1
|
Wei J, Wang A, Li B, Li X, Yu R, Li H, Wang X, Wang Y, Zhu M. Pathological mechanisms and crosstalk among various cell death pathways in cardiac involvement of systemic lupus erythematosus. Front Immunol 2024; 15:1452678. [PMID: 39301029 PMCID: PMC11410571 DOI: 10.3389/fimmu.2024.1452678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prevalent autoimmune disease primarily characterized by the involvement of multiple systems and organs. Cardiovascular disease is the primary cause of mortality in patients with SLE, though the mechanisms underlying the increased cardiovascular risk in SLE patients remain unclear. Recent studies indicate that abnormal activation of programmed cell death (PCD) signaling and the crosstalk among various forms of cell death are critical in the immunopathogenesis of SLE. Furthermore, apoptosis, necroptosis, pyroptosis, NETosis, and ferroptosis are recognized as key cellular processes in the pathogenesis of SLE and are closely linked to cardiac involvement. This review uniquely explores the intricate crosstalk between apoptosis, necroptosis, and other cell death pathways, discussing their roles and interactions in the pathogenesis of cardiac involvement in SLE. Investigating the interplay between PCD signaling and cardiac involvement in SLE in understanding the disease's underlying mechanisms and offers opportunities for new therapeutic interventions. The integration of precision medicine and innovative strategies targeting these complex pathways holds promise for enhancing the treatment prospects of SLE with cardiac involvement.
Collapse
Affiliation(s)
- Jingjing Wei
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Aolong Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Evidence-based Medicine Center of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xingyuan Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui Yu
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haitao Li
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinlu Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongxia Wang
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingjun Zhu
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Dai T, Zhao Z, Zhu T, Fei C, Nie L, Chen J. The anti-inflammatory role of zDHHC23 through the promotion of macrophage M2 polarization and macrophage necroptosis in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1401626. [PMID: 38868779 PMCID: PMC11167447 DOI: 10.3389/fimmu.2024.1401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.
Collapse
Affiliation(s)
- Ting Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Ziyue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Tingfang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Wudhikulprapan W, Chattipakorn SC, Chattipakorn N, Kumfu S. Iron overload and programmed bone marrow cell death: Potential mechanistic insights. Arch Biochem Biophys 2024; 754:109954. [PMID: 38432564 DOI: 10.1016/j.abb.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.
Collapse
Affiliation(s)
- Wanat Wudhikulprapan
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Bautista-Perez SM, Silva-Islas CA, Sandoval-Marquez OU, Toledo-Toledo J, Bello-Martínez JM, Barrera-Oviedo D, Maldonado PD. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants (Basel) 2023; 12:2126. [PMID: 38136245 PMCID: PMC10740829 DOI: 10.3390/antiox12122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. This work describes damage/repair mechanisms and the importance of garlic as a source of antioxidant and anti-inflammatory agents against damage. Moreover, we examine the less-explored neurotrophic properties of garlic, culminating in proposals and observations based on our review of the available information. The aim of the present study is to propose that garlic compounds and preparations could contribute to the treatment of ischemic stroke through their neurotrophic effects.
Collapse
Affiliation(s)
- Sandra Monserrat Bautista-Perez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Oscar Uriel Sandoval-Marquez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Jesús Toledo-Toledo
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
- Servicio de Cirugía General, Hospital General de Zona #30, Instituto Mexicano del Seguro Social, Mexico City 08300, Mexico
| | - José Manuel Bello-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Departamento Cirugía General, Hospital Central Militar, Mexico City 11600, Mexico
| | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
| | - Perla D. Maldonado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| |
Collapse
|
5
|
Jung SE, Ryu BY. New strategies for germ cell cryopreservation: Cryoinjury modulation. Clin Exp Reprod Med 2023; 50:213-222. [PMID: 37995749 PMCID: PMC10711243 DOI: 10.5653/cerm.2023.06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 11/25/2023] Open
Abstract
Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
- Division of Hematology & Oncology, Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
6
|
Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, Parmar HS, Meena AK, Jha HC. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis 2023; 28:1596-1617. [PMID: 37658919 DOI: 10.1007/s10495-023-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Siddharth Singh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
7
|
Wu L, Zhao H, Zhang M, Sun Q, Chang E, Li X, Ouyang W, Le Y, Ma D. Regulated cell death and inflammasome activation in gut injury following traumatic surgery in vitro and in vivo: implication for postoperative death due to multiorgan dysfunction. Cell Death Discov 2023; 9:409. [PMID: 37935670 PMCID: PMC10630406 DOI: 10.1038/s41420-023-01647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Postoperative multi-organ dysfunction (MOD) is associated with significant mortality and morbidity. Necroptosis has been implicated in different types of solid organ injury; however, the mechanisms linking necroptosis to inflammation require further elucidation. The present study examines the involvement of necroptosis and NLR family pyrin domain containing 3 (NLRP3) inflammasome in small intestine injury following traumatic surgery. Kidney transplantation in rats and renal ischaemia-reperfusion (I/R) in mice were used as traumatic and laparotomic surgery models to study necroptosis and inflammasome activation in the small intestinal post-surgery; additional groups also received receptor-interacting protein kinase 1 (RIPK1) inhibitor necrostatin-1s (Nec-1s). To investigate whether necroptosis regulates inflammasome activity in vitro, necroptosis was induced in human colonic epithelial cancer cells (Caco-2) by a combination of tumour necrosis factor-alpha (TNFα), SMAC mimetic LCL-161 and pan-caspase inhibitor Q-VD-Oph (together, TLQ), and necroptosis was blocked by Nec-1s or mixed lineage kinase-domain like (MLKL) inhibitor necrosulfonamide (NSA). Renal transplantation and renal ischaemia-reperfusion (I/R) upregulated the expression of necroptosis mediators (RIPK1; RIPK3; phosphorylated-MLKL) and inflammasome components (P2X purinoceptor subfamily 7, P2X7R; NLRP3; caspase-1) in the small intestines at 24 h, and Nec-1s suppressed the expression of inflammasome components. TLQ treatment induced NLRP3 inflammasome, promoted cleavage of caspase-1 and interleukin-1 beta (IL-1β), and stimulated extracellular ATP release from Caco-2 cells, and MLKL inhibitor NSA prevented TLQ-induced inflammasome activity and ATP release from Caco-2 cells. Our work suggested that necroptosis and inflammasome interactively promote remote postoperative small intestinal injury, at least in part, through ATP purinergic signalling. Necroptosis-inflammasome axis may be considered as novel therapeutic target for tackling postoperative MOD in the critical care settings.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Mengxu Zhang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Xinyi Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
8
|
Hamed AB, El-Abhar HS, Abdallah DM, Ahmed KA, Abulfadl YS. Prunetin in a GPR30-dependent manner mitigates renal ischemia/reperfusion injury in rats via interrupting indoxyl sulfate/TLR4/TRIF, RIPK1/RIPK3/MLKL, and RIPK3/PGAM5/DRP-1 crosstalk. Saudi Pharm J 2023; 31:101818. [PMID: 37868646 PMCID: PMC10587762 DOI: 10.1016/j.jsps.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The potential health benefits of phytochemicals in preventing and treating diseases have gained increasing attention. Here, we proved that the methylated isoflavone prunetin possesses a reno-therapeutic effect against renal ischemia/reperfusion (I/R) insult by activating G protein-coupled receptor 30 (GPR30). After choosing the therapeutic dose of prunetin against renal I/R injury in the pilot study, male Sprague Dawley rats were allocated into 5 groups; viz., sham-operated (SO), SO injected with 1 mg/kg prunetin intraperitoneally for three successive days, untreated I/R, I/R treated with prunetin, and I/R treated with G-15, the selective GPR30 blocker, followed by prunetin. Treatment with prunetin reversed the I/R renal injury effect and majorly restored normal renal function and architecture. Mechanistically, prunetin restored the I/R-induced depletion of renal GPR30, an impact that was canceled by the pre-administration of G-15. Additionally, post-administration of prunetin normalized the boosted inflammatory markers indoxyl sulfate, TLR4, and TRIF and abrogated renal cell demise by suppressing necroptotic signaling, verified by the inactivation of p-RIPK1, p-RIPK3, and p-MLKL while normalizing the inhibited caspase-8. Besides, prunetin reversed the I/R-mediated mitochondrial fission by inhibiting the protein expression of PGMA5 and p-DRP-1. All these favorable impacts of prunetin were nullified by G-15. To sum up, prunetin exhibited a significant reno-therapeutic effect evidenced by the enhancement of renal morphology and function, the suppression of the inflammatory cascade indoxyl sulfate/TLR4/TRIF, which turns off the activated/phosphorylated necroptotic trajectory RIPK1/RIPK3/MLKL, while enhancing caspase-8. Additionally, prunetin opposed the mitochondrial fission pathway RIPK3/PGMA5/DRP-1, effects that are mediated via the activation of GPR30.
