1
|
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT, Fan J. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res 2024; 11:71. [PMID: 39465383 PMCID: PMC11514876 DOI: 10.1186/s40779-024-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Qing-De Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yue-Hua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
2
|
Gong T, Fu Y, Wang Q, Loughran PA, Li Y, Billiar TR, Wen Z, Liu Y, Fan J. Decoding the multiple functions of ZBP1 in the mechanism of sepsis-induced acute lung injury. Commun Biol 2024; 7:1361. [PMID: 39433574 PMCID: PMC11493966 DOI: 10.1038/s42003-024-07072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by severe hypoxemia and pulmonary leakage, remains a leading cause of mortality in intensive care units. The exacerbation of ALI during sepsis is largely attributed to uncontrolled inflammatory responses and endothelial dysfunction. Emerging evidence suggests an important role of Z-DNA binding protein 1 (ZBP1) as a sensor in innate immune to drive inflammatory signaling and cell death during infections. However, the role of ZBP1 in sepsis-induced ALI has yet to be defined. We utilized ZBP1 knockout mice and combined single-cell RNA sequencing with experimental validation to investigate ZBP1's roles in the regulation of macrophages and lung endothelial cells during sepsis. We demonstrate that in sepsis, ZBP1 deficiency in macrophages reduces mitochondrial damage and inhibits glycolysis, thereby altering the metabolic status of macrophages. Consequently, this metabolic shift leads to a reduction in the differentiation of macrophages into pro-inflammatory states and decreases macrophage pyroptosis triggered by activation of the NLRP3 inflammasome. These changes significantly weaken the inflammatory signaling pathways between macrophages and endothelial cells and alleviate endothelial dysfunction and cellular damage. These findings reveal important roles for ZBP1 in mediating multiple pathological processes involved in sepsis-induced ALI by modulating the functional states of macrophages and endothelial cells, thereby highlighting its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
| | - Yu Fu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
3
|
Ying T, Yu Y, Yu Q, Zhou G, Chen L, Gu Y, Zhu L, Ying H, Chen M. The involvement of Sting in exacerbating acute lung injury in sepsis via the PARP-1/NLRP3 signaling pathway. Pulm Pharmacol Ther 2024; 86:102303. [PMID: 38848887 DOI: 10.1016/j.pupt.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Interferon gene stimulator (Sting) is an indispensable adaptor protein that plays a crucial role in acute lung injury (ALI) induced by sepsis, and the PARP-1/NLRP3 signaling pathway may be an integral component of the inflammatory response mediated by Sting. However, the regulatory role of Sting in the PARP-1/NLRP3 pathway in ALI remains insufficiently elucidated. METHODS Using lipopolysaccharide (LPS) to induce ALI in C57BL/6 mice and HUVEC cells, an in vivo and in vitro model was established. In vivo, Sting agonists and inhibitors were administered, while in vitro, Sting was knocked down using siRNA. ELISA was employed to quantify the levels of IL-1β, IL-6, and TNF-α. TUNEL staining was conducted to assess cellular apoptosis, while co-immunoprecipitation was utilized to investigate the interaction between Sting and NLRP3. Expression levels of Sting, NLRP3, PARP-1, among others, were assessed via Western blotting and RT-qPCR. Lung HE staining and lung wet/dry ratio were evaluated in the in vivo mouse model. To validate the role of the PARP-1/NLRP3 signaling pathway, PARP-1 inhibitors were employed both in vivo and in vitro. RESULTS In vitro experiments revealed that the Sting agonist group exacerbated LPS-induced pulmonary pathological damage, pulmonary edema, inflammatory response (increased levels of IL-6, TNF-α, and IL-1β), and cellular injury, whereas the Sting inhibitor group significantly ameliorated the aforementioned injuries, with further improvement observed in the combination therapy of Sting inhibitor and PARP-1 inhibitor. Western blotting and RT-qPCR results demonstrated significant suppression of ICAM-1, VCAM-1, NLRP3, and PARP-1 expression in the Sting inhibitor group, with this reduction further enhanced in the Sting inhibitor + PARP-1 inhibitor treatment group, exhibiting opposite outcomes to the agonist. Furthermore, in vitro experiments using HUVEC cell lines validated these findings. CONCLUSIONS Our study provides new insights into the roles of Sting and the PARP-1/NLRP3 signaling pathway in inflammatory responses, offering novel targets for the development of therapeutic interventions against inflammatory reactions.
