1
|
Jin X, Lu Y, Fan Z. Exploring NamiRNA networks and time-series gene expression in osteogenic differentiation of adipose-derived stem cells. Ann Med 2025; 57:2478323. [PMID: 40100054 PMCID: PMC11921168 DOI: 10.1080/07853890.2025.2478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are a type of stem cell found in adipose tissue with the capacity to differentiate into multiple lineages, including osteoblasts. The differentiation of ADSCs into osteoblasts underlies osteogenic and pathological cellular basis in osteoporosis, bone damage and repair. METHODS Focused on ADSCs osteogenic differentiation, we conducted mRNA, microRNA expression and bioinformatics analysis, including gene differential expression, time series-based trend analysis, functional enrichment, and generates potential nuclear activating miRNAs (NamiRNA) regulatory network. The screened mRNAs in NamiRNA regulatory network were validated with correlation analysis. RESULTS The NamiRNA Regulatory Network reveals 4 mRNAs (C12orf61, MIR31HG, NFE2L1, and PCYOX1L) significantly downregulated in differentiated group and may be associated with ADSCs stemness. Furthermore, the significantly upregulated 10 genes (ACTA2, TAGLN, LY6E, IFITM3, NGFRAP1, TCEAL4, ATP5C1, CAV1, RPSA, and KDELR3) were significantly enriched in osteogenic-related pathways, and negatively correlated with ADSCs cell stemness in vitro. CONCLUSION These findings uncover potential genes related to ADSCs osteogenic differentiation, and provide theoretical basis for underlying ADSCs osteogenic differentiation and related diseases.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihong Fan
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Galli G, Zonefrati R, Iantomasi T, Margheriti L, Franchi A, Beltrami G, Masi L, Moro A, Brandi ML. Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation. Genes (Basel) 2025; 16:263. [PMID: 40149415 PMCID: PMC11942111 DOI: 10.3390/genes16030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. METHODS A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). RESULTS These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. CONCLUSIONS The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Francesca Marini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Roberto Zonefrati
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, Azienda Ospedaliero, Universitaria Careggi, 50134 Firenze, Italy;
| | - Laura Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU Careggi, 50139 Florence, Italy;
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| |
Collapse
|
3
|
Fan L, Zhang L, Zhang X, Wei W, Liu Z. Long Noncoding RNA EMX2-AS Facilitates Osteoblast Differentiation and Bone Formation by Inhibiting EMX2 Protein Translation and Activating Wnt/ β-Catenin Pathway. Stem Cells Int 2024; 2024:4397807. [PMID: 39628661 PMCID: PMC11614513 DOI: 10.1155/sci/4397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as a potentially new and crucial element of biological regulation, have gained widespread attention in recent years. Our previous work identified lncRNA empty spiracles homeobox 2 antisence (EMX2-AS) was significantly increased during the osteoblast differentiation of mesenchymal stem cells (MSCs). Overexpression of lncRNA EMX2-AS promoted osteogenesis in vitro and enhanced heterotopic bone formation in vivo, whereas lncRNA EMX2-AS knockdown had the opposite effect. EMX2 could negatively regulate the osteoblast differentiation of MSCs. lncRNA EMX2-AS was 80% expressed in the cytoplasm during osteoblast differentiation in MSCs. Mechanistic analysis revealed that lncRNA EMX2-AS acts as a positive regulator of osteogenic differentiation through interaction with EMX2 and suppression of its expression at the translational level and Wnt/β-catenin pathway is involved in lncRNA EMX2-AS/EMX2 regulated osteogenic differentiation. Our findings not only provide new targets for the treatment of diseases related to osteoblast differentiation disruption but also enrich the understanding of the regulation mechanisms of lncRNA during stem cell differentiation.
Collapse
Affiliation(s)
- Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Li Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Wei Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| |
Collapse
|
4
|
Zhang J, Chen L, Yu J, Tian W, Guo S. Advances in the roles and mechanisms of mesenchymal stem cell derived microRNAs on periodontal tissue regeneration. Stem Cell Res Ther 2024; 15:393. [PMID: 39491017 PMCID: PMC11533400 DOI: 10.1186/s13287-024-03998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontitis is one of the most prevalent oral diseases leading to tooth loss in adults, and is characterized by the destruction of periodontal supporting structures. Traditional therapies for periodontitis cannot achieve ideal regeneration of the periodontal tissue. Mesenchymal stem cells (MSCs) represent a promising approach to periodontal tissue regeneration. Recently, the prominent role of MSCs in this context has been attributed to microRNAs (miRNAs), which participate in post-transcriptional regulation and are crucial for various physiological and pathological processes. Additionally, they function as indispensable elements in extracellular vesicles, which protect them from degradation. In periodontitis, MSCs-derived miRNAs play a pivotal role in cellular proliferation and differentiation, angiogenesis of periodontal tissues, regulating autophagy, providing anti-apoptotic effects, and mediating the inflammatory microenvironment. As a cell-free strategy, their small size and ability to target related sets of genes and regulate signaling networks predispose miRNAs to become ideal candidates for periodontal tissue regeneration. This review aims to introduce and summarize the potential functions and mechanisms of MSCs-derived miRNAs in periodontal tissue repair and regeneration.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liangrui Chen
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jialu Yu
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Huang J, Yang Y, Zhu Y, Xiao X, Yalikun K, Jiang X, Yang L, Mu Y. DP7-C/mir-26a system promotes bone regeneration by remodeling the osteogenic immune microenvironment. Oral Dis 2024; 30:5203-5220. [PMID: 38501171 DOI: 10.1111/odi.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study investigates the DP7-C/miR-26a complex as a stable entity resulting from the combination of miR-26a with the immunomodulatory peptide DP7-C. Our focus is on utilizing DP7-C loaded with miR-26a to modulate the immune microenvironment in bone and facilitate osteogenesis. METHODS The DP7-C/miR-26a complex was characterized through transmission electron microscopy, agarose electrophoresis, and nanoparticle size potentiometer analysis. Transfection efficiency and cytotoxicity of DP7-C were assessed using flow cytometry and the CCK-8 assay. We validated the effects of DP7-C/miR-26a on bone marrow mesenchymal stem cells (BMSCs) and macrophages RAW 264.7 through gene expression and protein synthesis assays. A comprehensive evaluation of appositional bone formation involved micro-CT imaging, histologic analysis, and immunohistochemical staining. RESULTS DP7-C/miR-26a, a nanoscale, and low-toxic cationic complex, demonstrated the ability to enter BMSCs and RAW 264.7 via distinct pathways. The treatment with DP7-C/miR-26a significantly increased the synthesis of multiple osteogenesis-related factors in BMSCs, facilitating calcium nodule formation in vitro. Furthermore, DP7-C/miR-26a promoted M1 macrophage polarization toward M2 while suppressing the release of inflammatory factors. Coculture studies corroborated these findings, indicating significant repair of rat skull defects following treatment with DP7-C/miR-26a. CONCLUSION The DP7-C/miR-26a system offers a safer, more efficient, and feasible technical means for treating bone defects.
Collapse
Affiliation(s)
- Jie Huang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- General Dentistry, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yiling Yang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yushu Zhu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaidiliya Yalikun
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiliang Jiang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Wudhikulprapan W, Chattipakorn SC, Chattipakorn N, Kumfu S. Iron overload and programmed bone marrow cell death: Potential mechanistic insights. Arch Biochem Biophys 2024; 754:109954. [PMID: 38432564 DOI: 10.1016/j.abb.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.
