinflammatory disease. Here, we dissect the direct role of OTULIN in cell death and find that OTULIN limits apoptosis and necroptosis in keratinocytes. During apoptosis, OTULIN is cleaved by capase-3 at Asp-31 into a C-terminal fragment that restricts caspase activation and cell death. During necroptosis, OTULIN is hyper-phosphorylated at Tyr-56, which modulates RIPK1 ubiquitin dynamics and promotes cell death. OTULIN Tyr-56 phosphorylation is counteracted by the activity of dual-specificity phosphatase 14 (DUSP14), which we identify as an OTULIN phosphatase that limits necroptosis. Our data provide evidence of dynamic post-translational modifications of OTULIN and highlight their importance in cell death outcome.
Collapse
|
44
|
Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Proc Natl Acad Sci U S A 2020; 117:19982-19993. [PMID: 32753382 PMCID: PMC7443878 DOI: 10.1073/pnas.2000979117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer.
Collapse
|
45
|
Masucci MG. Viral Ubiquitin and Ubiquitin-Like Deconjugases-Swiss Army Knives for Infection. Biomolecules 2020; 10:E1137. [PMID: 32752270 PMCID: PMC7464072 DOI: 10.3390/biom10081137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of cellular proteins by covalent conjugation of ubiquitin and ubiquitin-like polypeptides regulate numerous cellular processes that are captured by viruses to promote infection, replication, and spreading. The importance of these protein modifications for the viral life cycle is underscored by the discovery that many viruses encode deconjugases that reverse their functions. The structural and functional characterization of these viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infections and the host's antiviral defense. Given the growing body of evidence demonstrating their key contribution to pathogenesis, the viral deconjugases are now recognized as attractive targets for the design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Maria Grazia Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
46
|
Chen Y, Jin J. The application of ubiquitin ligases in the PROTAC drug design. Acta Biochim Biophys Sin (Shanghai) 2020; 52:776-790. [PMID: 32506133 DOI: 10.1093/abbs/gmaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitylation plays important roles in many biological activities. Protein ubiquitylation is a unique process that is mainly controlled by ubiquitin ligases. The ubiquitin-proteasome system (UPS) is the main process to degrade short-lived and unwanted proteins in eukaryotes. Many components in the UPS are attractive drug targets. Recent studies indicated that ubiquitin ligases can be employed as tools in proteolysis-targeting chimeras (PROTACs) for drug discovery. In this review article, we will discuss the recent progress of the application of ubiquitin ligases in the PROTAC drug design. We will also discuss advantages and existing problems of PROTACs. Moreover, we will propose a few principles for selecting ubiquitin ligases in PROTAC applications.
Collapse
Affiliation(s)
- Yilin Chen
- Life Science Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianping Jin
- Life Science Institute, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
47
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
48
|
Liu Z, Chan FKM. Regulatory mechanisms of RIPK1 in cell death and inflammation. Semin Cell Dev Biol 2020; 109:70-75. [PMID: 32616439 DOI: 10.1016/j.semcdb.2020.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) and RIPK3 are key adaptors that play critical roles in inflammatory and cell death signaling. Work in recent years have shown that their activities are tightly regulated by ubiquitination, phosphorylation and proteolysis. In addition to these post-translational modifications, the expression and activities of these kinases can further be tuned by environmental changes in pH and oxygen content. Proper control of these regulatory processes is crucial for the RIP kinases to execute their functions in immune responses and tissue homeostasis. In this review, we discuss recent advance in our understanding of the molecular mechanisms that regulate the activities of the RIP kinases. We will also discuss how the different regulatory mechanisms contribute to the functions of RIPK1 and RIPK3 in different pathophysiological settings.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710-3010, United States
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710-3010, United States.
| |
Collapse
|
49
|
Cai GF, Sun ZR, Zhuang Z, Zhou HC, Gao S, Liu K, Shang LL, Jia KP, Wang XZ, Zhao H, Cai GL, Song WL, Xu SN. Cross electro-nape-acupuncture ameliorates cerebral hemorrhage-induced brain damage by inhibiting necroptosis. World J Clin Cases 2020; 8:1848-1858. [PMID: 32518774 PMCID: PMC7262720 DOI: 10.12998/wjcc.v8.i10.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/01/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, belongs to programmed cell death. It has been reported that RIPK1-mediated necroptosis exists in lesions of cerebral hemorrhage (CH). Electroacupuncture, a treatment derived from traditional Chinese medicine, could improve neurological impairment in patients with brain injury.
AIM To investigate the protective role of cross electro-nape acupuncture (CENA) in CH, and clarify the potential mechanism.
METHODS CH rat models were established, and CENA was applied to the experimental rats. Neurological functions and encephaledema were then measured. Necrotic cells in the brain of rats with CH were evaluated by propidium iodide staining. Necroptosis was assessed by immunofluorescence. Activation of the necroptosis-related pathway was detected by western blot. Extraction of brain tissue, cerebrospinal fluid and serum samples was conducted to measure the expression and secretion of inflammatory cytokines by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.
RESULTS The necroptotic marker p-MLKL was detectable in the brains of rats with CH. Next, we found that CENA could ameliorate neurological functions in rat models of CH. Moreover, the upregulation of RIPK1-mediated necroptosis-related molecules in the brains of rats with CH were inhibited by CENA. Further investigation revealed that CENA partially blocked the interaction between RIPK1 and RIPK3. Finally, in vivo assays showed that CENA decreased the expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-8 in CH rat models.
CONCLUSION These findings revealed that CENA exerts a protective role in CH models by inhibiting RIPK1-mediated necroptosis.
Collapse
Affiliation(s)
- Guo-Feng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
- Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Zhong-Ren Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Hai-Chun Zhou
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Shan Gao
- First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Li-Li Shang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Kun-Ping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Xiu-Zhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Hui Zhao
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Guo-Liang Cai
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Li Song
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Sheng-Nan Xu
- Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
50
|
Oikawa D, Sato Y, Ito H, Tokunaga F. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Int J Mol Sci 2020; 21:ijms21093381. [PMID: 32403254 PMCID: PMC7246992 DOI: 10.3390/ijms21093381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin ligase composed of the Heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein (HOIP), and Shank-associated RH domain interactor (SHARPIN) subunits. LUBAC specifically generates the N-terminal Met1-linked linear ubiquitin chain and regulates acquired and innate immune responses, such as the canonical nuclear factor-κB (NF-κB) and interferon antiviral pathways. Deubiquitinating enzymes, OTULIN and CYLD, physiologically bind to HOIP and control its function by hydrolyzing the linear ubiquitin chain. Moreover, proteins containing linear ubiquitin-specific binding domains, such as NF-κB-essential modulator (NEMO), optineurin, A20-binding inhibitors of NF-κB (ABINs), and A20, modulate the functions of LUBAC, and the dysregulation of the LUBAC-mediated linear ubiquitination pathway induces cancer and inflammatory, autoimmune, and neurodegenerative diseases. Therefore, inhibitors of LUBAC would be valuable to facilitate investigations of the molecular and cellular bases for LUBAC-mediated linear ubiquitination and signal transduction, and for potential therapeutic purposes. We identified and characterized α,β-unsaturated carbonyl-containing chemicals, named HOIPINs (HOIP inhibitors), as LUBAC inhibitors. We summarize recent advances in elucidations of the pathophysiological functions of LUBAC-mediated linear ubiquitination and identifications of its regulators, toward the development of LUBAC inhibitors.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan;
| | - Hidefumi Ito
- Department of Neurology, Faculty of Medicine, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81-6-6645-3720
| |
Collapse
|