1
|
Hepsenoglu YE, Ersahan S, Erkan E, Gundogar M, Ozcelik F. Is SWEEPS better than PUI in reducing intracanal bacteria and inflammation in cases of apical periodontitis? Lasers Med Sci 2024; 39:182. [PMID: 39012553 PMCID: PMC11252177 DOI: 10.1007/s10103-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
To evaluate the efficacy of SWEEPS mode of the Er: YAG laser(SL) and passive ultrasonic irrigation(PUI) in the eradication of microorganisms and in the inflammation detection by IL-1β. Thirty patients with chronic apical periodontitis(AP) were allocated into two groups: Group SL-SWEEPS laser activated irrigation(n = 15) and Group PUI-passive ultrasonic irrigation(n = 15). Bacteriological samples were taken before(S1) and after chemomechanical preparation(S2), and then after final irrigation activation(S3). The levels of total bacteria and Streptococci were measured by means of PCR. Blood samples were collected before and 3rd day after treatment. Enzyme-linked immunosorbent assay was used to measure the levels of IL-1β. The bacterial reduction showed no differences between groups after chemo-mechanical treatment and after irrigant activation(p = 0.590). Post-treatment IL-1β levels were lower than pretreatment levels in both groups(p < 0.001). SL or PUI application in addition to chemomechanical preparation has similar effects on total bacterial level and inflammation detected by IL-1β in patients with AP.
Collapse
Affiliation(s)
- Yelda Erdem Hepsenoglu
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey
| | - Seyda Ersahan
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey.
| | - Erhan Erkan
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey
| | - Mustafa Gundogar
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Birlik Mah. Bahçeler Cad. No: 5 Esenler, Istanbul, Turkey
| | - Fatih Ozcelik
- Department of Medical Biochemistry Department, Health Sciences University, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Guo J, Lin K, Wang S, He X, Huang Z, Zheng M. Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury. BMC Oral Health 2024; 24:112. [PMID: 38243239 PMCID: PMC10799447 DOI: 10.1186/s12903-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. METHODS In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. RESULTS These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. CONCLUSION This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Kaijin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Siyi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaozhen He
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Huang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Zhang Y, Ren X, Hu T, Cheng R, Bhowmick NA. The Relationship Between Periodontal Disease and Breast Cancer: From Basic Mechanism to Clinical Management and Prevention. ORAL HEALTH & PREVENTIVE DENTISTRY 2023; 21:49-60. [PMID: 36794777 PMCID: PMC11619839 DOI: 10.3290/j.ohpd.b3904343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Periodontal disease is potentially related to certain kinds of cancer. This review aimed to summarize the relationship between periodontal disease and breast cancer, providing some strategies for the clinical treatment and periodontal health care of breast cancer patients. MATERIALS AND METHODS Systematic reviews, randomised controlled trials, prospective and retrospective clinical studies, case series and reports were collected using search terms entered into the PubMed, Google Scholar and JSTOR databases. RESULTS Research has provided some evidence that periodontal disease is related to the occurrence and development of breast cancer. Periodontal disease and breast cancer have some common pathogenic factors. Periodontal disease may affect the initiation and development of breast cancer involving microorganisms and inflammation. Periodontal health is affected by radiotherapy, chemotherapy, and endocrine therapy for breast cancer. CONCLUSIONS Periodontal therapy for breast cancer patients should be performed differently according to the stage of cancer treatment. Adjuvant endocrine treatment (e.g. bisphosphonates) has a great impact on oral treatment. Periodontal therapy contributes to the primary prevention of breast cancer. Periodontal health care of breast cancer patients is worthy of clinician attention.
Collapse
Affiliation(s)
- Yuhan Zhang
- Student, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Study design, collected data, drafted and proofread the manuscript
| | - Xiaolin Ren
- Student, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Study design, collected data, drafted and proofread the manuscript
| | - Tao Hu
- Professor, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Study conception and design, acted as scientific advisor, drafted the manuscript
| | - Ran Cheng
- Associate Professor, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Study conception and design, acted as scientific advisor, drafted the manuscript
| | - Neil A. Bhowmick
- Professor, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA. Study conception and design, acted as scientific advisor, drafted manuscript
| |
Collapse
|
4
|
Fan R, Zhou Y, Chen X, Zhong X, He F, Peng W, Li L, Wang X, Xu Y. Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis. Microbiol Spectr 2023; 11:e0328822. [PMID: 36629433 PMCID: PMC9927323 DOI: 10.1128/spectrum.03288-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here, we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed tomography (micro-CT) and histological analysis showed that under stimulation with P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by human periodontal ligament cells ([hPDLCs]) in vitro, which subsequently resulted in apoptosis and inflammatory cytokine release, which was accomplished by the microRNA-size small RNA (msRNA) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, chromobox 5 (CBX5) was identified as the downstream target of screened-out sRNA45033. Using a dual-luciferase reporter assay, overexpression, and knockdown methods, sRNA45033 was confirmed to target CBX5 to regulate hPDLC apoptosis. In addition, CUT&Tag (cleavage under targets and tagmentation) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence during the development of periodontitis. IMPORTANCE P. gingivalis is a bacterium often associated with periodontitis. This study demonstrates that (i) sRNA45033 in P. gingivalis OMVs targets CBX5, (ii) CBX5 regulates the methylation of p53 DNA and its expression, which is associated with apoptosis, and (iii) a novel mechanism of interaction between hosts and pathogens is mediated by OMVs in the occurrence of periodontitis.