Collapse
Affiliation(s)
- Wanat Wudhikulprapan
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Santibanez JF, Echeverria C, Millan C, Simon F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem 2023; 125:152096. [PMID: 37813068 DOI: 10.1016/j.acthis.2023.152096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The ability to differentiate into cells of different lineages, such as bone cells, is the principal value of adult mesenchymal stem cells (MSCs), which can be used with the final aim of regenerating damaged tissue. Due to its potential use and importance in regenerative medicine and tissue engineering, several questions have been raised regarding the molecular mechanisms of MSC differentiation. As one of the crucial mediators in organism development, the transforming growth factor-beta (TGF-β) superfamily directs MSCs' commitment to selecting differentiation pathways. This review aims to give an overview of the current knowledge on the mechanisms of the TGF-β superfamily in MSCs bone differentiation, with additional insight into the mutual regulation of microRNAs and TGF-β in osteogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, General Gana 1780, Santiago 8370854, Chile.
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine, and Genomic, Faculty of Medicine, University of Atacama, Copiapó 1532502, Chile
| | - Carola Millan
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibáñez University, Viña del Mar, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Kang J, Li Y, Qin Y, Huang Z, Wu Y, Sun L, Wang C, Wang W, Feng G, Qi Y. In Situ Deposition of Drug and Gene Nanoparticles on a Patterned Supramolecular Hydrogel to Construct a Directionally Osteochondral Plug. NANO-MICRO LETTERS 2023; 16:18. [PMID: 37975889 PMCID: PMC10656386 DOI: 10.1007/s40820-023-01228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.
Collapse
Affiliation(s)
- Jiawei Kang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Yating Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China
| | - Zhongming Huang
- The Affiliated Nanhua Hospital, Orthopedic Research Centre, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yifan Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Long Sun
- Department of Radiology, Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Cong Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, Zhejiang, People's Republic of China.
| | - Gang Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| | - Yiying Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
10
|
Qian D, Chen Y, Qiu X, Zhu B, Zhang L, Yan Y, Chen Y. Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells. Histol Histopathol 2023; 38:1219-1229. [PMID: 36633331 DOI: 10.14670/hh-18-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3-E1 cells. METHODS Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. RESULTS We found that miR-7031-5P was up-regulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-7031-5P promoting osteogenic differentiation of MC3T3-E1 cells. CONCLUSIONS Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7a.
Collapse
Affiliation(s)
- Dongchen Qian
- Department of Orthopedic, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yueyue Chen
- Department of Immunology and Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xusheng Qiu
- Department of Orthopedic, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjin, PR China
| | - Baohua Zhu
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lin Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yifeng Yan
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yixin Chen
- Department of Orthopedic, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjin, PR China.
| |
Collapse
|
11
|
Mohebbi H, Siasi E, Khosravipour A, Asghari M, Amini A, Mostafavinia A, Bayat M. MicroRNA-26 and Related Osteogenic Target Genes Could Play Pivotal Roles in Photobiomodulation and Adipose-Derived Stem Cells-Based Healing of Critical Size Foot Defects in the Rat Model. Photobiomodul Photomed Laser Surg 2023; 41:539-548. [PMID: 37788453 DOI: 10.1089/photob.2022.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Objective: In this study, we aimed to explore the role of MicroRNA-26 in photobiomodulation (PBM)- and adipose-derived stem cell (ADS)-based healing of critical-sized foot fractures in a rat model. Background: PBM and ADS treatments are relatively invasive methods for treating bone defects. Specific and oriented cellular and molecular functions can be induced by applying an appropriate type of PBM and ADS treatment. Methods: A critical size foot defect (CSFD) is induced in femoral bones of 24 rats. Then, a human demineralized bone matrix scaffold (hDBMS) was engrafted into all CSFDs. The rats were randomly allocated into four groups (n = 6): (1) control (hDBMS); (2) hDBMS+human ADSs (hADSs), hADSs engrafted into CSFDs; (3) hDBMS+PBM, CSFD exposed to PBM (810 nm wavelength, 1.2 J/cm2 energy density); and (4) hDBMS+(hADSs+PBM), hADSs implanted into the CSFD and then exposed to PBM. At 42 days after CSFD induction, the rats were killed, and the left CSFD was removed for mechanical compression tests and the right CSFD was removed for molecular and histological studies. Results: The results indicate that miRNA-26a, BMP, SMAD, RUNX, and OSTREX had higher expression in the treated groups than in the control group. Further, the biomechanical and histological properties of CSFDs in treated groups were improved compared with the control group. Correlation tests revealed a positive relationship between microRNA and improved biomechanical and cellular parameters of CSFDs in the rat model. Conclusions: We concluded that the MicroRNA-26 signaling pathway probably plays a significant role in the hADS-, PBM-, and hADS+PBM-based healing of CSFDs in rats. Clinical Trial Registration number: IR.SBMU.MSP.REC.1398.980.
Collapse
Affiliation(s)
- Hanieh Mohebbi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Siasi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadali Asghari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, Dunne NJ, McCarthy HO. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release 2023; 362:489-501. [PMID: 37673308 DOI: 10.1016/j.jconrel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.
Collapse
Affiliation(s)
- Phillip Chambers
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Kaufman S, Chang P, Pendleton E, Chandar N. MicroRNA26a Overexpression Hastens Osteoblast Differentiation Capacity in Dental Stem Cells. Cell Reprogram 2023; 25:109-120. [PMID: 37200520 DOI: 10.1089/cell.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are a source of mesenchymal stem cells with the potential to differentiate into several cell types. We initially isolated SHED cells and compared their osteogenic capacity with commercially available DPSCs. Both cells exhibited similar capacities of growth and osteogenic differentiation. A fourfold to sixfold increase in endogenous microRNA26a (miR26a) expression during osteogenic differentiation of preosteoblasts and a similar but attenuated increase (twofold to fourfold) in differentiating SHED was observed, suggesting a role in the process. We, therefore, overexpressed miR26a in SHED to determine if the osteogenic differentiation capacity can be potentiated in vitro. SHED with a threefold increase in miR26a expression showed increased growth rate when compared with parent cells. When exposed to an osteogenic differentiating promoting medium, the miR26a overexpressing cells showed 100-fold increases in the expression of bone marker genes such as type 1 collagen, alkaline phosphatase, and Runx2. The mineralization capacity of these cells was also increased 15-fold. As miR26a targets regulate several bone-specific genes, we evaluated the effect of miR26a overexpression on established targets. We found a moderate decrease in SMAD1 and a profound decrease in PTEN expression. miR26a could potentiate its effect on osteoblast differentiation by its ability to inhibit PTEN and increase the viability of cells and their numbers, a process essential in osteoblast differentiation. Our studies suggest that the upregulation of miR26a can increase bone formation and may serve as an important target to further investigate its potential in tissue engineering applications.