Collapse
Affiliation(s)
- Tingting Ying
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Yulong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Qimin Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Gang Zhou
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Yixiao Gu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Lijun Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Haifeng Ying
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Minjuan Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China.
| |
Collapse
|
4
|
Hao Y, Fu H, Li K, Zou X, Zhou X, Tang X, Liu C, Zhou F. Inhibition of GBP1 alleviates pyroptosis of human pulmonary microvascular endothelial cells through STAT1/NLRP3/GSDMD pathway. Mol Immunol 2024; 173:1-9. [PMID: 38996607 DOI: 10.1016/j.molimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.
Collapse
Affiliation(s)
- Yingting Hao
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongxue Fu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Kaili Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuan Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xin Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiyue Tang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
6
|
Wu J, Shyy M, Shyy JYJ, Xiao H. Role of inflammasomes in endothelial dysfunction. Br J Pharmacol 2024. [PMID: 38952037 DOI: 10.1111/bph.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
The vascular endothelium dynamically responds to environmental cues and plays a pivotal role in maintaining vascular homeostasis by regulating vasomotor tone, blood cell trafficking, permeability and immune responses. However, endothelial dysfunction results in various pathological conditions. Inflammasomes are large intracellular multimeric complexes activated by pathogens or cellular damage. Inflammasomes in vascular endothelial cells (ECs) initiate innate immune responses, which have emerged as significant mediators in endothelial dysfunction, contributing to the pathophysiology of an array of diseases. This review summarizes the mechanisms and ramifications of inflammasomes in ECs and related vascular diseases such as atherosclerosis, abdominal aortic aneurysm, stroke, and lung and kidney diseases. We also discuss potential drugs targeting EC inflammasomes and their applications in treating vascular diseases.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| | - Melody Shyy
- Biological Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| |
Collapse
|
7
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
8
|
Zhou T, Long K, Chen J, Zhi L, Zhou X, Gao P. Global research progress of endothelial cells and ALI/ARDS: a bibliometric analysis. Front Physiol 2024; 15:1326392. [PMID: 38774649 PMCID: PMC11107300 DOI: 10.3389/fphys.2024.1326392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe respiratory conditions with complex pathogenesis, in which endothelial cells (ECs) play a key role. Despite numerous studies on ALI/ARDS and ECs, a bibliometric analysis focusing on the field is lacking. This study aims to fill this gap by employing bibliometric techniques, offering an overarching perspective on the current research landscape, major contributors, and emerging trends within the field of ALI/ARDS and ECs. Methods Leveraging the Web of Science Core Collection (WoSCC) database, we conducted a comprehensive search for literature relevant to ALI/ARDS and ECs. Utilizing Python, VOSviewer, and CiteSpace, we performed a bibliometric analysis on the corpus of publications within this field. Results This study analyzed 972 articles from 978 research institutions across 40 countries or regions, with a total of 5,277 authors contributing. These papers have been published in 323 different journals, spanning 62 distinct research areas. The first articles in this field were published in 2011, and there has been a general upward trend in annual publications since. The United States, Germany, and China are the principal contributors, with Joe G. N. Garcia from the University of Arizona identified as the leading authority in this field. American Journal of Physiology-Lung Cellular and Molecular Physiology has the highest publication count, while Frontiers in Immunology has been increasingly focusing on this field in recent years. "Cell Biology" stands as the most prolific research area within the field. Finally, this study identifies endothelial glycocalyx, oxidative stress, pyroptosis, TLRs, NF-κB, and NLRP3 as key terms representing research hotspots and emerging frontiers in this field. Conclusion This bibliometric analysis provides a comprehensive overview of the research landscape surrounding ALI/ARDS and ECs. It reveals an increasing academic focus on ALI/ARDS and ECs, particularly in the United States, Germany, and China. Our analysis also identifies several emerging trends and research hotspots, such as endothelial glycocalyx, oxidative stress, and pyroptosis, indicating directions for future research. The findings can guide scholars, clinicians, and policymakers in targeting research gaps and setting priorities to advance the field.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Tian Y, Chen L, He M, Du H, Qiu X, Lai X, Bao S, Jiang W, Ren J, Zhang A. Repurposing Disulfiram to Combat Acute Respiratory Distress Syndrome with Targeted Delivery by LET-Functionalized Nanoplatforms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12244-12262. [PMID: 38421312 DOI: 10.1021/acsami.3c17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious respiratory condition characterized by a damaged pulmonary endothelial barrier that causes protein-rich lung edema, an influx of proinflammatory cells, and treatment-resistant hypoxemia. Damage to pulmonary endothelial cells and inflammation are pivotal in ARDS development with a key role played by endothelial cell pyroptosis. Disulfiram (DSF), a drug that has long been used to treat alcohol addiction, has recently been identified as a potent inhibitor of gasdermin D (GSDMD)-induced pore formation and can thus prevent pyroptosis and inflammatory cytokine release. These findings indicate that DSF is a promising treatment for inflammatory disorders. However, addressing the challenge posed by its intrinsic physicochemical properties, which hinder intravenous administration, and effective delivery to pulmonary vascular endothelial cells are crucial. Herein, we used biocompatible liposomes incorporating a lung endothelial cell-targeted peptide (CGSPGWVRC) to produce DSF-loaded nanoparticles (DTP-LET@DSF NPs) for targeted delivery and reactive oxygen species-responsive release facilitated by the inclusion of thioketal (TK) within the liposomal structure. After intravenous administration, DTP-LET@DSF NPs exhibited excellent cytocompatibility and minor systemic toxicity, effectively inhibited pyroptosis, mitigated lipopolysaccharide (LPS)-induced ARDS, and prevented cytokine storms resulting from excessive immune reactions in ARDS mice. This study presents a straightforward nanoplatform for ARDS treatment that potentially paves the way for the clinical use of this nanomedicine.