Collapse
Affiliation(s)
- Ruyi Fan
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xu Chen
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xianmei Zhong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, Taizhou Stomatological Hospital, Taizhou, China
| | - Fanzhen He
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wenzao Peng
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Zhang R, Wu Z, Li M, Yang J, Cheng R, Hu T. Canonical and noncanonical pyroptosis are both activated in periodontal inflammation and bone resorption. J Periodontal Res 2022; 57:1183-1197. [PMID: 36146901 DOI: 10.1111/jre.13055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Pyroptosis has both a caspase-1-dependent canonical pathway and a caspase-4/-5/-11-dependent noncanonical pathway. They play an important role in inflammatory damage and related diseases. Canonical pyroptosis was reported to be involved in periodontitis. However, knowledge of caspase-4/-5/-11-dependent noncanonical pathway involvement remains limited. The aim of this study was to investigate the outcomes of pyroptosis inhibition on periodontitis as well as the possible mechanism, in order to provide a potential target for alleviating periodontitis. METHODS Human and rat periodontitis tissues were collected for immunohistochemistry (IHC). Micro-computed tomography was used to assess alveolar bone loss in experimental periodontitis model. Pyroptosis-related proteins were tested by western blot. propidium iodide staining and lactate dehydrogenase release were used to verify pyroptosis activation. RNA sequencing was applied to investigate the preliminary mechanism of the reduced periodontal inflammation induced by YVAD-CHO. RESULTS Both canonical- and noncanonical-related proteins were detected in human and rat periodontitis tissue. The pyroptosis-inhibited group demonstrated less inflammatory response and bone absorption. In vitro, pyroptosis was activated by lipopolysaccharide and inhibited by YVAD-CHO. RNA sequencing demonstrated that the expression of A20 and IκB-ζ was increased and verified by western blot in vitro and IHC in vivo. CONCLUSION These results suggest that inhibition of pyroptosis-reduced inflammation and alveolar bone resorption in periodontitis.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wang X, Sato F, Tanimoto K, Rajeshwaran N, Thangavelu L, Makishima M, Bhawal UK. The Potential Roles of Dec1 and Dec2 in Periodontal Inflammation. Int J Mol Sci 2021; 22:10349. [PMID: 34638690 PMCID: PMC8508764 DOI: 10.3390/ijms221910349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal inflammation is a common inflammatory disease associated with chronic inflammation that can ultimately lead to alveolar attachment loss and bone destruction. Understanding autophagy and pyroptosis has suggested their significant roles in inflammation. In recent years, studies of differentiated embryo-chondrocyte expressed genes 1 and 2 (Dec1 and Dec2) have shown that they play important functions in autophagy and in pyroptosis, which contribute to the onset of periodontal inflammation. In this review, we summarize recent studies on the roles of clock genes, including Dec1 and Dec2, that are related to periodontal inflammation and other diseases.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 739-8511, Japan;
| | - Niveda Rajeshwaran
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Ujjal K. Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
7
|
Wu Z, Li M, Zhu F, Lei L, Cheng R, Hu T. The effects of oral health education regarding periodontal health on non-dental undergraduates in southwestern China-exploring the feasibility of an e-learning course for oral health promotion. BMC Oral Health 2021; 21:119. [PMID: 33726713 PMCID: PMC7962077 DOI: 10.1186/s12903-021-01476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Background The high prevalence of periodontal diseases is an important oral health problem worldwide. It is necessary to increase public knowledge on and influence attitudes towards periodontal diseases in order to prevent them. However, the effect of oral health education (OHE) as a primary preventive method in China is unsatisfactory. The aim of this study is to investigate the feasibility of extending an e-learning course regarding periodontal health by comparing the effects of oral health education regarding periodontal health (OHE-PH) on dental and non-dental students and the effects between a traditional course and an e-learning course among non-dental students at Sichuan University. Methods A quasi-experimental study with a pre-test and a post-test was performed. A total of 217 dental students and 134 non-dental students attended a traditional course; 69 non-dental students attended an e-learning course. Before- and after-course questionnaires about periodontal health knowledge, attitudes and behaviours were administered. Results After the traditional/e-learning course, the knowledge of both dental and non-dental students about periodontal diseases and self-reported behaviours for gingival bleeding and oral care improved. The non-dental students reached or surpassed the level of dental students before the course. The non-dental students taking the e-learning course performed better in some areas than those taking the traditional course. Conclusions OHE-PH was effective for dental and non-dental students. The e-learning course on OHE-PH was sufficient for improving knowledge and self-reported behaviours among non-dental undergraduates and was even better than the traditional course in some areas. The e-learning course may be an effective method for periodontal health education and oral health promotion among undergraduates.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingming Li