Collapse
Affiliation(s)
- Steven Kaufman
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Peter Chang
- Dental Institute, Midwestern University Clinics, Downers Grove, Illinois, USA
| | - Elisha Pendleton
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Nalini Chandar
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
14
|
Hosseinpour S, Dai H, Walsh LJ, Xu C. Mesoporous Core-Cone Silica Nanoparticles Can Deliver miRNA-26a to Macrophages to Exert Immunomodulatory Effects on Osteogenesis In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1755. [PMID: 37299658 PMCID: PMC10254425 DOI: 10.3390/nano13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Nanoparticles can play valuable roles in delivering nucleic acids, including microRNAs (miRNA), which are small, non-coding RNA segments. In this way, nanoparticles may exert post-transcriptional regulatory influences on various inflammatory conditions and bone disorders. This study used biocompatible, core-cone-structured, mesoporous silica nanoparticles (MSN-CC) to deliver miRNA-26a to macrophages in order to influence osteogenesis in vitro. The loaded nanoparticles (MSN-CC-miRNA-26) showed low-level toxicity towards macrophages (RAW 264.7 cells) and were internalized efficiently, causing the reduced expression of pro-inflammatory cytokines, as seen via real-time PCR and cytokine immunoassays. The conditioned macrophages created a favorable osteoimmune environment for MC3T3-E1 preosteoblasts, driving osteogenic differentiation with enhanced osteogenic marker expression, alkaline phosphatase (ALP) production, extracellular matrix formation, and calcium deposition. An indirect co-culture system revealed that direct osteogenic induction and immunomodulation by MSN-CC-miRNA-26a synergistically increased bone production due to the crosstalk between MSN-CC-miRNA-26a-conditioned macrophages and MSN-CC-miRNA-26a-treated preosteoblasts. These findings demonstrate the value of nanoparticle delivery of miR-NA-26a using MSN-CC for suppressing the production of pro-inflammatory cytokines with macrophages and for driving osteogenic differentiation in preosteoblasts via osteoimmune modulation.
Collapse
Affiliation(s)
| | | | | | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
15
|
Kuang H, Ma J, Chi X, Fu Q, Zhu Q, Cao W, Zhang P, Xie X. Integrated Osteoinductive Factors─Exosome@MicroRNA-26a Hydrogel Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22805-22816. [PMID: 37145861 DOI: 10.1021/acsami.2c21933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are a new therapeutic tool that can target multiple genes by inducing translation repression and target mRNA degradation. Although miRNAs have gained significant attention in oncology and in work on genetic disorders and autoimmune diseases, their application in tissue regeneration remains hindered by several challenges, such as miRNA degradation. Here, we reported Exosome@MicroRNA-26a (Exo@miR-26a), an osteoinductive factor that can be substituted for routinely used growth factors, which was constructed using bone marrow stem cell (BMSC)-derived exosomes and microRNA-26a (miR-26a). Exo@miR-26a-integrated hydrogels significantly promoted bone regeneration when implanted into defect sites; as the exosome stimulated angiogenesis, miR-26a promoted osteogenesis while the hydrogel enabled a site-directed release. Moreover, BMSC-derived exosomes further facilitated healthy bone regeneration by repressing osteoclast differentiation-related genes rather than damaging osteoclasts. Taken together, our findings demonstrate the promising potential of Exo@miR-26a for bone regeneration and provide a new strategy for the application of miRNA therapy in tissue engineering.
Collapse
Affiliation(s)
- Haizhu Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Xinyu Chi
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qichen Fu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qianzhe Zhu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xin Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Arab F, Aghaee Bakhtiari SH, Pasdar A, Saburi E. Evaluation of osteogenic induction potency of miR-27a-3p in adipose tissue-derived human mesenchymal stem cells (AD-hMSCs). Mol Biol Rep 2023; 50:1281-1291. [PMID: 36451000 DOI: 10.1007/s11033-022-08084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Bone tissue as a dynamic tissue is able to repair its minor injuries, however, sometimes the repair cannot be completed by itself due to the size of lesion. In such cases, the best treatment could be bone tissue engineering. The use of stem cells in skeletal disorders to repair bone defects has created bright prospects. On the other hand, changes in the expression level of microRNAs (miRs) can lead to the commitment of mesenchymal stem cells (MSCs) to cell lineage. Many studies reported that post-transcriptional regulations by miRNAs are involved in all stages of osteoblast differentiation. METHOD After the preparing adipose tissue-derived mesenchymal stem cells, the target cells from the third passage were cultured in two groups, transfected MSCs with miR-27a-3p (DM.C + P) and control group. In different times, 7 and 14 days after culture, differentiation of these cells into osteoblast were measured using various techniques including the ALP test and calcium content test, Alizarin Red staining, Immunocytochemistry technique (ICC). Also, the relative expression of bone differentiation marker genes including Osteonectin (ON), Osteocalcin (OC), RUNX Family Transcription Factor 2 (RUNX2), Collagen type I alpha 1 (COL1) was investigated by real-time RT PCR. RESULTS In comparison with control groups, overexpression of miR-27a-3p in transfected cells resulted in a significant increase in the expression of bone markers genes (ON, OC, RUNX2, COL1), alkaline phosphatase (ALP) activity, and calcium content (p < 0.05). In addition, the results obtained from ICC technique showed that osteocalcin protein is expressed at the surface of bone cells. Furthermore, the expression of APC, as a target of miR-27a-3p, decreased in transfected cells. CONCLUSION Our data suggest that miR-27a-3p may positively regulates adipose tissue-derived mesenchymal stem cell differentiation into bone by targeting APC and activating the Wnt/b-catenin pathway.
Collapse
Affiliation(s)
- Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee Bakhtiari
- Assistant Professor of Medical Biotechnology, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Chang Y, Ping A, Chang C, Betz VM, Cai L, Ren B. Lactoferrin Mediates Enhanced Osteogenesis of Adipose-Derived Stem Cells: Innovative Molecular and Cellular Therapy for Bone Repair. Int J Mol Sci 2023; 24:ijms24021749. [PMID: 36675267 PMCID: PMC9864243 DOI: 10.3390/ijms24021749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 μg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 μg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 μg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 μg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 μg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.
Collapse
Affiliation(s)
- Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Ansong Ping
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Volker M. Betz
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital LMU Munich, 81377 Munich, Germany
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| | - Bin Ren
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| |
Collapse
|
19
|
Zhang Q, Long Y, Jin L, Li C, Long J. Non-coding RNAs regulate the BMP/Smad pathway during osteogenic differentiation of stem cells. Acta Histochem 2023; 125:151998. [PMID: 36630753 DOI: 10.1016/j.acthis.2023.151998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the regulation of bone metabolism. The BMP/Smad pathway is a key signaling pathway for classical regulation of osteogenic differentiation. Non-coding RNAs (ncRNAs) and the BMP/Smad pathway both have important roles for osteogenic differentiation of stem cells, bone regeneration, and development of bone diseases. There is increasing evidence that ncRNAs interact with the BMP/Smad pathway to regulate not only osteogenic differentiation of stem cells but also progression of bone diseases, such as osteoporosis (OP), myeloma, and osteonecrosis of the femoral head (ONFH), by controlling the expression of bone disease-related genes. Therefore, ncRNAs that interact with BMP/Smad pathway molecules are potential targets for bone regeneration as well as bone disease diagnosis, prevention, and treatment. However, despite extensive studies on ncRNAs associated with the BMP/Smad pathway and osteogenic differentiation of stem cells, there is a lack of comparability. Moreover, some bone disease-associated ncRNAs with low abundance can be difficult to detect and there is a lack of mature delivery systems for their stable translocation to target sites, thus limiting their application. In this review, we summarize the research progress on interactions between ncRNAs and the BMP/Smad pathway during osteogenic differentiation of various stem cells and in the regulation of bone regeneration and bone diseases.