Collapse
Affiliation(s)
- Yu Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ming He
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Hu Du
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinwu Lai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Suya Bao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Weixi Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - An Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
10
|
Gao ST, Xin X, Wang ZY, Hu YY, Feng Q. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Mol Cell Probes 2024; 73:101944. [PMID: 38049041 DOI: 10.1016/j.mcp.2023.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
11
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
12
|
Zhou Y, Meng F, Köhler K, Bülow JM, Wagner A, Neunaber C, Bundkirchen K, Relja B. Age-related exacerbation of lung damage after trauma is associated with increased expression of inflammasome components. Front Immunol 2024; 14:1253637. [PMID: 38274788 PMCID: PMC10808399 DOI: 10.3389/fimmu.2023.1253637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Background Trauma, a significant global cause of mortality and disability, often leads to fractures and hemorrhagic shock, initiating an exaggerated inflammatory response, which harms distant organs, particularly the lungs. Elderly individuals are more vulnerable to immune dysregulation post-trauma, leading to heightened organ damage, infections, and poor health outcomes. This study investigates the role of NF-κB and inflammasomes in lung damage among aged mice post-trauma. Methods Twelve male C57BL/6J mice underwent hemorrhagic shock and a femoral fracture (osteotomy) with external fixation (Fx) (trauma/hemorrhage, THFx), while another 12 underwent sham procedures. Mice from young (17-26 weeks) and aged (64-72 weeks) groups (n=6) were included. After 24h, lung injury was assessed by hematoxylin-eosin staining, prosurfactant protein C (SPC) levels, HMGB1, and Muc5ac qRT-PCR. Gene expression of Nlrp3 and Il-1β, and protein levels of IL-6 and IL-1β in lung tissue and bronchoalveolar lavage fluid were determined. Levels of lung-infiltrating polymorphonuclear leukocytes (PMNL) and activated caspase-3 expression to assess apoptosis, as well as NLRP3, ASC, and Gasdermin D (GSDMD) to assess the expression of inflammasome components were analyzed via immunostaining. To investigate the role of NF-κB signaling, protein expression of phosphorylated and non-phosphorylated p50 were determined by western blot. Results Muc5ac, and SPC as lung protective proteins, significantly declined in THFx versus sham. THFx-aged exhibited significantly lower SPC and higher HMGB1 levels versus THFx-young. THFx significantly increased activated caspase-3 versus both sham groups, and THFx-aged had significantly more caspase-3 positive cells versus THFx-young. IL-6 significantly increased in both sham and THFx-aged groups versus corresponding young groups. THFx significantly enhanced PMNL in both groups versus corresponding sham groups. This increase was further heightened in THFx-aged versus THFx-young. Expression of p50 and phosphorylated p50 increased in all aged groups, and THFx-induced p50 phosphorylation significantly increased in THFx-aged versus THFx-young. THFx increased the expression of inflammasome markers IL-1β, NLRP3, ASC and GSDMD versus sham, and aging further amplified these changes significantly. Conclusion This study's findings suggest that the aging process exacerbates the excessive inflammatory response and damage to the lung following trauma. The underlying mechanisms are associated with enhanced activation of NF-κB and increased expression of inflammasome components.