Collapse
Affiliation(s)
- Ahmed B. Hamed
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasmin S. Abulfadl
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
9
|
Zhao Y, Main K, Aujla T, Keshavjee S, Liu M. Necroptosis in Organ Transplantation: Mechanisms and Potential Therapeutic Targets. Cells 2023; 12:2296. [PMID: 37759518 PMCID: PMC10527210 DOI: 10.3390/cells12182296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Organ transplantation remains the only treatment option for patients with end-stage organ dysfunction. However, there are numerous limitations that challenge its clinical application, including the shortage of organ donations, the quality of donated organs, injury during organ preservation and reperfusion, primary and chronic graft dysfunction, acute and chronic rejection, infection, and carcinogenesis in post-transplantation patients. Acute and chronic inflammation and cell death are two major underlying mechanisms for graft injury. Necroptosis is a type of programmed cell death involved in many diseases and has been studied in the setting of all major solid organ transplants, including the kidney, heart, liver, and lung. It is determined by the underlying donor organ conditions (e.g., age, alcohol consumption, fatty liver, hemorrhage shock, donation after circulatory death, etc.), preservation conditions and reperfusion, and allograft rejection. The specific molecular mechanisms of necroptosis have been uncovered in the organ transplantation setting, and potential targeting drugs have been identified. We hope this review article will promote more clinical research to determine the role of necroptosis and other types of programmed cell death in solid organ transplantation to alleviate the clinical burden of ischemia-reperfusion injury and graft rejection.
Collapse
Affiliation(s)
- Yajin Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.Z.); (K.M.); (T.A.); (S.K.)
| | - Kimberly Main
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.Z.); (K.M.); (T.A.); (S.K.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tanroop Aujla
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.Z.); (K.M.); (T.A.); (S.K.)
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.Z.); (K.M.); (T.A.); (S.K.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.Z.); (K.M.); (T.A.); (S.K.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
10
|
Naik S, Mohammed A. Consensus Gene Network Analysis Identifies the Key Similarities and Differences in Endothelial and Epithelial Cell Dynamics after Candida albicans Infection. Int J Mol Sci 2023; 24:11748. [PMID: 37511508 PMCID: PMC10380918 DOI: 10.3390/ijms241411748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial and epithelial cells are morphologically different and play a critical role in host defense during Candida albicans infection. Both cells respond to C. albicans infection by activating various signaling pathways and gene expression patterns. Their interactions with these pathogens can have beneficial and detrimental effects, and a better understanding of these interactions can help guide the development of new therapies for C. albicans infection. To identify the differences and similarities between human endothelial and oral epithelial cell transcriptomics during C. albicans infection, we performed consensus WGCNA on 32 RNA-seq samples by relating the consensus modules to endothelial-specific modules and analyzing the genes connected. This analysis resulted in the identification of 14 distinct modules. We demonstrated that the magenta module correlates significantly with C. albicans infection in each dataset. In addition, we found that the blue and cyan modules in the two datasets had opposite correlation coefficients with a C. albicans infection. However, the correlation coefficients and p-values between the two datasets were slightly different. Functional analyses of the hub of genes from endothelial cells elucidated the enrichment in TNF, AGE-RAGE, MAPK, and NF-κB signaling. On the other hand, glycolysis, pyruvate metabolism, amino acid, fructose, mannose, and vitamin B6 metabolism were enriched in epithelial cells. However, mitophagy, necroptosis, apoptotic processes, and hypoxia were enriched in both endothelial and epithelial cells. Protein-protein interaction analysis using STRING and CytoHubba revealed STAT3, SNRPE, BIRC2, and NFKB2 as endothelial hub genes, while RRS1, SURF6, HK2, and LDHA genes were identified in epithelial cells. Understanding these similarities and differences may provide new insights into the pathogenesis of C. albicans infections and the development of new therapeutic targets and interventional strategies.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
11
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
12
|
Deragon MA, McCaig WD, Truong PV, Metz KR, Carron KA, Hughes KJ, Knapp AR, Dougherty MJ, LaRocca TJ. Mitochondrial Trafficking of MLKL, Bak/Bax, and Drp1 Is Mediated by RIP1 and ROS which Leads to Decreased Mitochondrial Membrane Integrity during the Hyperglycemic Shift to Necroptosis. Int J Mol Sci 2023; 24:ijms24108609. [PMID: 37239951 DOI: 10.3390/ijms24108609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Apoptosis and necroptosis overlap in their initial signaling but diverge to produce non-inflammatory and pro-inflammatory outcomes, respectively. High glucose pushes signaling in favor of necroptosis producing a hyperglycemic shift from apoptosis to necroptosis. This shift depends on receptor-interacting protein 1 (RIP1) and mitochondrial reactive oxygen species (ROS). Here, we show that RIP1, mixed lineage kinase domain-like (MLKL) protein, Bcl-2 agonist/killer (Bak), Bcl-2 associated x (Bax) protein, and dynamin-related protein 1 (Drp1) traffic to the mitochondria in high glucose. RIP1 and MLKL appear in the mitochondria in their activated, phosphorylated states while Drp1 appears in its activated, dephosphorylated state in high glucose. Mitochondrial trafficking is prevented in rip1 KO cells and upon treatment with N-acetylcysteine. Induction of ROS replicated the mitochondrial trafficking seen in high glucose. MLKL forms high MW oligomers in the outer and inner mitochondrial membranes while Bak and Bax form high MW oligomers in the outer mitochondrial membrane in high glucose, suggesting pore formation. MLKL, Bax, and Drp1 promoted cytochrome c release from the mitochondria as well as a decrease in mitochondrial membrane potential in high glucose. These results indicate that mitochondrial trafficking of RIP1, MLKL, Bak, Bax, and Drp1 are key events in the hyperglycemic shift from apoptosis to necroptosis. This is also the first report to show oligomerization of MLKL in the inner and outer mitochondrial membranes and dependence of mitochondrial permeability on MLKL.
Collapse
Affiliation(s)
- Matthew A Deragon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - William D McCaig
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Phillip V Truong
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kevin R Metz
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Katherine A Carron
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Keven J Hughes
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Angeleigh R Knapp
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Molly J Dougherty
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Timothy J LaRocca
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| |
Collapse
|
13
|
Lin P, Lin C, He R, Chen H, Teng Z, Yao H, Liu S, Hoffman RM, Ye J, Zhu G. TRAF6 regulates the abundance of RIPK1 and inhibits the RIPK1/RIPK3/MLKL necroptosis signaling pathway and affects the progression of colorectal cancer. Cell Death Dis 2023; 14:6. [PMID: 36604411 PMCID: PMC9816173 DOI: 10.1038/s41419-022-05524-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Colorectal cancer cannot be completely cured at present, and it is still an important clinical medical problem. TRAF6 is highly expressed in many malignant tumors. However, the role of TRAF6 in colorectal cancer is still controversial, mainly because the specific regulatory mechanism of colorectal cancer is still unclear, and the death mode of colorectal cancer cells has not been elucidated. The recent study found that TRAF6 inhibits necroptosis in colorectal cancer cells via the RIPK1/RIPK3/MLKL signaling pathway. The RIPK1 inhibitor Necrostain-1 inhibits colorectal cancer cell necroptosis via the RIPK1/RIPK3/MLKL signaling pathway. TRAF6 directly interacts with RIPK1 through the polyubiquitination of Lys48-linked RIPK1 and reduces the levels of RIPK1 protein in colorectal cancer cells, leading to necroptosis, thus promoting the proliferation of colorectal cancer cells. The recent study demonstrated that TRAF6 promotes colorectal cell progression by inhibiting the RIPK1/RIPK3/MLKL necroptosis signaling pathway, which may provide a new therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
14
|
Zhang Y, Lu Y, Zhang P, Shang X, Li Y. Brain Injury Induced by Mercury in Common Carp: Novel Insight from Transcriptome Analysis. Biol Trace Elem Res 2023; 201:403-411. [PMID: 35233713 DOI: 10.1007/s12011-022-03161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/12/2022] [Indexed: 01/11/2023]
Abstract
Mercury is a heavy metal which causes irreversible toxicity to fish and is detected in aquatic environment around the world. We aimed to explore the relative mechanism of mercury exposure on the brain injury. In this study, high-throughput sequencing RNA-Seq technology was carried out to analyze the changes of gene expression of brain tissues exposed to mercury. A large number of differentially expressed genes were identified. And 366 genes were up-regulated and 688 genes were down-regulated. Gene Ontology (GO) functional enrichment analysis showed that DNA-templated and transport were highly enriched in the biological process. Membrane, nucleus, and cytoplasm were highly enriched in the cellular component, and metal ion binding and DNA binding were highly enriched in molecular function. The differential genes were enriched in ferroptosis, necroptosis, calcium signaling pathway, and ion channels. Real-time quantitative reverse transcription PCR (qRT-PCR) results demonstrated the selected genes exhibited the same trends with the RNA-Seq results, which indicates the transcriptome sequencing data is reliable. Our results may provide an insightful view for the toxic effects of mercury on brain injury of common carp.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin, 150070, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, 150070, Heilongjiang, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
Pinci F, Gaidt MM, Jung C, Nagl D, Kuut G, Hornung V. Tumor necrosis factor is a necroptosis-associated alarmin. Front Immunol 2022; 13:1074440. [PMID: 36578489 PMCID: PMC9791252 DOI: 10.3389/fimmu.2022.1074440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin.