Collapse
Affiliation(s)
- Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China
| | - Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Chenghao Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
21
|
S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen Ther 2022; 21:166-174. [PMID: 35891712 PMCID: PMC9294055 DOI: 10.1016/j.reth.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are stem cells with multidirectional differentiation potential isolated from adipose tissue. They have the same immunomodulatory effect as bone marrow mesenchymal stem cells in wound repair and immune regulation as bone marrow. The mechanism of action of ADSCs in skin wound repair has not been elucidated. S100A8 is a calcium and zinc binding protein, but its role in skin wound healing is rarely reported. We herein show that S100A8 overexpression significantly promoted ADSC proliferation and differentiation, whereas S100A8 knockdown yielded the opposite results. A skin injury model with bone exposure was created in rats by surgically removing the skin from the head and exposing the skull. The wounds were treated with S100A8-overexpressing or S100A8-knockdown ADSCs, and wound healing was monitored. The serum levels of the inflammation-related factors tumor necrosis factor-α and interleukin-6 were decreased significantly after S100A8 overexpression, while the angiogenic factor vascular endothelial growth factor and connective tissue generating factor showed the opposite trend. Histological staining revealed that granulation tissue neovascularization was more pronounced in wounds treated with S100A8-overexpressing ADSCs than that in the control group. We conclude that S100A8 promotes the proliferation of ADSCs and inhibits inflammation to improve skin wound healing.
Collapse
|
22
|
Xue F, Cornelissen JJ, Yuan Q, Cao S. Delivery of MicroRNAs by plant virus-based nanoparticles to functionally alter the osteogenic differentiation of human mesenchymal stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zeng K, Li W, Kang Q, Li Y, Cheng Q, Xia W. miR-342-5p inhibits odonto/osteogenic differentiation of human dental pulp stem cells via targeting Wnt7b. Oral Dis 2022. [PMID: 35322903 DOI: 10.1111/odi.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Human dental pulp stem cells (hDPSCs) constitute a promising source of stem cells in tissue engineering. However, the molecular mechanism of differentiation in hDPSCs remains largely unclear. MicroRNAs (miRNAs) play crucial roles in lineage-specific differentiation of stem cells. The present study investigated the function of miRNA-342-5p in the odonto/osteogenic differentiation of hDPSCs. METHODS The miRNA array profiling and quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed the expression of miR-342-5p during odonto/osteogenic differentiation of hDPSCs. hDPSCs were treated with miR-342-5p mimic and inhibitor to investigate the regulatory roles of miR-342-5p in the differentiation of hDPSCs. Moreover, miR-342-5p inhibitor and small interference RNA (siRNA) targeting Wnt7b were applied to explore the regulatory mechanism of miR-342-5p. RESULTS Downregulated miR-342-5p was observed during odonto/osteogenic differentiation of hDPSCs. The overexpression of miR-342-5p inhibited the odonto/osteogenic potential of DPSCs, as indicated by low levels of alkaline phosphatase activity, calcium deposition formation, and odonto/osteogenic differentiation markers, whereas silencing of miR-342-5p exhibited the opposite effect. When co-treated with siRNA targeting Wnt7b and miR-342-5p inhibitor in hDPSCs, the odonto/osteogenic potential and activation of Wnt7b/β-catenin pathway were attenuated. CONCLUSIONS This study showed that miR-342-5p inhibits the odonto/osteogenic differentiation of hDPSCs by interfering with Wnt/β-catenin signaling via targeting Wnt7b.
Collapse
Affiliation(s)
- Kangrui Zeng
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Kang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cheng
- Department of stomatology, The affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, Jiangsu, China
| | - Wenwei Xia
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
25
|
Hu M, Cao Z, Jiang D. The Effect of miRNA-Modified Exosomes in Animal Models of Spinal Cord Injury: A meta-Analysis. Front Bioeng Biotechnol 2022; 9:819651. [PMID: 35071220 PMCID: PMC8770826 DOI: 10.3389/fbioe.2021.819651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is currently not completely curable. Exosomes have been widely used in preclinical studies of spinal cord injury. Here, in this meta-analysis, we focused on evaluating the overall efficacy of therapies based on miRNA-modified exosomes on functional recovery in animal models of SCI. Methods: PubMed, embase and Web of Science library databases were searched. Relevant literature was included, and the random effects model was used to assess the overall effect of the intervention, with outcomes expressed as SMD. The primary outcome included motor function scores. Risk of bias (ROB) was assessed using the ROB tool of the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). R version 4.1.1software and Review Manager software were used for meta-analysis. Results: A total of 11 preclinical studies were included. The meta-analysis revealed that miRNA-modified exosome therapy was effective in improving motor function scores compared with exosomes alone or control therapy (standardized mean difference: 4.21; 95% confidence interval: 3.39-5.04). There was significant asymmetry in the funnel plot, and trim-and-fill analysis revealed four unpublished studies of motor scores. The quality of all included studies was evaluated with SYRCLE's ROB tool. The SCI model, administration time and dose had an impact on the effect of the treatment. Conclusion: MiRNA-modified exosomes have shown great potential in the treatment of SCI. Moreover, the efficacy of miRNA-modified exosomes was superior to that of exosomes alone.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Zhidong Cao
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Furesi G, de Jesus Domingues AM, Alexopoulou D, Dahl A, Hackl M, Schmidt JR, Kalkhof S, Kurth T, Taipaleenmäki H, Conrad S, Hofbauer C, Rauner M, Hofbauer LC. Exosomal miRNAs from Prostate Cancer Impair Osteoblast Function in Mice. Int J Mol Sci 2022; 23:1285. [PMID: 35163219 PMCID: PMC8836054 DOI: 10.3390/ijms23031285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.
Collapse
Affiliation(s)
- Giulia Furesi
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | | | - Dimitra Alexopoulou
- DRESDEN-Concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, 01307 Dresden, Germany; (D.A.); (A.D.)
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, 01307 Dresden, Germany; (D.A.); (A.D.)
| | | | - Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (J.R.S.); (S.K.)
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany; (J.R.S.); (S.K.)
- Institute of Bioanalysis, University of Applied Sciences and Arts of Coburg, 96450 Coburg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM and Histology Facility, TU Dresden, 01307 Dresden, Germany;
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 82152 Planegg-Martinsried, Germany;
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefanie Conrad
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | - Christine Hofbauer
- National Center for Tumor Diseases, Technical University of Dresden, 01307 Dresden, Germany;
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technical University of Dresden, 01307 Dresden, Germany; (G.F.); (S.C.); (M.R.)