Collapse
Affiliation(s)
- Yuzhuo Zhou
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Fanshuai Meng
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
- Uniklinik RWTH Aachen, Department of Trauma and Reconstructive Surgery, Aachen, Germany
| | - Kernt Köhler
- Justus Liebig University Giessen, Institute of Veterinary Pathology, Giessen, Germany
| | - Jasmin Maria Bülow
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| | - Alessa Wagner
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| | - Claudia Neunaber
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Katrin Bundkirchen
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Borna Relja
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| |
Collapse
|
13
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19:2177484. [PMID: 36967609 PMCID: PMC9980590 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
15
|
Wang H, Tian Y, Fu Y, Ma S, Xu X, Wang W, Lu F, Li X, Feng P, Han S, Chen H, Hou H, Hu Q, Liu C. Testicular tissue response following a 90-day subchronic exposure to HTP aerosols and cigarette smoke in rats. Toxicol Res (Camb) 2023; 12:902-912. [PMID: 37915495 PMCID: PMC10615803 DOI: 10.1093/toxres/tfad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Background Researches have shown that chronic inhalation of cigarette smoke (CS) disrupts male reproductive system, but it is unclear about the mechanisms behind reproductive damages by tobacco toxicants in male rats. This study was designed to explore the effects of heated tobacco products (HTP) aerosols and CS exposure on the testicular health of rats. Materials and Methods Experiments were performed on male SD rats exposed to filtered air, HTP aerosols at 10 μg/L, 23 μg/L, and 50 μg/L nicotine-equivalent contents, and also CS at 23 μg/L nicotine-equivalent content for 90 days in five exposure groups (coded as sham, HTP_10, HTP_23, HTP_50 and Cig_23). The expression of serum testosterone, testicular tissue inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA), NLRP3 inflammasome-related mRNAs and proteins (NLRP3, ASC, and Caspase-1), the degree of pyroptosis and histopathology were investigated. Results The results demonstrated that HTP_50 and Cig_23 caused varying degrees of oxidative damage to rat testis, resulting in a decrease of sperm quantity and serum testosterone contents, an increase in the deformity rate, expression levels of proinflammatory cytokines, and NLRP3 inflammasome-related mRNA, and an increase in the NLRP3, ASC, and Caspase-1-immunopositive cells, pyroptosis cell indices, and histopathological damage in the testes of rats. Responses from the HTP_10 and HTP_23 groups were less than those found in the above two exposure groups. Conclusion These findings indicate that HTP_50 and Cig_23 induced oxidative stress in rat testes, induced inflammation and pyroptosis through the ROS/NLRP3/Caspase-1 pathway, and destroyed the integrity of thetesticular tissue structure.
Collapse
Affiliation(s)
- Hongjuan Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yaning Fu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shuhao Ma
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiaoxiao Xu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Wenming Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fengjun Lu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xianmei Li
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Pengxia Feng
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shulei Han
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Chuan Liu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| |
Collapse
|
16
|
Zhang M, Lan H, Peng S, Zhou W, Wang X, Jiang M, Hong J, Zhang Q. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol 2023; 122:110616. [PMID: 37459784 DOI: 10.1016/j.intimp.2023.110616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation. High-throughput RNA sequencing was performed to identify and characterize miRNAs and mRNA transcripts associated with NLRP3-mediated cell death. Our results demonstrated that cleaved-caspase-1 (p10) and N-terminal domain of gasdermin-D (GSDMD-N) were upregulated, and the number of NLRP3 inflammasomes and pyroptotic cells increased in murine macrophage cell lines after irradiation (8 Gy). Comparativeprofiling of 300miRNAs revealed that 41 miRNAsexhibited significantly different expression after 8 Gy of irradiation. Granulocyte-specific microRNA-223-3p (miR-223-3p) is a negative regulator of NLRP3. In vitro experiments revealed that the expression of miR-223-3p was significantly altered by irradiation. Moreover, miR-223-3p decreased the expression of NLRP3 and proinflammatory factors, resulting in reduced pyroptosis in irradiated murine macrophages. Subsequently, in vivo experiments revealed the efficacy of miR-223-3p supplementation in ameliorating alveolar macrophage (AM) pyroptosis, attenuating the infiltration of inflammatory monocytes, and significantly alleviating the severity of acute radiation-induced lung injury (ARILI). Our findings suggest that the miR-223-3p/NLRP3/caspase-1 axis is involved in radiation-induced AM pyroptosis and ARILI.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
17
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
18
|