Collapse
|
16
|
Im J, Kwon HY, Kim IK, Yeo CD, Kim SW, Lee H, Kang HS, Lee SH. Normobaric hyperoxia re-sensitizes paclitaxel-resistant lung cancer cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Chehade L, Deguise MO, De Repentigny Y, Yaworski R, Beauvais A, Gagnon S, Hensel N, Kothary R. Suppression of the necroptotic cell death pathways improves survival in Smn2B/− mice. Front Cell Neurosci 2022; 16:972029. [PMID: 35990890 PMCID: PMC9381707 DOI: 10.3389/fncel.2022.972029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neuromuscular disease caused by low levels of the Survival Motor Neuron (SMN) protein. Motor neuron degeneration is the central hallmark of the disease. However, the SMN protein is ubiquitously expressed and depletion of the protein in peripheral tissues results in intrinsic disease manifestations, including muscle defects, independent of neurodegeneration. The approved SMN-restoring therapies have led to remarkable clinical improvements in SMA patients. Yet, the presence of a significant number of non-responders stresses the need for complementary therapeutic strategies targeting processes which do not rely solely on restoring SMN. Dysregulated cell death pathways are candidates for SMN-independent pathomechanisms in SMA. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 have been widely recognized as critical therapeutic targets of necroptosis, an important form of programmed cell death. In addition, Caspase-1 plays a fundamental role in inflammation and cell death. In this study, we evaluate the role of necroptosis, particularly RIPK3 and Caspase-1, in the Smn2B/− mouse model of SMA. We have generated a triple mutant (TKO), the Smn2B/−; Ripk3−/−; Casp1−/− mouse. TKO mice displayed a robust increase in survival and improved motor function compared to Smn2B/− mice. While there was no protection against motor neuron loss or neuromuscular junction pathology, larger muscle fibers were observed in TKO mice compared to Smn2B/− mice. Our study shows that necroptosis modulates survival, motor behavior and muscle fiber size independent of SMN levels and independent of neurodegeneration. Thus, small-molecule inhibitors of necroptosis as a combinatorial approach together with SMN-restoring drugs could be a future strategy for the treatment of SMA.
Collapse
Affiliation(s)
- Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Niko Hensel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Center for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Rashmi Kothary
| |
Collapse
|
18
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
19
|
Chun N, Ang RL, Chan M, Fairchild RL, Baldwin WM, Horwitz JK, Gelles JD, Chipuk JE, Kelliher MA, Pavlov VI, Li Y, Homann D, Heeger PS, Ting AT. T cell-derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death. JCI Insight 2021; 6:148643. [PMID: 34752416 PMCID: PMC8783689 DOI: 10.1172/jci.insight.148643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1's death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell-dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered. We show that TNF released by T cells is necessary and sufficient to activate RIPK1-dependent cell death in target cells and thereby mediate target cell cytolysis independently of T cell frequency. Activation of the RIPK1-dependent cell death program in target cells by T cell-derived TNF accelerates murine cardiac allograft rejection and synergizes with anti-PD1 administration to destroy checkpoint blockade-resistant murine melanoma. Together, the findings uncover a distinct immunological role for TNF released by cytotoxic effector T cells following cognate interactions with their antigenic targets. Manipulating T cell TNF and/or target cell susceptibility to RIPK1-dependent cell death can be exploited to either mitigate or augment T cell-dependent destruction of allografts and malignancies to improve outcomes.
Collapse
Affiliation(s)
- Nicholas Chun
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosalind L. Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Julian K. Horwitz
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Gelles
- Graduate School of Biomedical Sciences and,Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry Edward Chipuk
- Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vasile I. Pavlov
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S. Heeger
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian T. Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116168. [PMID: 34487892 PMCID: PMC8478908 DOI: 10.1016/j.bone.2021.116168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, debilitating condition affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). Oral risk factors associated with the development of MRONJ include tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection). In bone tissues, osteocytes play a bidirectional role in which they not only act as the "receiver" of systemic signals from blood vessels, such as hormones and drugs, or local signals from the mineralized matrix as it is deformed, but they also play a critical role as "transmitter" of signals to the cells that execute bone modeling and remodeling (osteoclasts, osteoblasts and lining cells). When the survival capacity of osteocytes is overwhelmed, they can die. Osteocyte death has been associated with several pathological conditions. Whereas the causes and mechanisms of osteocyte death have been studied in conditions like osteonecrosis of the femoral head (ONFH), few studies of the causes and mechanisms of osteocyte death have been done in MRONJ. The three forms of cell death that affect most of the different cells in the body (apoptosis, autophagy, and necrosis) have been recognized in osteocytes. Notably, necroptosis, a form of regulated cell death with "a necrotic cell death phenotype," has also been identified as a form of cell death in osteocytes under certain pathologic conditions. Improving the understanding of osteocyte death in MRONJ may be critical for preventing disease and developing treatment approaches. In this review, we intend to provide insight into the biology of osteocytes, cell death, in general, and osteocyte death, in particular, and discuss hypothetical mechanisms involved in osteocyte death associated with MRONJ.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
21
|
Qamar A, Zhao J, Xu L, McLeod P, Huang X, Jiang J, Liu W, Haig A, Zhang ZX. Cyclophilin D Regulates the Nuclear Translocation of AIF, Cardiac Endothelial Cell Necroptosis and Murine Cardiac Transplant Injury. Int J Mol Sci 2021; 22:11038. [PMID: 34681708 PMCID: PMC8540562 DOI: 10.3390/ijms222011038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable consequence of organ transplant procedure and associated with acute and chronic organ rejection in transplantation. IRI leads to various forms of programmed cell death, which worsens tissue damage and accelerates transplant rejection. We recently demonstrated that necroptosis participates in murine cardiac microvascular endothelial cell (MVEC) death and murine cardiac transplant rejection. However, MVEC death under a more complex IRI model has not been studied. In this study, we found that simulating IRI conditions in vitro by hypoxia, reoxygenation and treatment with inflammatory cytokines induced necroptosis in MVECs. Interestingly, the apoptosis-inducing factor (AIF) translocated to the nucleus during MVEC necroptosis, which is regulated by the mitochondrial permeability molecule cyclophilin D (CypD). Furthermore, CypD deficiency in donor cardiac grafts inhibited AIF translocation and mitigated graft IRI and rejection (n = 7; p = 0.002). Our studies indicate that CypD and AIF play significant roles in MVEC necroptosis and cardiac transplant rejection following IRI. Targeting CypD and its downstream AIF may be a plausible approach to inhibit IRI-caused cardiac damage and improve transplant survival.