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fangzhi Zhu
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Lei
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ran Cheng
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Tao Hu
- Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Oka S, Li X, Sato F, Zhang F, Tewari N, Kim IS, Zhong L, Hamada N, Makishima M, Liu Y, Bhawal UK. A deficiency of Dec2 triggers periodontal inflammation and pyroptosis. J Periodontal Res 2021; 56:492-500. [PMID: 33641180 DOI: 10.1111/jre.12849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontal pathogens initiate various diseases and induce inflammatory host responses. The activation of inflammasomes triggers caspase-1 and interleukin (IL)-1β-mediated pyroptosis via gasdermin D (GSDMD). Differentiated embryo chondrocyte 2 (Dec2) is a transcription repressor that controls the expression of genes involved in innate immune and inflammatory responses. However, the effects of Dec2 on inflammasome-induced pyroptosis in periodontal tissues remain elusive. This study aimed to characterize the activation of Dec2 inflammasomes that contribute to P. gingivalis lipopolysaccharide (LPS)-induced pyroptosis and its functional and regulatory importance in periodontal inflammation. MATERIALS AND METHODS Human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs) were stimulated with P. gingivalis LPS in vitro. An experimental periodontitis mouse model (wild-type (WT) and Dec2KO) was established to profile periodontal pyroptosis. RESULTS The results demonstrate that P. gingivalis LPS activates caspase-1, caspase-11, and NF-κB in HGFs and in HPDLFs. siRNA knockdown of Dec2 stimulated the induction and further upregulated LPS-induced pyroptosis in HGFs and HPDLFs, resulting in the release of IL-1β. Further, a deficiency of Dec2 alleviated periodontal pyroptosis via the transcriptional induction of GSDMD. In addition, P. gingivalis-induced IL-1β expression and Dec2-deficient mice subsequently increased the inflammatory effect of P. gingivalis in HGFs and in HPDLFs, confirming the importance of Dec2 in the activation of inflammasomes and the regulation of pyroptosis. CONCLUSION Our results demonstrate that Dec2 alleviates periodontal pyroptosis by regulating the expression of NF-κB, caspase-1 and GSDMD, suggesting that Dec2 is a crucial component of inflammasome activation and subsequent pyroptosis.
Collapse
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka, Japan
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Il-Shin Kim
- Department of Dental Hygiene, Honam University, Gwangju, Korea
| | - Liangjun Zhong
- Department of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Ujjal K Bhawal
- Department of Disaster Medicine and Dental Sociology, Kanagawa Dental University, Yokosuka, Japan.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
9
|
Barbour A, Glogauer J, Grinfeld L, Ostadsharif Memar R, Fine N, Tenenbaum H, Glogauer M. The role of CRISPR-Cas in advancing precision periodontics. J Periodontal Res 2021; 56:454-461. [PMID: 33452819 DOI: 10.1111/jre.12846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
The significant advancement of molecular biology has revolutionized medicine and provided important technologies to further clinical research development. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are DNA sequences derived from bacteriophages which have previously infected the bacterial species. The CRISPR-Cas system plays a key role in bacterial defense by detecting and destroying DNA fragments during subsequent bacteriophage invasions. The Cas9 enzyme recognizes and cleaves new invading CRISPR-complementary DNA sequences. Researchers have taken advantage of this biological device to manipulate microbes' genes and develop novel therapeutics to tackle systemic disease. In this review, we discuss the potential of utilizing CRISPR-Cas systems in the periodontal field to develop personalized periodontal care. We summarize promising attempts to bring this technology to the clinical setting. Finally, we provide insights regarding future developments to best utilize the CRISPR-Cas systems to advance precision periodontics. Although further research is imperative to evaluate the safety and potential of using CRISPR-Cas to develop precision periodontics approaches, few studies showed promising data to support the investment into this important technology in the dental sector. CRISPR-Cas9 can be a useful tool to create knockouts in vitro and in vivo as a screening tool to identify cellular pathways involved in the pathogenesis of periodontitis. Alternative CRISPR systems such as CRISPRa, CRISPRi, and Cas13 can be used to modify the transcriptome and gene expression of genes involved in periodontitis progression. CRISPR systems such as Cas3 can be used to target the periodontal biofilm and to develop new strategies to reduce or eliminate periodontal pathogens. Currently, the utility of CRISPR-Cas applications in clinical settings is limited. Through this review, we hope to foster further discussion in the periodontal research and clinical communities with respect to the potential clinical application of novel, CRISPR-Cas based, therapeutics for periodontitis.