| |
Collapse
|
27
|
Jiang H, Zhong J, Li W, Dong J, Xian CJ, Shen YK, Yao L, Wu Q, Wang L. Gentiopicroside promotes the osteogenesis of bone mesenchymal stem cells by modulation of β-catenin-BMP2 signalling pathway. J Cell Mol Med 2021; 25:10825-10836. [PMID: 34783166 PMCID: PMC8642693 DOI: 10.1111/jcmm.16410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is characterized by increased bone fragility, and the drugs used at present to treat osteoporosis can cause adverse reactions. Gentiopicroside (GEN), a class of natural compounds with numerous biological activities such as anti‐resorptive properties and protective effects against bone loss. Therefore, the aim of this work was to explore the effect of GEN on bone mesenchymal stem cells (BMSCs) osteogenesis for a potential osteoporosis therapy. In vitro, BMSCs were exposed to GEN at different doses for 2 weeks, whereas in vivo, ovariectomized osteoporosis was established in mice and the therapeutic effect of GEN was evaluated for 3 months. Our results in vitro showed that GEN promoted the activity of alkaline phosphatase, increased the calcified nodules in BMSCs and up‐regulated the osteogenic factors (Runx2, OSX, OCN, OPN and BMP2). In vivo, GEN promoted the expression of Runx2, OCN and BMP2, increased the level of osteogenic parameters, and accelerated the osteogenesis of BMSCs by activating the BMP pathway and Wnt/β‐catenin pathway, effect that was inhibited using the BMP inhibitor Noggin and Wnt/β‐catenin inhibitor DKK1. Silencing the β‐catenin gene and BMP2 gene blocked the osteogenic differentiation induced by GEN in BMSCs. This block was also observed when only β‐catenin was silenced, although the knockout of BMP2 did not affect β‐catenin expression induced by GEN. Therefore, GEN promotes BMSC osteogenesis by regulating β‐catenin‐BMP signalling, providing a novel strategy in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jialiang Zhong
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenjun Li
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Jianghui Dong
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lufeng Yao
- Department of Foot and Ankle Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Qiang Wu
- Department of Orthopaedic, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Liping Wang
- UniSA Clinical& Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
28
|
Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, Yang H, Zou J. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater 2021; 135:289-303. [PMID: 34474179 DOI: 10.1016/j.actbio.2021.08.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Critical bone defects are a common yet challenging orthopedic problem. Tissue engineering is an emerging and promising strategy for bone regeneration in large-scale bone defects. The precise on-demand release of osteogenic factors is critical for controlling the osteogenic differentiation of seed cells with the support of appropriate three dimensional scaffolds. However, most of the effective osteogenic factors are biomacromolecules with release behaviors that are difficult to control. Here, the cholesterol-modified non-coding microRNA Chol-miR-26a was used to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Chol-miR-26a was conjugated to an injectable poly(ethylene glycol) (PEG) hydrogel through an ultraviolet (UV)-cleavable ester bond. The injectable PEG hydrogel was formed by a copper-free click reaction between the terminal azide groups of 8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG, into which UV-cleavable Chol-miR-26a was simultaneously conjugated via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-26a (MLCaged) released Chol-c-miR-26a selectively and exhibited significantly improved efficacy in bone regeneration compared to the hydrogel without UV irradiation and UV-uncleavable MLControl. MLCaged significantly enhanced alkaline phosphatase activity and promoted calcium nodule deposition in vitro and repaired critical skull defects in a rat animal model, demonstrating that injectable implantation with the precise release of osteogenic factors has the potential to repair large-scale bone defects in clinical practice. STATEMENT OF SIGNIFICANCE: Provide a novel and practical strategy via hydrogel for efficient delivery and precisely controlled release of miRNAs into bone defect sites. The hydrogel is formed by polyethylene glycol (PEG), which is crosslinked by 'click' reaction. Cholesterol-modified miR-26a loading on the hydrogel is covalently patterned onto the fibers of hydrogel through a UV light-cleavable linker, which prevents undesired release of miRNA. This hydrogel could realize the controlled release of miRNA under light regulation both in vitro and in vivo, thus realize bone regeneration.
Collapse
|
29
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
30
|
Wnt-Signaling Regulated by Glucocorticoid-Induced miRNAs. Int J Mol Sci 2021; 22:ijms222111778. [PMID: 34769207 PMCID: PMC8584097 DOI: 10.3390/ijms222111778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are pleiotropic hormones which regulate innumerable physiological processes. Their comprehensive effects are due to the diversity of signaling mechanism networks. MiRNAs, small, non-coding RNAs contribute to the fine tuning of signaling pathways and reciprocal regulation between GCs and miRNAs has been suggested. Our aim was to investigate the expressional change and potential function of GC mediated miRNAs. The miRNA expression profile was measured in three models: human adrenocortical adenoma vs. normal tissue, steroid-producing H295R cells and in hormonally inactive HeLa cells before and after dexamethasone treatment. The gene expression profile in 82 control and 57 GC-affected samples was evaluated in GC producing and six different GC target tissue types. Tissue-specific target prediction (TSTP) was applied to identify the most relevant miRNA-mRNA interactions. Glucocorticoid treatment resulted in cell type-dependent miRNA expression changes. However, 19.5% of the influenced signaling pathways were common in all three experiments, of which the Wnt-signaling pathway seemed to be the most affected. Transcriptome data and TSTP showed similar results, as the Wnt pathway was significantly altered in both the GC-producing adrenal gland and all investigated GC target tissue types. In different cell types, different miRNAs led to the regulation of similar pathways. Wnt signaling may be one of the most important signaling pathways affected by hypercortisolism. It is, at least in part, regulated by miRNAs that mediate the glucocorticoid effect. Our findings on GC producing and GC target tissues suggest that the alteration of Wnt signaling (together with other pathways) may be responsible for the leading symptoms observed in Cushing's syndrome.
Collapse
|
31
|
Han X, Fan Z. MicroRNAs Regulation in Osteogenic Differentiation of Mesenchymal Stem Cells. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.747068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cell with the potential of self-renewal and multidirectional differentiation. They can be obtained from a variety of tissues and can differentiate into a variety of cell types under different induction conditions, including osteoblasts. Because of this osteogenic property, MSCs have attracted much attention in the treatment of bone metabolism-related diseases. MicroRNAs (miRNAs), as an epigenetic factor, are thought to play an important regulatory role in the process of osteogenic differentiation of MSCs. In recent years, increasingly evidence shows that miRNAs imbalance is involved in the regulation of osteoporosis and fracture. In this review, miRNAs involved in osteogenic differentiation and their mechanisms for regulating the expression of target genes are reviewed. In addition, we also discuss the potential clinical applications and possible directions of this field in the future.
Collapse
|
32
|
Li L, Zheng B, Zhang F, Luo X, Li F, Xu T, Zhao H, Shi G, Guo Y, Shi J, Sun J. LINC00370 modulates miR-222-3p-RGS4 axis to protect against osteoporosis progression. Arch Gerontol Geriatr 2021; 97:104505. [PMID: 34450404 DOI: 10.1016/j.archger.2021.104505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND We aimed to determine the role of the LINC00370/miR-222-3p/RGS4 axis in modulating the process of adipose-derived stem cell (ADSC) osteogenic differentiation. METHODS We first evaluated the differential expression of LINC00370, miR-222-3p and RGS4 between normal and osteogenically induced ADSCs. Moreover, we transfected ADSCs with LINC00370 siRNA and an miR-222-3p inhibitor to determine the role of LINC00370 in modulating the process of ADSC osteogenic differentiation. Finally, we analyzed the dual-luciferase reporter gene to identify the relationship between LINC00370 and miR-222-3p. We first created osteoporotic rat models by ovariectomy (OVX) and treated with pcDNA-LINC00370. HE and immunohistochemical staining of OCN were performed to assess the changes in bone microarchitecture. RESULTS LINC00370 and RGS4 expression was remarkably upregulated in the osteogenic ADSC group compared with the normal medium group. On the other hand, miR-222-3p expression was remarkably decreased in the osteogenic group compared with the normal medium group. Knockdown of LINC00370 reduced the osteogenic differentiation of ADSCs. Moreover, the inhibitor of miR-222-3p partially reversed the reduction of osteogenic differentiation by LINC00370 knockdown. Knockdown of LINC00370 reduced the expression of p-Akt and p-PI3K. The inhibitor of miR-222-3p partially reversed the reduction of the expression of p-Akt and p-PI3K by LINC00370 knockdown. A dual luciferase reporter assay indicated that LINC00370 can directly bind miR-222-3p. LINC00370 suppressed OP progression in OVX and partially upregulated OCN protein expression. CONCLUSION Collectively, the above results confirm that LINC00370 promotes the process of ADSC osteogenic differentiation via the miR-222-3p/RGS4 axis. Moreover, LINC00370 could protect against OVX-induced OP.