Collapse
Affiliation(s)
- Adnan Qamar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Jianqi Zhao
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, 3808 Jiefang Road, Changchun 130021, China
| | - Laura Xu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Weihua Liu
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Aaron Haig
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
22
|
Jantas D, Lasoń W. Preclinical Evidence for the Interplay between Oxidative Stress and RIP1-Dependent Cell Death in Neurodegeneration: State of the Art and Possible Therapeutic Implications. Antioxidants (Basel) 2021; 10:antiox10101518. [PMID: 34679652 PMCID: PMC8532910 DOI: 10.3390/antiox10101518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are the most frequent chronic, age-associated neurological pathologies having a major impact on the patient’s quality of life. Despite a heavy medical, social and economic burden they pose, no causative treatment is available for these diseases. Among the important pathogenic factors contributing to neuronal loss during neurodegeneration is elevated oxidative stress resulting from a disturbed balance between endogenous prooxidant and antioxidant systems. For many years, it was thought that increased oxidative stress was a cause of neuronal cell death executed via an apoptotic mechanism. However, in recent years it has been postulated that rather programmed necrosis (necroptosis) is the key form of neuronal death in the course of neurodegenerative diseases. Such assumption was supported by biochemical and morphological features of the dying cells as well as by the fact that various necroptosis inhibitors were neuroprotective in cellular and animal models of neurodegenerative diseases. In this review, we discuss the relationship between oxidative stress and RIP1-dependent necroptosis and apoptosis in the context of the pathomechanism of neurodegenerative disorders. Based on the published data mainly from cellular models of neurodegeneration linking oxidative stress and necroptosis, we postulate that administration of multipotential neuroprotectants with antioxidant and antinecroptotic properties may constitute an efficient pharmacotherapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
|
23
|
Hu C, Huang Y, Wu L, Zhao H, Pac Soo C, Lian Q, Ma D. Apoptosis and necroptosis occur in the different brain regions of hippocampus in a rat model of hypoxia asphyxia. Int J Neurosci 2021; 131:843-853. [PMID: 32345086 DOI: 10.1080/00207454.2020.1759586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
AIM OF THE STUDY Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain injury. Apoptosis and necroptosis are two forms of cell death which may occur in HIE but reported data are yet limited. This study investigates the expression of receptor interacting protein kinase (RIPK) 1 and 3, and caspase3, the key modulators of necroptosis and apoptosis, respectively, in a model of HIE to determine whether both forms of cell death occur in the corresponding brain regions. MATERIALS AND METHODS Postneonatal day 7 Sprague-Dawley rats were subjected to right carotid artery ligation followed by hypoxia or subjected to skin incision under surgical anesthesia without ligation and hypoxia. Neuroglioma (H4) cell was cultured and subjected to 24 h hypoxic insults. Necrostatin-1, a RIPK1 inhibitor, was administered in both in vivo and in vitro settings before insult. RESULTS After hypoxic-ischemic insults, both RIPK1 and RIPK3 expression were significantly increased in the region of hippocampal dentate gyrus in the injurious hemisphere. However, cleaved caspase3 was significantly increased in the hippocampal cornu ammonis 1 region in the injurious hemisphere. After hypoxic insults, RIPK1 and RIPK3 expression was also found in H4 cells. In addition, it was identified that the increased RIPK1 and RIPK3 can be inhibited by necrostatin-1 in both in vivo and in vitro. CONCLUSIONS These data indicated that apoptosis and necroptosis occur in different brain regions of hippocampus in a model of HIE which may suggest that strategies to prevent each form of neuronal death is valuable to be developed.
Collapse
Affiliation(s)
- Cong Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuanyuan Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Lingzhi Wu
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Hailin Zhao
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chen Pac Soo
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
24
|
Fibrillar α-synuclein induces neurotoxic astrocyte activation via RIP kinase signaling and NF-κB. Cell Death Dis 2021; 12:756. [PMID: 34333522 PMCID: PMC8325686 DOI: 10.1038/s41419-021-04049-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopamine neurons. The pathogenesis of PD is poorly understood, though misfolded and/or aggregated forms of the protein α-synuclein have been implicated in several neurodegenerative disease processes, including neuroinflammation and astrocyte activation. Astrocytes in the midbrain play complex roles during PD, initiating both harmful and protective processes that vary over the course of the disease. However, despite their significant regulatory roles during neurodegeneration, the cellular and molecular mechanisms that promote pathogenic astrocyte activity remain mysterious. Here, we show that α-synuclein preformed fibrils (PFFs) induce pathogenic activation of human midbrain astrocytes, marked by inflammatory transcriptional responses, downregulation of phagocytic function, and conferral of neurotoxic activity. These effects required the necroptotic kinases RIPK1 and RIPK3, but were independent of MLKL and necroptosis. Instead, both transcriptional and functional markers of astrocyte activation occurred via RIPK-dependent activation of NF-κB signaling. Our study identifies a previously unknown function for α-synuclein in promoting neurotoxic astrocyte activation, as well as new cell death-independent roles for RIP kinase signaling in the regulation of glial cell biology and neuroinflammation. Together, these findings highlight previously unappreciated molecular mechanisms of pathologic astrocyte activation and neuronal cell death with implications for Parkinsonian neurodegeneration.
Collapse
|
25
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
26
|
Li R, Zhao X, Zhang S, Dong W, Zhang L, Chen Y, Li Z, Yang H, Huang Y, Xie Z, Wang W, Li C, Ye Z, Dong Z, Liang X. RIP3 impedes transcription factor EB to suppress autophagic degradation in septic acute kidney injury. Cell Death Dis 2021; 12:593. [PMID: 34103472 PMCID: PMC8187512 DOI: 10.1038/s41419-021-03865-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023]
Abstract
Autophagy is an important renal-protective mechanism in septic acute kidney injury (AKI). Receptor interacting protein kinase 3 (RIP3) has been implicated in the renal tubular injury and renal dysfunction during septic AKI. Here we investigated the role and mechanism of RIP3 on autophagy in septic AKI. We showed an activation of RIP3, accompanied by an accumulation of the autophagosome marker LC3II and the autophagic substrate p62, in the kidneys of lipopolysaccharide (LPS)-induced septic AKI mice and LPS-treated cultured renal proximal tubular epithelial cells (PTECs). The lysosome inhibitor did not further increase the levels of LCII or p62 in LPS-treated PTECs. Moreover, inhibition of RIP3 attenuated the aberrant accumulation of LC3II and p62 under LPS treatment in vivo and in vitro. By utilizing mCherry-GFP-LC3 autophagy reporter mice in vivo and PTECs overexpression mRFP-GFP-LC3 in vitro, we observed that inhibition of RIP3 restored the formation of autolysosomes and eliminated the accumulated autophagosomes under LPS treatment. These results indicated that RIP3 impaired autophagic degradation, contributing to the accumulation of autophagosomes. Mechanistically, the nuclear translocation of transcription factor EB (TFEB), a master regulator of the lysosome and autophagy pathway, was inhibited in LPS-induced mice and LPS-treated PTECs. Inhibition of RIP3 restored the nuclear translocation of TFEB in vivo and in vitro. Co-immunoprecipitation further showed an interaction of RIP3 and TFEB in LPS-treated PTECs. Also, the expression of LAMP1 and cathepsin B, two potential target genes of TFEB involved in lysosome function, were decreased under LPS treatment in vivo and in vitro, and this decrease was rescued by inhibiting RIP3. Finally, overexpression of TFEB restored the autophagic degradation in LPS-treated PTECs. Together, the present study has identified a pivotal role of RIP3 in suppressing autophagic degradation through impeding the TFEB-lysosome pathway in septic AKI, providing potential therapeutic targets for the prevention and treatment of septic AKI.