Collapse
Affiliation(s)
| | - Judah Glogauer
- Michael G. DeGroote School of Medicine, McMaster University, Toronto, ON, Canada
| | - Lis Grinfeld
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
10
|
Oka S, Li X, Zhang F, Tewari N, Wang C, Kim IS, Zhong L, Hamada N, Oi Y, Makishima M, Liu Y, Bhawal UK. Inhibition of Dec1 provides biological insights into periodontal pyroptosis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1915886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Chen Wang
- Department of Histology and Embryology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Il-Shin Kim
- Department of Dental Hygiene, Honam University, Gwangju, Republic of Korea
| | - Liangjun Zhong
- Department of Stomatology, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Oi
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
11
|
Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci 2020; 12:2. [PMID: 31900383 PMCID: PMC6949296 DOI: 10.1038/s41368-019-0068-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Interleukin(IL)-1β, a pro-inflammatory cytokine, was elevated and participates in periodontitis. Not only the link between IL-1β and periodontitis was proved by clinical evidence, but also the increased IL-1β triggers a series of inflammatory reactions and promotes bone resorption. Currently, IL-1β blockage has been therapeutic strategies for autoimmune and autoinflammatory diseases such as rheumatoid arthritis, cryopyrin-associated periodic syndromes, gout and type II diabetes mellitus. It is speculated that IL-1β be a potential therapeutic target for periodontitis. The review focuses on the production, mechanism, present treatments and future potential strategies for IL-1β in periodontitis.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwu Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Jiang Y, Fang B, Xu B, Chen L. The RAS-PI3K-AKT-NF-κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes and inhibits apoptosis in fibrous epulis. J Clin Lab Anal 2019; 34:e23102. [PMID: 31743516 PMCID: PMC7083487 DOI: 10.1002/jcla.23102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
Background Epulis has a tumor‐like appearance but is considered to be a massive reactive lesion rather than a true neoplasia. Limited information about the pathogenesis of epulis is available. The purpose of our study was to identify potential signaling pathways in fibrous epulis through transcriptome profiling. Methods Differentially expressed genes (DEGs) between fibrous epulis lesions and normal gingival tissues were detected using RNA sequencing (RNAseq). The expression levels of eighteen genes were validated using quantitative real‐time PCR (qRT‐PCR). Results RNAseq identified 533 upregulated genes and 732 downregulated genes. The top 10 upregulated genes were IL11, OSM, MMP3, KRT75, MMP1, IL6, IL1B, IL24, SP7, and ADGRG3. The top 10 downregulated genes were BCHE, TYR, DCT, KRT222, RP11‐507K12.1, COL6A5, PMP2, GFRA1, SCN7A, and CDH19. KEGG pathway analysis further indicated that the DEGs were enriched in “Pathways in cancer” and the “Ras signaling pathway”. quantitative real‐time PCR verified that the expression levels of SOS1, HRAS, PIK3CA, AKT3, IKBKA, IKBKB, NFKB1, BCL2, BCL2L1, XIAP, BIRC2, and BIRC3 were increased significantly. Conclusions The current transcriptomic profiling study reveals that in fibrous epulis, RAS‐PI3K‐AKT‐NF‐κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes, leading to increased proliferation and apoptosis inhibition.