Collapse
Affiliation(s)
- Lintao Li
- Department of Orthopedic Surgery, Jinling Hospital, Nanjing University, Nanjing, China
| | - Bing Zheng
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fan Zhang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Xi Luo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Fudong Li
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Tao Xu
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Hong Zhao
- Department of Orthopedic Surgery, No. 906 Hospital of the People's Liberation Army, Zhejiang, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Yongfei Guo
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200001, China.
| |
Collapse
|
33
|
Zhou J, Wang M, Mao A, Zhao Y, Wang L, Xu Y, Jia H, Wang L. Long noncoding RNA MALAT1 sponging miR-26a-5p to modulate Smad1 contributes to colorectal cancer progression by regulating autophagy. Carcinogenesis 2021; 42:1370-1379. [PMID: 34313719 DOI: 10.1093/carcin/bgab069] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Accumulating evidences have suggested that bone morphogenetic protein (BMP) -Smad have a functional role in regulating autophagy in the development of human colorectal cancer (CRC). However, the regulatory mechanisms controlling this process remain unclear. Here, we showed that Smad1, the key effector of BMP2-Smad signaling, induces autophagy by upregulating autophagy-related gene 5 (ATG5) expression, and Smad1 binds to the proximal promoter to induce its expression. Moreover, BMP2 induces autophagy in CRC. Overexpression of Smad1 promotes tumorigenesis and migration of CRC cells, and knockdown of ATG5 is able to rescue the Smad1-induced promotion of CRC proliferation and migration partially. Mechanistically, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) may act as a competing endogenous RNA by binding with miR-26a-5p competitively and thus modulating the de-repression of downstream target Smad1. Furthermore, clinical analysis results show that Smad1 is positively correlated with MALAT1 and negatively correlated with miR-26a-5p in CRC samples. In conclusion, our results demonstrated that Smad1 may serve as an oncogene in CRC through autophagy.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anrong Mao
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longrong Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Colorectal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zhao YJ, Gao ZC, He XJ, Li J. The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochem Cell Biol 2021; 99:488-498. [PMID: 34297624 DOI: 10.1139/bcb-2020-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although tumor necrosis factor α (TNF-α)-mediated inflammation significantly impacts osteoporosis, the mechanisms underlying the osteogenic differentiation defects of bone marrow-derived mesenchymal stem cells (BM-MSCs) caused by TNF-α remain poorly understood. We found that TNF-α stimulation of murine BM-MSCs significantly upregulated the expression levels of several microRNAs (miRNAs), including let-7f-5p, but this increase was significantly reversed by treatment with the kinase inhibitor BAY 11-7082. To study gain- or loss of function, we transfected cells with an miRNA inhibitor or miRNA mimic. We then demonstrated that let-7f-5p impaired osteogenic differentiation of BM-MSCs in the absence and presence of TNF-α, as evidenced by alkaline phosphatase and alizarin red staining as well as quantitative assays of the mRNA levels of bone formation marker genes in differentiated BM-MSCs. Moreover, let-7f-5p targets the 3' untranslated region of Nucleoside diphosphate kinase 4 (Nme4) mRNA and negatively regulates Nme4 expression in mouse BM-MSCs. Ectopic expression of Nme4 completely reversed the inhibitory effects of the let-7f-5p mimic on osteogenic differentiation of mouse BM-MSCs. Furthermore, inhibition of let-7f-5p or overexpression of Nme4 in BM-MSCs restored in-vivo bone formation in an ovariectomized animal model. Collectively, our work indicates that let-7f-5p is involved in TNF-α-mediated reduction of BM-MSC osteogenesis via targeting Nme4.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng-Chao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
35
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
36
|
Man K, Brunet MY, Fernandez‐Rhodes M, Williams S, Heaney LM, Gethings LA, Federici A, Davies OG, Hoey D, Cox SC. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles 2021; 10:e12118. [PMID: 34262674 PMCID: PMC8263905 DOI: 10.1002/jev2.12118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Lee A. Gethings
- Waters CorporationStamford AvenueWilmslowUK
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Angelica Federici
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - David Hoey
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
37
|
Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: a Possible Role in the Osteogenic-angiogenic Coupling. Stem Cell Rev Rep 2021; 16:1005-1012. [PMID: 32681233 DOI: 10.1007/s12015-020-10009-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the high intrinsic ability of bone tissue to regenerate, bone healing fails in some pathological conditions and especially in the presence of large defects. Due to the strong relationship between bone development and vascularization during in vivo bone formation and repair, strategies promoting the osteogenic-angiogenic coupling are crucial for regenerative medicine. Increasing evidence shows that miRNAs play important roles in controlling osteogenesis and bone vascularization and are important tool in medical research although their clinical use still needs to optimize miRNA stability and delivery. Pulsed electromagnetic fields (PEMFs) have been successfully used to enhance bone repair and their clinical activity has been associated to their ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study we investigated the potential ability of PEMF exposure to modulate selected miRNAs involved in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). We show that, during in vitro hBMSC differentiation, PEMFs up-modulate the expression of miR-26a and miR-29b, which favor osteogenic differentiation, and decrease miR-125b which acts as an inhibitor miRNA. As PEMFs promote the expression and release of miRNAs also involved in angiogenesis, we conclude that PEMFs may represent a noninvasive and safe strategy to modulate miRNAs with relevant roles in bone repair and with the potential to regulate the osteogenic-angiogenic coupling.
Collapse
|
38
|
Damaola A, Aierken M, Muertizha M, Abudoureheman A, Lin H, Wang L. Differential Expression of MicroRNA-3148 in Patients with Osteoporosis and Its Impacts on the Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected
with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to
investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis
in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis
and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Ainiwaerjiang Damaola
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Maerdan Aierken
- First Department of Spine Surgery, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Mieralimu Muertizha
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | | | - Haishan Lin
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Li Wang
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| |
Collapse
|
39
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
40
|
Chen Y, Tian Z, He L, Liu C, Wang N, Rong L, Liu B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther 2021; 12:224. [PMID: 33820561 PMCID: PMC8022427 DOI: 10.1186/s13287-021-02282-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exosomes derived from the bone marrow mesenchymal stem cell (MSC) have shown great potential in spinal cord injury (SCI) treatment. This research was designed to investigate the therapeutic effects of miR-26a-modified MSC-derived exosomes (Exos-26a) following SCI. Methods Bioinformatics and data mining were performed to explore the role of miR-26a in SCI. Exosomes were isolated from miR-26a-modified MSC culture medium by ultracentrifugation. A series of experiments, including assessment of Basso, Beattie and Bresnahan scale, histological evaluation, motor-evoked potential recording, diffusion tensor imaging, and western blotting, were performed to determine the therapeutic influence and the underlying molecular mechanisms of Exos-26a in SCI rats. Results Exos-26a was shown to promote axonal regeneration. Furthermore, we found that exosomes derived from miR-26a-modified MSC could improve neurogenesis and attenuate glial scarring through PTEN/AKT/mTOR signaling cascades. Conclusions Exosomes derived from miR-26a-modified MSC could activate the PTEN-AKT-mTOR pathway to promote axonal regeneration and neurogenesis and attenuate glia scarring in SCI and thus present great potential for SCI treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02282-0.