Collapse
Affiliation(s)
- Ruizhao Li
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Xingchen Zhao
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Shu Zhang
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Wei Dong
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Yuanhan Chen
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Zhilian Li
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Huan Yang
- grid.412536.70000 0004 1791 7851Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Ying Huang
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China ,grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyong Xie
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China ,grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weidong Wang
- grid.12981.330000 0001 2360 039XInstitute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Chunling Li
- grid.12981.330000 0001 2360 039XInstitute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zhiming Ye
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Zheng Dong
- grid.413830.d0000 0004 0419 3970Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA USA
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| |
Collapse
|
27
|
Hao Q, Idell S, Tang H. M1 Macrophages Are More Susceptible to Necroptosis. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:97-102. [PMID: 33959729 PMCID: PMC8098744 DOI: 10.33696/immunology.3.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages play a crucial role in host innate immune defense against infection and tissue injury. Although macrophage activation and polarization has been well studied, we know less regarding the role of macrophage activation/polarization in inflammation-associated necrotic cell death. By using bone marrow-derived macrophages, we have recently demonstrated that M1 macrophages are much more susceptible than M0 and M2 subtypes of macrophages to necrotic cell death. Moreover, we showed that the enhanced necroptosis in M1 macrophages is dependent on the kinase activity of receptor-interacting protein kinase-3 (RIPK3) and may involve the upregulation of key necroptosis signaling molecules including RIPK3, mixed lineage kinase domain-like protein, and Z-DNA/ RNA binding protein 1. Our findings provide novel insights into the mechanisms of M1 macrophage engagement in inflammation and tissue injury.
Collapse
Affiliation(s)
- Qin Hao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
28
|
Scărlătescu AI, Micheu MM, Popa-Fotea NM, Dorobanțu M. MicroRNAs in Acute ST Elevation Myocardial Infarction-A New Tool for Diagnosis and Prognosis: Therapeutic Implications. Int J Mol Sci 2021; 22:4799. [PMID: 33946541 PMCID: PMC8124280 DOI: 10.3390/ijms22094799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Despite diagnostic and therapeutic advances, coronary artery disease and especially its extreme manifestation, ST elevation myocardial infarction (STEMI), remain the leading causes of morbidity and mortality worldwide. Early and prompt diagnosis is of great importance regarding the prognosis of STEMI patients. In recent years, microRNAs (miRNAs) have emerged as promising tools involved in many pathophysiological processes in various fields, including cardiovascular diseases. In acute coronary syndromes (ACS), circulating levels of miRNAs are significantly elevated, as an indicator of cardiac damage, making them a promising marker for early diagnosis of myocardial infarction. They also have prognostic value and great potential as therapeutic targets considering their key function in gene regulation. This review aims to summarize current information about miRNAs and their role as diagnostic, prognostic and therapeutic targets in STEMI patients.
Collapse
Affiliation(s)
- Alina Ioana Scărlătescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Maria Dorobanțu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| |
Collapse
|
29
|
Rhinovirus and Cell Death. Viruses 2021; 13:v13040629. [PMID: 33916958 PMCID: PMC8067602 DOI: 10.3390/v13040629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Rhinoviruses (RVs) are the etiological agents of upper respiratory tract infections, particularly the common cold. Infections in the lower respiratory tract is shown to cause severe disease and exacerbations in asthma and COPD patients. Viruses being obligate parasites, hijack host cell pathways such as programmed cell death to suppress host antiviral responses and prolong viral replication and propagation. RVs are non-enveloped positive sense RNA viruses with a lifecycle fully contained within the cytoplasm. Despite decades of study, the details of how RVs exit the infected cell are still unclear. There are some diverse studies that suggest a possible role for programmed cell death. In this review, we aimed to consolidate current literature on the impact of RVs on cell death to inform future research on the topic. We searched peer reviewed English language literature in the past 21 years for studies on the interaction with and modulation of cell death pathways by RVs, placing it in the context of the broader knowledge of these interconnected pathways from other systems. Our review strongly suggests a role for necroptosis and/or autophagy in RV release, with the caveat that all the literature is based on RV-A and RV-B strains, with no studies to date examining the interaction of RV-C strains with cell death pathways.
Collapse
|
30
|
Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis 2021; 322:51-60. [PMID: 33706083 DOI: 10.1016/j.atherosclerosis.2021.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Targeting macrophage death is a promising strategy for stabilizing atherosclerotic plaques. Recently, necroptosis was identified as a form of regulated necrosis in atherosclerosis. Receptor-interacting serine/threonine-protein kinase (RIPK)1 is an upstream regulator of RIPK3, which is a crucial kinase for necroptosis induction. We aimed to investigate the impact of myeloid-specific RIPK1 gene deletion on atherogenesis. METHODS RIPK1F/FLysM-Cre+ApoE-/- and RIPK1+/+LysM-Cre+ApoE-/- mice were fed a western-type diet (WD) for 16 or 24 weeks to induce plaque formation. RESULTS After 16 weeks WD, plaque area and percentage necrosis in RIPK1F/FLysM-Cre+ApoE-/- mice were significantly decreased as compared to plaques of RIPK1+/+LysM-Cre+ApoE-/- mice. Moreover, plaques of RIPK1F/FLysM-Cre+ApoE-/- mice showed more apoptosis and a decreased macrophage content. After 24 weeks WD, plaque size and percentage necrosis were no longer different between the two groups. Free apoptotic cells strongly accumulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In addition to apoptosis, necroptosis was upregulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In vitro, TNF-α triggered apoptosis in RIPK1F/FLysM-Cre+ApoE-/-, but not in RIPK1+/+LysM-Cre+ApoE-/- macrophages. Moreover, RIPK1F/FLysM-Cre+ApoE-/- macrophages were not protected against RIPK3-dependent necroptosis. CONCLUSIONS The impact of myeloid RIPK1 gene deletion depends on the stage of atherogenesis. At 16 weeks WD, myeloid RIPK1 gene deletion resulted in increased apoptosis, thereby slowing down plaque progression. However, despite decreased macrophage content, plaque and necrotic core size were no longer reduced after 24 weeks of WD, most likely due to the accumulation of free apoptotic and necroptotic cells.
Collapse
|
31
|
Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers (Basel) 2021; 13:cancers13040684. [PMID: 33567618 PMCID: PMC7914991 DOI: 10.3390/cancers13040684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary A new form of programmed necrosis called necroptosis has emerged. This new and well-documented type of programmed cell death is involved in several human diseases, including cancer. RIPK1, the main mediator of necroptosis, in response to different stimuli, activates several molecular pathways leading to inflammation, cell survival, or cell death. Targeting necroptosis could be a new strategy for advanced therapies. In this review, we focus on the biological relevance of this type of programmed cell death and its main executor RIPK1 in pathogenesis to find novel potential clinical intervention strategies. Abstract Regulated cell death mechanisms are essential for the maintenance of cellular homeostasis. Evasion of cell death is one of the most important hallmarks of cancer. Necroptosis is a caspase independent form of regulated cell death, investigated as a novel therapeutic strategy to eradicate apoptosis resistant cancer cells. The process can be triggered by a variety of stimuli and is controlled by the activation of RIP kinases family as well as MLKL. The well-studied executor, RIPK1, is able to modulate key cellular events through the interaction with several proteins, acting as strategic crossroads of several molecular pathways. Little evidence is reported about its involvement in tumorigenesis. In this review, we summarize current studies on the biological relevance of necroptosis, its contradictory role in cancer and its function in cell fate control. Targeting necroptosis might be a novel therapeutic intervention strategy in anticancer therapies as a pharmacologically controllable event.
Collapse
Affiliation(s)
- Laura Della Torre
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Joost H. A. Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Vincenzo Carafa
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| |
Collapse
|
32
|
Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, Jenei-Lanzl Z, Brenner RE, Huber-Lang M, Zaucke F, Schildberg FA, Grässel S. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front Bioeng Biotechnol 2021; 8:624096. [PMID: 33553127 PMCID: PMC7855463 DOI: 10.3389/fbioe.2020.624096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.
Collapse
Affiliation(s)
- Marietta Herrmann
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svitlana Melnik
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Drenka Trivanović
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Shushan Li
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Cardiac Shock Wave Therapy Alleviates Hypoxia/Reoxygenation-Induced Myocardial Necroptosis by Modulating Autophagy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8880179. [PMID: 33532500 PMCID: PMC7837773 DOI: 10.1155/2021/8880179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.