Collapse
Affiliation(s)
- Yangyang Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Stomatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Liang Chen
- Medical Administration Division, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
13
|
Nelwan SC, Nugraha RA, Endaryanto A, Meizarini A, Tedjosasongko U, Pradopo S, Utomo H. Converging findings from linkage between periodontal pathogen with atopic and allergic immune response. Cytokine 2018; 113:89-98. [PMID: 29937409 DOI: 10.1016/j.cyto.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
This study aims to explore a relationship between exposures of whole-cell Porphyromonas gingivalis in various doses with atopic inflammatory responses at experimental mice. A pretest-posttest controlled group design, with 16 Wistar rats (Rattus novergicus) randomized into four groups. Group 1 was the control group. Group 2 was given low-dose (9 × 107 colony-forming unit) of P. gingivalis. Group 3 was given medium-dose (9 × 109 colony-forming unit) of P. gingivalis. Group 4 was given high-dose (9 × 1011 colony-forming unit) of P. gingivalis. Interleukin-4, Interleukin-5, Interleukin-17F, Interleukin-21, Immunoglobulin-E, Immunoglobulin-G4, and γ-Interferon were measured by direct-sandwich ELISA just before the treatments began, day-4, and day-11 after treatments. There is a sudden increase of Interleukin-4 in the group 4 (23.79 ± 0.91 pg/ml to 54.17 ± 0.79 pg/ml; p = 0.01) and slight increase of Interleukin-5 in the group 4 (207.60 ± 11.15 pg/ml to 243.40 ± 9.33 pg/ml; p = 0.03). No change was observed for Interleukin-17F in all groups. Serum concentration of Immunoglobulin-E was decreased in group 2 (-10.44 ± 8.13 pg/ml), but increased in group 4 (+1.03 ± 4.57 pg/ml). Taken together, some cytokines are up-regulated and others are down-regulated after exposure to whole-cell P. gingivalis. Moreover, study of host responses during periodontal infection may offer critical key insight that contribute to the development of atopy. CLINICAL IMPLICATIONS: We introduced and explained the potential role of periodontal pathogen Porphyromonas gingivalis in systemic immune responses, along with its virulence factor inside the oral cavity. Our results consider several changes and differences of cytokines and immunoglobulins following whole-cell Porphyromonas gingivalis exposure. However, results of the study need to be interpreted with caution due to its limitations. CAPSULE SUMMARY: Interleukin (IL)-4 and IL-5 had been found increase after exposure to the periodontal pathogens Porphyromonas gingivalis, whereas no or minimal change had been found in the level of IL-17F, Ig-G4, and IFN-γ. The various cytokines and immunoglobulins shown in this study do not prove a causal relationship, and the precise role of Porphyromonas gingivalis in the regulation of atopic immune response warrants further investigation. Nevertheless, these findings may provide some critical key insight into the host responses following Porphyromonas gingivalis infection.
Collapse
Affiliation(s)
- Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia.
| | | | - Anang Endaryanto
- Department of Child Health, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Asti Meizarini
- Department of Dental Materials Science and Technology, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Udijanto Tedjosasongko
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Seno Pradopo
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Haryono Utomo
- Department of Forensic Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Cheng R, Liu W, Zhang R, Feng Y, Bhowmick NA, Hu T. Porphyromonas gingivalis-Derived Lipopolysaccharide Combines Hypoxia to Induce Caspase-1 Activation in Periodontitis. Front Cell Infect Microbiol 2017; 7:474. [PMID: 29184853 PMCID: PMC5694474 DOI: 10.3389/fcimb.2017.00474] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as inflammation affecting the supporting tissue of teeth. Periodontal pathogens initiate the disease and induce inflammatory host response. Hypoxia may accelerate the process by producing pro-inflammatory factors. The aim of this study is to investigate the effect of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharides (LPS) and Escherichia coli (E. coli) LPS in inducing caspase-1 activation in normoxic or hypoxic phases. The results showed that healthy gingiva was in a normoxic phase (HIF-1α negative). However, hypoxia appeared in periodontitis, in which NLRP3, cleaved-caspase-1, interleukin 1 beta (IL-1β) and caspase-1-induced cell death was enhanced in periodontitis specimens. The in vitro experiment showed that P. gingivalis LPS slightly decreased the level of NLRP3 and IL-1β in gingival fibroblasts under normoxia. Surprisingly, hypoxia reversed the effects of P. gingivalis LPS, highly promoted caspase-1 activation and IL-1β maturation. E. coli LPS, a kind of pathogen-associated molecular pattern (PAMP) was chosen to simulate the effect of Gram-negative microbiota. Different from P. gingivalis LPS, E. coli LPS enhanced IL-1β maturation both in normoxia and hypoxia. Moreover, E. coli LPS turned normoxia into hypoxia phase in experimental periodontitis model, which may subsequently propel the inflammatory effect of P. gingivalis LPS. It was concluded that E. coli LPS induced a hypoxic phase, which is a combing pathological factor of P. gingivalis LPS in caspase-1 activating and IL-1β maturation in periodontal inflammation.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wen Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchao Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|