Collapse
Affiliation(s)
- Yuyong Chen
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Zhenming Tian
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Lei He
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Can Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Nangxiang Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
41
|
Mehta KJ. Role of iron and iron-related proteins in mesenchymal stem cells: Cellular and clinical aspects. J Cell Physiol 2021; 236:7266-7289. [PMID: 33821487 DOI: 10.1002/jcp.30383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues where these cells show niche-dependent multilineage differentiation and secrete immunomodulatory molecules to support numerous physiological processes. Due to their regenerative and reparative properties, MSCs are extremely valuable for cell-based therapy in tackling several pathological conditions including COVID-19. Iron is essential for MSC processes but iron-loading, which is common in several chronic conditions, hinders normal MSC functionality. This not only aggravates disease pathology but can also affect allogeneic and autologous MSC therapy. Thus, understanding MSCs from an iron perspective is of clinical significance. Accordingly, this review highlights the roles of iron and iron-related proteins in MSC physiology. It describes the contribution of iron and endogenous iron-related effectors like hepcidin, ferroportin, transferrin receptor, lactoferrin, lipocalin-2, bone morphogenetic proteins and hypoxia inducible factors in MSC biology. It summarises the excess-iron-induced alterations in MSC components, processes and discusses signalling pathways involving ROS, PI3K/AKT, MAPK, p53, AMPK/MFF/DRP1 and Wnt. Additionally, it evaluates the endogenous and exogenous saviours of MSCs against iron-toxicity. Lastly, it elaborates on the involvement of MSCs in the pathology of clinical conditions of iron-excess, namely, hereditary hemochromatosis, diabetes, β-thalassaemia and myelodysplastic syndromes. This unique review integrates the distinct fields of iron regulation and MSC physiology. Through an iron-perspective, it describes both mechanistic and clinical aspects of MSCs and proposes an iron-linked MSC-contribution to physiology, pathology and therapeutics. It advances the understanding of MSC biology and may aid in identifying signalling pathways, molecular targets and compounds for formulating adjunctive iron-based therapies for excess-iron conditions, and thereby inform regenerative medicine.
Collapse
Affiliation(s)
- Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK
| |
Collapse
|
42
|
Liu A, Lin D, Zhao H, Chen L, Cai B, Lin K, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials 2021; 272:120718. [PMID: 33838528 DOI: 10.1016/j.biomaterials.2021.120718] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-exos), with its inherent capacity to modulate cellular behavior, are emerging as a novel cell-free therapy for bone regeneration. Herein, focusing on practical applying problems, the osteoinductivity of MSC-exos produced by different stem cell sources (rBMSCs/rASCs) and culture conditions (osteoinductive/common) were systematically compared to screen out an optimized osteogenic exosome (BMSC-OI-exo). Via bioinformatic analyses by miRNA microarray and in vitro pathway verification by gene silencing and miRNA transfection, we first revealed that the osteoinductivity of BMSC-OI-exo was attributed to multi-component exosomal miRNAs (let-7a-5p, let-7c-5p, miR-328a-5p and miR-31a-5p). These miRNAs targeted Acvr2b/Acvr1 and regulated the competitive balance of Bmpr2/Acvr2b toward Bmpr-elicited Smad1/5/9 phosphorylation. On these bases, lyophilized delivery of BMSC-OI-exo on hierarchical mesoporous bioactive glass (MBG) scaffold was developed to realize bioactivity maintenance and sustained release by entrapment in the surface microporosity of the scaffold. In a rat cranial defect model, the loading of BMSC-OI-exo efficiently enhanced the bone forming capacity of the scaffold and induced rapid initiation of bone regeneration. This paper could provide empirical bases of MSC-exo-based therapy for bone regeneration and theoretical bases of MSC-exo-induced osteogenesis mechanism. The BMSC-OI-exo-loaded MBG scaffold developed here represented a promising bone repairing strategy for future clinical application.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Dan Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Hanjiang Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Long Chen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Bolei Cai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
43
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
44
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
45
|
Zhang FY, Zhen YF, Guo ZX, Dai J, Zhu LQ, Liang PR, Su GH, Zhang WY, Fang JF, Yuan QW, Yao F, Liu Y, Qiao Y, Zhang Y, Guo WL, Liu Y, Wang XD. miR-143 is implicated in growth plate injury by targeting IHH in precartilaginous stem cells. Int J Med Sci 2021; 18:1999-2007. [PMID: 33850470 PMCID: PMC8040405 DOI: 10.7150/ijms.46474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Precartilaginous stem cells (PCSCs) are able to initiate chondrocyte and bone development. The present study aimed to investigate the role of miR-143 and the underlying mechanisms involved in PCSC proliferation. In a rat growth plate injury model, tissue from the injury site was collected and the expression of miR-143 and its potential targets was determined. PCSCs were isolated from the rabbits' distal epiphyseal growth plate. Cell viability, DNA synthesis, and apoptosis were determined with MTT, BrdU, and flow cytometric analysis, respectively. Real time PCR and western blot were performed to detect the mRNA and protein expression of the indicated genes. Indian hedgehog (IHH) was identified as a target gene for miR-143 with luciferase reporter assay. Decreased expression of miR-143 and increased expression of IHH gene were observed in the growth plate after injury. miR-143 mimics decreased cell viability and DNA synthesis and promoted apoptosis of PCSCs. Conversely, siRNA-mediated inhibition of miR-143 led to increased growth and suppressed apoptosis of PCSCs. Transfection of miR-143 decreased luciferase activity of wild-type IHH but had no effect when the 3'-UTR of IHH was mutated. Furthermore, the effect of miR-143 overexpression was neutralized by overexpression of IHH. Our study showed that miR-143 is involved in growth plate behavior and regulates PCSC growth by targeting IHH, suggesting that miR-143 may serve as a novel target for PCSC-related diseases.