Collapse
|
34
|
Meo ML, Machin A, Hasmono D. Effect of Simvastatin in Serum Interleukin-6 Level in Patients with Acute Ischemic Stroke. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v56i3.24508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute ischemic stroke is the leading cause of death and causing permanent disability in adults worldwide. In acute ischemic stroke, IL-6 levels positively correlated to more severe neurological deficits, more extensive brain damage and worse prognoses. The use of statin was associated with milder initial stroke severity, better functional outcome and lower mortality. This clinically randomized controlled trial study was aimed to analyze the serum levels of IL 6 in acute ischemic stroke patients who treated with Simvastatin 20 mg compare to placebo. Samples were taken using consecutive sampling method from hospitalized acute ischemic stroke patients in Neurology Department of Dr. Soetomo Teaching Hospital Surabaya and Airlangga University Hospital Surabayafrom August to November 2017. Total of 44 patients met the inclusion criteria, consisting of 22 patients in treatment group and 22 patients in control group.There were no significant difference in the characteristic of the patients in both groups (p>0.05). Averages of serum IL-6 in the control and the treatment group are 38.594±74.313 and 17.760±25.253(p=0,438) while averages of serum IL-6 post in the control group and the treatment are 46.586±103.484 and 15.275±17.183 (p=0,589). There were no significant level escalation in pre and post of control group (p = 0.205) and also no significant level reduction in pre and post of treatment group (p = 0.411), while the average difference in the control group (-7.992 + 78.912 pg/ml) and in the treatment group (2.485 + 23.738 pg/ml).
Collapse
|
35
|
Liu Y, Xu Q, Wang Y, Liang T, Li X, Wang D, Wang X, Zhu H, Xiao K. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis 2021; 12:62. [PMID: 33431831 PMCID: PMC7801412 DOI: 10.1038/s41419-020-03365-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022]
Abstract
Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with Escherichia coli lipopolysaccharide (LPS). Firstly, a typical cell necrotic phenomenon was observed in jejunum of LPS-challenged pigs by transmission electron microscope. Protein expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL), mitochondrial proteins including phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (DRP1), and cytoplasmic high-mobility group box 1 (HMGB1) were time-independently increased in jejunum of LPS-challenged piglets, which was accompanied by the impairment of jejunal morphology, and digestive and barrier function indicated by lower activities of jejunal disaccharidases and protein expression of jejunal tight junction proteins claudin-1 and occludin. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were also dynamically induced in serum and jejunum of piglets after LPS challenge. Moreover, pretreatment with necrostatin-1 (Nec-1), an specific inhibitor of necroptosis, inhibited necroptosis indicated by decreased necrotic ultrastructural changes and decreased protein expression of RIP1, RIP3, and phosphorylated MLKL as well as PGAM5, DRP1, and cytoplasmic HMGB1. Nec-1 pretreatment reduced jejunal morphological injury, and improved digestive and barrier function. Nec-1 pretreatment also decreased the levels of serum and jejunal pro-inflammatory cytokines and the numbers of jejunal macrophages and monocytes. These findings indicate for the first time that necroptosis is present and contributes to LPS-induced intestinal injury. Nec-1 may have a preventive effect on intestinal injury during sepsis.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China.
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| |
Collapse
|
36
|
Zou J, Wang SP, Wang YT, Wan JB. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol Res 2020; 164:105388. [PMID: 33359314 DOI: 10.1016/j.phrs.2020.105388] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The past decades have witnessed significant progress in understanding the process of sterile inflammation, which is dependent on a cytosolic complex termed the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Activation of NLRP3 inflammasome requires two steps, including the activation of Toll-like receptor (TLR) by its ligands, resulting in transcriptional procytokine and inflammasome component activation, and the assembly and activation of NLRP3 inflammasome triggered by various danger signals, leading to caspase-1 activation, which could subsequently cleave procytokines into their active forms. Metabolic disorders, ischemia and reperfusion, viral infection and chemical insults are common pathogenic factors of liver-related diseases that usually cause tissue damage and cell death, providing numerous danger signals for the activation of NLRP3 inflammasome. Currently, natural products have attracted much attention as potential agents for the prevention and treatment of liver diseases due to their multitargets and nontoxic natures. A great number of natural products have been shown to exhibit beneficial effects on liver injury induced by various chemicals through regulating NLRP3 inflammasome pathways. In this review, the roles of the NLRP3 inflammasome in chemical-induced liver injury (CILI) and natural products that exhibit beneficial effects in CILI through the regulation of inflammasomes were systematically summarized.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
37
|
Deragon MA, McCaig WD, Patel PS, Haluska RJ, Hodges AL, Sosunov SA, Murphy MP, Ten VS, LaRocca TJ. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov 2020; 6:132. [PMID: 33298902 PMCID: PMC7693268 DOI: 10.1038/s41420-020-00370-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously identified a shift from TNF-α-induced apoptosis to necroptosis that occurs under hyperglycemic conditions. This shift involves the downregulation or silencing of caspases and concurrent upregulation of necroptotic proteins leading to activation of the necrosome. In addition, under hyperglycemic conditions in vivo, this shift in cell death mechanisms exacerbates neonatal hypoxia-ischemia (HI) brain injury. Here, we identify two major factors that drive the hyperglycemic shift to necroptosis: (1) reactive oxygen species (ROS) and (2) receptor-interacting protein kinase 1 (RIP1). ROS, including mitochondrial superoxide, led to the oxidation of RIP1, as well as formation and activation of the necrosome. Concurrently, ROS mediate a decrease in the levels and activation of executioner caspases-3, -6, and -7. Importantly, hyperglycemia and mitochondrial ROS result in the oxidation of RIP1 and loss of executioner caspases prior to death receptor engagement by TNF-α. Moreover, RIP1 partially controlled levels of mitochondrial ROS in the context of hyperglycemia. As a result of its regulation of ROS, RIP1 also regulated necrosome activation and caspase loss. Mitochondrial ROS exacerbated neonatal HI-brain injury in hyperglycemic mice, as a result of the shift from apoptosis to necroptosis.
Collapse
Affiliation(s)
- Matthew A Deragon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - William D McCaig
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Payal S Patel
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Robert J Haluska
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Alexa L Hodges
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Sergey A Sosunov
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK
| | - Vadim S Ten
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | - Timothy J LaRocca
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA.
| |
Collapse
|
38
|
Jiayong Z, Shengchen W, Xiaofang H, Gang S, Shiwen X. The antagonistic effect of selenium on lead-induced necroptosis via MAPK/NF-κB pathway and HSPs activation in the chicken spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111049. [PMID: 32758698 DOI: 10.1016/j.ecoenv.2020.111049] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Recent studies identified a novel programmed and regulated cell death that was characterized by a necrotic cell death morphology, termed necroptosis. Lead (Pb) is known as a persistent inorganic environmental pollutant that affects the health of humans and animals worldwide. However, there are no detailed reports of Pb-induced necroptosis of immune tissue. Selenium (Se) is a trace element that antagonizes the toxicity of heavy metals. Here, chickens were randomly divided into four groups, treated with Pb ((CH3OO)2Pb, 150 mg/kg) and/or Se (Na2SeO3, 2 mg/kg), aim to study the effect and mechanism of necroptosis in Pb-induced spleen injury and the antagonistic effects of Se on Pb toxicity. Our results showed that Pb exposure evidently increased the accumulation of Pb in spleen and caused necroptosis by upregulating the expression of RIP1, RIP3 and MLKL, and decreasing Caspase8 expression. Meanwhile, Pb treatment inhibited the activities of SOD, GPX, and CAT, caused the accumulation of NO and MDA, and induced oxidative stress, which promoted the expression of MAPK/NF-κB pathway genes (ERK, JNK, P38, NF-κB and TNF-α) and activated HSPs (HSP27, HSP40, HSP60, HSP70 and HSP90). However, the increased content of Pb in spleen and Pb-caused necroptosis were inhibited by Se cotreatment. Overall, we conclude that Se can prevent Pb-induced necroptosis by restoring antioxidant functions and blocking the MAPK/NF-κB pathway and HSPs activation in chicken spleen.
Collapse
Affiliation(s)
- Zhang Jiayong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Xiaofang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Sun Gang
- Animal Disease Control and Prevention of Heilongjiang Province, No. 243 Haping Road, Xiangfang District, Harbin, 150069, China.