Collapse
Affiliation(s)
- Fu-Yong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yun-Fang Zhen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Zhi-Xiong Guo
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jin Dai
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Lun-Qing Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Pei-Rong Liang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Guang-Hao Su
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Wen-Yan Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jian-Feng Fang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Quan-Wen Yuan
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Feng Yao
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Ya Liu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yi Qiao
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Ya Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Wan-Liang Guo
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yao Liu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| |
Collapse
|
46
|
Li R, Wang H, John JV, Song H, Teusink MJ, Xie J. 3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR-26a for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005531. [PMID: 34326714 PMCID: PMC8315031 DOI: 10.1002/adfm.202005531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/24/2023]
Abstract
The healing of large bone defects represents a clinical challenge, often requiring some form of grafting. Three-dimensional (3D) nanofiber aerogels could be a promising bone graft due to their biomimetic morphology and controlled porous structures and composition. miR-26a has been reported to induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and facilitate bone formation. Introducing miR-26a with a suitable polymeric vector targeting BMSCs could improve and enhance the functions of 3D nanofiber aerogels for bone regeneration. Herein, we first developed the comb-shaped polycation (HA-SS-PGEA) carrying a targeting component, biocleavable groups and short ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) (abbreviated as PGEA) arms as miR-26a delivery vector. We then assessed the cytotoxicity and transfection efficiency of this polycation and cellular response to miR-26a-incorporated nanoparticles (NPs) in vitro. HA-SS-PGEA exhibited a stronger ability to transport miR-26a and exert its functions than the gold standard polyethyleneimine (PEI) and low-molecular-weight linear PGEA. We finally examined the efficacy of HA-SS-PGEA/miR-26a NPs loaded 3D hybrid nanofiber aerogels showing a positive effect on the cranial bone defect healing. Together, the combination of 3D nanofiber aerogels and functional NPs consisting of a biodegradable and targeting polycation and therapeutic miRNA could be a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Ruiquan Li
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Johnson V John
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Matthew J Teusink
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| |
Collapse
|
47
|
Zhang Y, Sun Y, Liu J, Han Y, Yan J. MicroRNA-346-5p Regulates Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Inhibiting Transmembrane Protein 9. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8822232. [PMID: 33299881 PMCID: PMC7704134 DOI: 10.1155/2020/8822232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.
Collapse
Affiliation(s)
- Yicai Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
- Department of Orthopedic, The Third People's Hospital of Huizhou, Huizhou, Guangdong, 516002, China
| | - Yi Sun
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
| | - Jinlong Liu
- Department of Orthopedic, The 80th Group Army Hospital of PLA, Weifang, Shandong 261042, China
| | - Yu Han
- Department of Orthopedic, The Third People's Hospital of Huizhou, Huizhou, Guangdong, 516002, China
| | - Jinglong Yan
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
48
|
Ge X, Li Z, Zhou Z, Xia Y, Bian M, Yu J. Circular RNA SIPA1L1 promotes osteogenesis via regulating the miR-617/Smad3 axis in dental pulp stem cells. Stem Cell Res Ther 2020; 11:364. [PMID: 32831141 PMCID: PMC7444204 DOI: 10.1186/s13287-020-01877-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bone regeneration is preferred for bone loss caused by tumors, bone defects, fractures, etc. Recently, mesenchymal stem cells are considered as optimistic tools for bone defect therapy. Dental pulp stem cells (DPSCs) are a promising candidate for regenerative medicine and bone regeneration. Our previous study showed that upregulated circSIPA1L1 during osteogenesis of DPSCs is of significance. In this paper, the potential role of circSIPA1L1 in osteogenesis of DPSCs and its underlying mechanisms are explored. METHODS The circular structure of circSIPA1L1 was identified by Sanger sequencing and PCR. Regulatory effects of circSIPA1L1 and miR-617 on mineral deposition in DPSCs were assessed by alkaline phosphatase (ALP) and alizarin red S (ARS) staining and in vivo bone formation assay were conducted to verify the biological influences of circSIPA1L1 on DPSCs. Western blot was performed to detect the protein expression of Smad3. Localization of circSIPA1L1 and miR-617 was confirmed by FISH. Dual-luciferase reporter assay and rescue experiments were conducted to investigate the role of the circSIPA1L1/miR-617/Smad3 regulatory axis in osteogenesis of DPSCs. RESULTS Sanger sequencing and back-to-back primer experiments confirmed the closed-loop structure of circSIPA1L1. CircSIPA1L1 could promote the committed differentiation of DPSCs. MiR-617 was predicted to be the target binding circSIPA1L1 through MiRDB, miRTarBase, and TargetScan database analyses, which was further confirmed by dual-luciferase reporter assay. FISH results showed that circSIPA1L1 and miR-617 colocalize in the cytoplasm of DPSCs. MiR-617 exerted an inhibitory effect on the osteogenesis of DPSCs. Knockdown of circSIPA1L1 or upregulation of miR-617 downregulated phosphorylated Smad3. In addition, rescue experiments showed that knockdown of miR-617 reversed the inhibitory effect of circSIPA1L1 on osteogenesis of DPSCs. CONCLUSION CircRNASIPA1L1 promotes osteogenesis of DPSCs by adsorbing miR-617 and further targeting Smad3.
Collapse
Affiliation(s)
- Xingyun Ge
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zehan Li
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Zhou Zhou
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yibo Xia
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Minxia Bian
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, China.
| |
Collapse
|
49
|
Kanakis I, Alameddine M, Scalabrin M, van 't Hof RJ, Liloglou T, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Low protein intake during reproduction compromises the recovery of lactation-induced bone loss in female mouse dams without affecting skeletal muscles. FASEB J 2020; 34:11844-11859. [PMID: 32652768 DOI: 10.1096/fj.202001131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Moussira Alameddine
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Mattia Scalabrin
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Rob J van 't Hof
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Shi ZL, Zhang H, Fan ZY, Ma W, Song YZ, Li M, Li TQ, Cao SX, Feng GJ. Long noncoding RNA LINC00314 facilitates osteogenic differentiation of adipose-derived stem cells through the hsa-miR-129-5p/GRM5 axis via the Wnt signaling pathway. Stem Cell Res Ther 2020; 11:240. [PMID: 32552820 PMCID: PMC7302136 DOI: 10.1186/s13287-020-01754-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background Many studies have shown that long noncoding RNAs (lncRNAs) are closely related to the stimulation of osteogenic differentiation of adipose-derived stem cells (ADSCs) and the prevention of osteoporosis. Current research aimed to investigate the novel lncRNA and explored the function and molecular mechanism of the LINC00314/miR-129-5p/GRM5 axis in regulating osteogenic differentiation of ADSCs. Methods LncRNA and miRNA sequencing was performed in normal and osteogenic differentiation-induced ADSCs (osteogenic group). Abnormally expressed lncRNAs and miRNAs were obtained by the R software and the relative expression of LINC00314, miR-129-5p, and GRM5 during osteogenic induction was measured by RT-PCR. ADSCs were then transfected with pcDNA3.1-sh-LINC00314 and agomiR-129-5p. Alizarin red staining (ARS) and alkaline phosphatase (ALP) staining were performed to identify the mechanism of the LINC00314/miR-129-5p/GRM5 axis in regulating osteogenic differentiation of ADSCs. Results LINC00314 was significantly upregulated in the group of osteogenic-induced ADSCs. LINC00314 and GRM5 mimics increased the early and late markers of osteogenic differentiation, which manifest in not only the markedly increased ALP activity but also higher calcium deposition, while miR-129-5p mimic had the opposite effects. LINC00314 directly targeted miR-129-5p through luciferase reporter assay, and miR-129-5p suppressed GRM5 expression. Moreover, the LINC00314/miR-129-5p/GRM5 regulatory axis activated the Wnt/β-catenin signaling pathway. Conclusions LINC00314 confers contributory function in the osteogenic differentiation of ADSCs and thus the LINC00314/miR-129-5p/GRM5 axis may be a novel mechanism for osteogenic-related disease.
Collapse
Affiliation(s)
- Zheng-Liang Shi
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Hua Zhang
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Zhi-Yong Fan
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Wei Ma
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Yong-Zhou Song
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Tong-Qiu Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Shu-Xing Cao
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Guo-Jun Feng
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|