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
39
|
Ramani Sattiraju S, Jama A, Alshudukhi AA, Edward Townsend N, Reynold Miranda D, Reese RR, Voss AA, Ren H. Loss of membrane integrity drives myofiber death in lipin1-deficient skeletal muscle. Physiol Rep 2020; 8:e14620. [PMID: 33113595 PMCID: PMC7592881 DOI: 10.14814/phy2.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mutations in lipin1 are suggested to be a common cause of massive rhabdomyolysis episodes in children; however, the molecular mechanisms involved in the regulation of myofiber death caused by the absence of lipin1 are not fully understood. Loss of membrane integrity is considered as an effective inducer of cell death in muscular dystrophy. In this study, we utilized a mouse line with selective homozygous lipin1 deficiency in the skeletal muscle (Lipin1Myf5cKO ) to determine the role of compromised membrane integrity in the myofiber death in lipin1-deficient muscles. We found that Lipin1Myf5cKO muscles had significantly elevated proapoptotic factors (Bax, Bak, and cleaved caspase-9) and necroptotic proteins such as RIPK1, RIPK3, and MLKL compared with WT mice. Moreover, Lipin1Myf5cKO muscle had significantly higher membrane disruptions, as evidenced by increased IgG staining and elevated uptake of Evans Blue Dye (EBD) and increased serum creatine kinase activity in Lipin1Myf5cKO muscle fibers. EBD-positive fibers were strongly colocalized with apoptotic or necroptotic myofibers, suggesting an association between compromised plasma membrane integrity and cell death pathways. We further show that the absence of lipin1 leads to a significant decrease in the absolute and specific muscle force (normalized to muscle mass). Our work indicates that apoptosis and necroptosis are associated with a loss of membrane integrity in Lipin1Myf5cKO muscle and that myofiber death and dysfunction may cause a decrease in contractile force.
Collapse
Affiliation(s)
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | | | | | | | - Rebecca R Reese
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | - Andrew A. Voss
- Department of Biological SciencesWright State UniversityDaytonOHUSA
| | - Hongmei Ren
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| |
Collapse
|
40
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
41
|
Gut Barrier Dysfunction Induced by Aggressive Fluid Resuscitation in Severe Acute Pancreatitis is Alleviated by Necroptosis Inhibition in Rats. Shock 2020; 52:e107-e116. [PMID: 30562238 DOI: 10.1097/shk.0000000000001304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluid resuscitation is the first-line antishock treatment in severe acute pancreatitis (SAP). Currently, although mentions of complications related to aggressive fluid resuscitation are very frequent, a lack of proper handling of complications remains. One of the most important complications is intestinal barrier injury, including intestinal ischemia-reperfusion injury following aggressive fluid resuscitation. Once injured, the intestinal barrier may serve as the source of additional diseases, including systemic inflammatory response syndrome and multiple organ dysfunction syndrome, which aggravate SAP. This study focused on the underlying mechanisms of gut barrier dysfunction in rats induced by aggressive fluid resuscitation in SAP. This study further indicated the important role of necroptosis in intestinal barrier injury which could be relieved by using necroptosis-specific inhibitor Nec-1 before aggressive fluid resuscitation, thus reducing intestinal barrier damage. We also found pancreas damage after intestinal ischemia/reperfusion challenge and indicated the effects of high mobility group protein B1 in the vicious cycle between SAP and intestinal barrier damage.
Collapse
|
42
|
Galasso C, Celentano S, Costantini M, D’Aniello S, Ianora A, Sansone C, Romano G. Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. Int J Mol Sci 2020; 21:ijms21155201. [PMID: 32708040 PMCID: PMC7439121 DOI: 10.3390/ijms21155201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process. These results give first insight on death mechanisms of P. lividus death mechanisms, also providing additional information for the use of this marine organism as a useful in vitro model for the study of cell death signalling pathways activated in response to chemical compounds.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Susanna Celentano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| |
Collapse
|
43
|
Engelmann C, Sheikh M, Sharma S, Kondo T, Loeffler-Wirth H, Zheng YB, Novelli S, Hall A, Kerbert AJC, Macnaughtan J, Mookerjee R, Habtesion A, Davies N, Ali T, Gupta S, Andreola F, Jalan R. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J Hepatol 2020; 73:102-112. [PMID: 31987990 DOI: 10.1016/j.jhep.2020.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Herein, we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. METHODS Circulating TLR4 ligands and hepatic TLR4 expression were measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo (10 mg/kg intraperitoneally) in rodent models of ACLF (bile duct ligation + lipopolysaccharide [LPS]; carbon tetrachloride + LPS) and ALF (galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5). The in vivo therapeutic effect was assessed by coma-free survival, organ injury and cytokine release and in vitro by measuring IL-6, IL-1β or cell injury (TUNEL), respectively. RESULTS In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p <0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS-induced cytokine secretion and cell death (p = 0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma-free survival, reduced the degree of hepatocyte cell death in the liver (p <0.001) and kidneys (p = 0.048) and reduced circulating cytokine levels (IL-1β, p <0.001). In a rodent model of ALF, TAK-242 prevented organ injury (p <0.001) and systemic inflammation (IL-1β, p <0.001). CONCLUSION This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF; its inhibition reduces the severity of organ injury and improves outcome. TAK-242 may be of therapeutic relevance in patients with liver failure. LAY SUMMARY Toll-like receptor 4 (or TLR4) mediates endotoxin-induced tissue injury in liver failure and cirrhosis. This receptor sensitizes cells to endotoxins, which are produced by gram-negative bacteria. Thus, inhibiting TLR4 signaling with an inhibitor (TAK-242) ameliorates organ injury and systemic inflammation in rodent models of acute and acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Germany
| | - Mohammed Sheikh
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Shreya Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Yu Bao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajeshwar Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Tauhid Ali
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Saurabh Gupta
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
44
|
The Antihistamine Deptropine Induces Hepatoma Cell Death through Blocking Autophagosome-Lysosome Fusion. Cancers (Basel) 2020; 12:cancers12061610. [PMID: 32570749 PMCID: PMC7352610 DOI: 10.3390/cancers12061610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Some antihistamines have exhibited significant antitumor activity alone or in combination with other therapies in in vitro and clinical studies. However, the underlying mechanisms of how antihistamines inhibit hepatocellular carcinoma proliferation are still unknown. We first screened the antiproliferation activity of 12 benzocycloheptene structural-analogue drugs, and results showed that deptropine was the most potent inhibitor of both Hep3B and HepG2 human hepatoma cells. Deptropine significantly increased light chain 3B-II (LC3B-II) expression but did not induce sequestosome 1 (SQSTM1/p62) degradation in either cell line. Interestingly, other autophagy-related proteins, such as autophagy-related 7 (ATG7), vacuolar protein sorting 34 (VPS34), phosphorylated adenosine 5'-monophosphate-activated protein kinase (AMPK), and phosphorylated protein kinase B (PKB, also known as Akt), exhibited no significant change in either deptropine-treated cell line. Deptropine also inhibited the processing of cathepsin L from its precursor form to its mature form. Immunofluorescence microscopy showed an increase of autophagosomes in deptropine-treated cells, but deptropine blocked the fusion between autophagosomes and lysosomes. In a xenograft nude mice model, 2.5 mg/kg deptropine showed a great inhibitory effect on Hep3B tumor growth. These results suggest that deptropine can induce in vitro and in vivo hepatoma cell death, and the underlying mechanisms might be mediated through inhibiting autophagy by blocking autophagosome-lysosome fusion.
Collapse
|
45
|
Li W, Ni H, Wu S, Han S, Chen C, Li L, Li Y, Gui F, Han J, Deng X. Targeting RIPK3 oligomerization blocks necroptosis without inducing apoptosis. FEBS Lett 2020; 594:2294-2302. [PMID: 32412649 DOI: 10.1002/1873-3468.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central protein in necroptosis with great potential as a target for treating necroptosis-associated diseases, such as Crohn's disease. However, blockade of RIPK3 kinase activity leads to unexpected RIPK3-initiated apoptosis. Herein, we found that PP2, a known SRC inhibitor, inhibits TNF-α-induced necroptosis without initiating apoptosis. Further investigation showed that PP2 acts as an inhibitor of not only SRC but also RIPK3. PP2 does not disturb the integrity of the RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) necroptosome or the autophosphorylation of RIPK3 at T231/S232 but disrupts RIPK3 oligomerization, thereby impairing the phosphorylation and oligomerization of MLKL. These results demonstrate the essential role of RIPK3 oligomerization in necroptosis and suggest a potential RIPK3 oligomerization-targeting strategy for therapeutic development.
Collapse
Affiliation(s)
- Wenjuan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Hengxiao Ni
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Shaofeng Wu
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Shang Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Chang'an Chen
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Li Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Yunzhan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Fu Gui
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Jiahuai Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| |
Collapse
|
46
|
Fan X, Lin L, Cui B, Zhao T, Mao L, Song Y, Wang X, Feng H, Qingxiang Y, Zhang J, Jiang K, Cao X, Wang B, Sun C. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res 2020; 159:104945. [PMID: 32454225 DOI: 10.1016/j.phrs.2020.104945] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.
Collapse
Affiliation(s)
- Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Binxin Cui
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Hongjuan Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Department of Nutriology, Tianjin Third Central Hospital, Jintang Road 83, Hedong District, Tianjin 300170, China
| | - Yu Qingxiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
47
|
Brito H, Marques V, Afonso MB, Brown DG, Börjesson U, Selmi N, Smith DM, Roberts IO, Fitzek M, Aniceto N, Guedes RC, Moreira R, Rodrigues CMP. Phenotypic high-throughput screening platform identifies novel chemotypes for necroptosis inhibition. Cell Death Discov 2020; 6:6. [PMID: 32123582 PMCID: PMC7026080 DOI: 10.1038/s41420-020-0240-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Regulated necrosis or necroptosis, mediated by receptor-interacting kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like protein (MLKL), contributes to the pathogenesis of inflammatory, infectious and degenerative diseases. Recently identified necroptosis inhibitors display moderate specificity, suboptimal pharmacokinetics, off-target effects and toxicity, preventing these molecules from reaching the clinic. Here, we developed a cell-based high-throughput screening (HTS) cascade for the identification of small-molecule inhibitors of necroptosis. From the initial library of over 250,000 compounds, the primary screening phase identified 356 compounds that strongly inhibited TNF-α-induced necroptosis, but not apoptosis, in human and murine cell systems, with EC50 < 6.7 μM. From these, 251 compounds were tested for RIPK1 and/or RIPK3 kinase inhibitory activity; some were active and several have novel mechanisms of action. Based on specific chemical descriptors, 110 compounds proceeded into the secondary screening cascade, which then identified seven compounds with maximum ability to reduce MLKL activation, IC50 >100 μM, EC50 2.5-11.5 μM under long-term necroptosis execution in murine fibroblast L929 cells, and full protection from ATP depletion and membrane leakage in human and murine cells. As a proof of concept, compound SN-6109, with binding mode to RIPK1 similar to that of necrostatin-1, confirmed RIPK1 inhibitory activity and appropriate pharmacokinetic properties. SN-6109 was further tested in mice, showing efficacy against TNF-α-induced systemic inflammatory response syndrome. In conclusion, a phenotypic-driven HTS cascade promptly identified robust necroptosis inhibitors with in vivo activity, currently undergoing further medicinal chemistry optimization. Notably, the novel hits highlight the opportunity to identify new molecular mechanisms of action in necroptosis.
Collapse
Affiliation(s)
- Hugo Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Dean G. Brown
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Boston, MA 02451 USA
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, 431 83 Sweden
| | - Nidhal Selmi
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, 431 83 Sweden
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG UK
| | - Ieuan O. Roberts
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, CB4 0WG UK
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Natália Aniceto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
48
|
Jantas D, Chwastek J, Grygier B, Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress-Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox Res 2020; 37:525-542. [PMID: 31960265 PMCID: PMC7062871 DOI: 10.1007/s12640-020-00164-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress–induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10–40 μM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress–induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type–specific interplay between necroptosis and apoptosis has been demonstrated.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
49
|
Popper B, Rammer MT, Gasparitsch M, Singer T, Keller U, Döring Y, Lange-Sperandio B. Neonatal obstructive nephropathy induces necroptosis and necroinflammation. Sci Rep 2019; 9:18600. [PMID: 31819111 PMCID: PMC6901532 DOI: 10.1038/s41598-019-55079-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Urinary tract obstruction during kidney development causes tubular apoptosis, tubular necrosis, and interstitial inflammation. Necroptosis is a subtype of programmed necrosis mediated by the receptor-interacting serine/threonine-protein kinase-3 (RIPK3) and the pseudokinase mixed lineage kinase domain-like (MLKL). Necrosis induces inflammation and stimulates cell death in an autoamplification loop named necroinflammation. Here, we studied necroptosis and necroinflammation in obstructive nephropathy induced by unilateral ureteral obstruction (UUO) in neonatal C57Bl/6J mice. Ureteral obstruction induced tubular dilatation, tubular basement membrane thickening, cast formation, and increased expression of kidney injury molecule-1 (KIM-1). Morphological investigations showed either apoptotic or necrotic cells in the tubular compartment. Biochemical analysis revealed increased caspase-8 activity and upregulation of RIPK3 as well as phosphorylated-MLKL in UUO-kidneys. Pro-inflammatory cytokines (IL-1α, INF-γ, TNF-α) were upregulated following UUO. Taken together we show that necroptosis and necroinflammation are accompanied phenomena in neonatal kidneys with obstruction. These findings may help to develop novel strategies to treat congenital obstructive nephropathy.
Collapse
Affiliation(s)
- Bastian Popper
- Biomedical Center, Core Faciliy Animal Models, Ludwig-Maximilians university, 82152, Martinsried, Germany.,Institute of Pathology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Marian Theodor Rammer
- Dr. v. Hauner Children's Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Mojca Gasparitsch
- Dr. v. Hauner Children's Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Teresa Singer
- Dr. v. Hauner Children's Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Ursula Keller
- Dr. v. Hauner Children's Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, 80337, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336, Munich, Germany.,Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Bärbel Lange-Sperandio
- Dr. v. Hauner Children's Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, 80337, Munich, Germany.
| |
Collapse
|
50
|
Wall J, Naganathar S, Praditsuktavorn B, Bugg OF, McArthur S, Thiemermann C, Tremoleda JL, Brohi K. Modeling Cardiac Dysfunction Following Traumatic Hemorrhage Injury: Impact on Myocardial Integrity. Front Immunol 2019; 10:2774. [PMID: 31866998 PMCID: PMC6908477 DOI: 10.3389/fimmu.2019.02774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cardiac dysfunction (CD) importantly contributes to mortality in trauma patients, who survive their initial injuries following successful hemostatic resuscitation. This poor outcome has been correlated with elevated biomarkers of myocardial injury, but the pathophysiology triggering this CD remains unknown. We investigated the pathophysiology of acute CD after trauma using a mouse model of trauma hemorrhage shock (THS)-induced CD with echocardiographic guidance of fluid resuscitation, to assess the THS impact on myocardial integrity and function. Mice were subjected to trauma (soft tissue and bone fracture) and different degrees of hemorrhage severity (pressure controlled ~MABP < 35 mmHg or <65 mmHg) for 1 h, to characterize the acute impact on cardiac function. In a second study, mice were subjected to trauma and hemorrhage (MABP < 35 mmHg) for 1 h, then underwent two echocardiographic-guided resuscitations to baseline stroke volume at 60 and 120 min, and were monitored up to 180 min to study the longer impact of THS following resuscitation. Naïve and sham animals were used as controls. At 60 min post-THS injury, animals showed a lower cardiac output (CO) and stroke volume (SV) and an early rise of heart fatty acid-binding protein (H-FABP = 167 ± 38 ng/ml; 90% increase from shams, 3.54 ± 3.06 ng/ml), when subjected to severe hemorrhage and injury. Despite resuscitation, these animals maintained lower CO (6 ml/min vs. 23 ml/min), lower SV (10 μl vs. 46 μl; both ~75% decreased), and higher H-FABP (levels (340 ± 115 ng/ml vs. 10.3 ± 0.2 ng/ml; all THS vs. shams, P < 0.001) at 180 min post-THS injury. Histopathological and flow-cytometry analysis of the heart confirmed an influx of circulatory leukocytes, compared to non-injured hearts. Myocardial injury was supported by an increase of troponin I and h-FABP and the widespread ultrastructural disorganization of the morphology of sarcomeres and mitochondria. DNA fragmentation and chromatin condensation driven by leakage of apoptosis-inducing factor (AIF) may suggest a mitochondria-driven progressive cell death. THS modeling in the mouse results in cardiomyocyte damage and reduced myocardial function, which mimics the cardiac dysfunction seen in trauma patients. This CD model may, therefore, provide further understanding to the mechanisms underlying CD and act as a tool for developing cardioprotective therapeutics to improve survival after injury.
Collapse
Affiliation(s)
- Johanna Wall
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sriveena Naganathar
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Banjerd Praditsuktavorn
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar F Bugg
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Simon McArthur
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom.,Department of Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jordi L Tremoleda
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Karim Brohi
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|