Li L, Li F, Bai X, Jia H, Wang C, Li P, Zhang Q, Guan S, Peng R, Zhang S, Dong JF, Zhang J, Xu X. Circulating extracellular vesicles from patients with traumatic brain injury induce cerebrovascular endothelial dysfunction. Pharmacol Res 2023; 192:106791. [PMID: 37156450 DOI: 10.1016/j.phrs.2023.106791] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury (TBI). We previously demonstrated that extracellular vesicles (EVs) released from injured brains led to endothelial barrier disruption and vascular leakage. However, the molecular mechanisms of this EV-induced endothelial dysfunction (endotheliopathy) remain unclear. Here, we enriched plasma EVs from TBI patients (TEVs), and detected high mobility group box 1 (HMGB1) exposure to 50.33 ± 10.17% of TEVs and the number of HMGB1+TEVs correlated with injury severity. We then investigated for the first time the impact of TEVs on endothelial function using adoptive transfer models. We found that TEVs induced dysfunction of cultured human umbilical vein endothelial cells and mediated endothelial dysfunction in both normal and TBI mice, which were propagated through the HMGB1-activated receptor for advanced glycation end products (RAGE)/Cathepsin B signaling, and the resultant NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and canonical caspase-1/gasdermin D (GSDMD)-dependent pyroptosis. Finally, von Willebrand factor (VWF) was detected on the surface of 77.01 ± 7.51% of HMGB1+TEVs. The TEV-mediated endotheliopathy was reversed by a polyclonal VWF antibody, indicating that VWF might serve a coupling factor that tethered TEVs to ECs, thus facilitating HMGB1-induced endotheliopathy. These results suggest that circulating EVs isolated from patients with TBI alone are sufficient to induce endothelial dysfunction and contribute to secondary brain injury that are dependent on immunologically active HMGB1 exposed on their surface. This finding provided new insight for the development of potential therapeutic targets and diagnostic biomarkers for TBI.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Fanjian Li
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Haoran Jia
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Cong Wang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Peng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, 199 You'anmen Outer Street, Beijing, China
| | - Qiaoling Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Siyu Guan
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Ruilong Peng
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Jing-Fei Dong
- Bloodworks Research Institute and Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China.
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| |
Collapse
|
19
|
Wei Y, You Y, Zhang J, Ban J, Min H, Li C, Chen J. Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131562. [PMID: 37148789 DOI: 10.1016/j.jhazmat.2023.131562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Environmental exposure to crystalline silica (CS) can lead to silicosis. Alveolar macrophages (AMs) play a crucial role in the pathogenesis of silicosis. Previously, we demonstrated that enhancing AMs mitophagy exerted protective effects on silicosis with a restrained inflammatory response. However, the exact molecular mechanisms are elusive. Pyroptosis and mitophagy are two different biological processes that determine cell fate. Exploring whether there were interactions or balances between these two processes in AMs would provide new insight into treating silicosis. Here we reported that crystalline silica induced pyroptosis in silicotic lungs and AMs with apparent mitochondria injury. Notably, we identified a reciprocal inhibitory effect between mitophagy and pyroptosis cascades in AMs. By enhancing or diminishing mitophagy, we demonstrated that PINK1-mediated mitophagy helped clear damaged mitochondria to negatively regulate CS-induced pyroptosis. While constraining pyroptosis cascades by NLRP3, Caspase1, and GSDMD inhibitors, respectively, displayed enhanced PINK1-dependent mitophagy with lessened CS-injured mitochondria. These observed effects were echoed in the mice with enhanced mitophagy. Therapeutically, we demonstrated abolishing GSDMD-dependent pyroptosis by disulfiram attenuated CS-induced silicosis. Collectively, our data demonstrated that macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis, which may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiarui Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Experimental Teaching Center, School of Public health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiaqi Ban
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
20
|
Han Z, Ma J, Han Y, Yuan G, Jiao R, Meng A. Irisin attenuates acute lung injury by suppressing the pyroptosis of alveolar macrophages. Int J Mol Med 2023; 51:32. [PMID: 36896789 PMCID: PMC10035983 DOI: 10.3892/ijmm.2023.5235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Irisin is a hormone‑like myokine that regulates cell signaling pathways and exerts anti‑inflammatory effects. However, the specific molecular mechanisms involved in this process are currently unknown. The present study explored the role and mechanisms underlying the functions of irisin in alleviating acute lung injury (ALI). The present study used MH‑S, an established murine alveolar macrophage‑derived cell line, and a mouse model of lipopolysaccharide (LPS)‑induced‑ALI to examine the efficacy of irisin against ALI in vitro and in vivo, respectively. Fibronectin type III repeat‑containing protein/irisin was expressed in the inflamed lung tissue, but not in normal lung tissue. Exogenous irisin reduced alveolar inflammatory cell infiltration and pro‑inflammatory factor secretion in mice following LPS stimulation. It also inhibited the polarization of M1‑type macrophages and promoted the repolarization of M2‑type macrophages, thus reducing the LPS‑induced production and secretion of interleukin (IL)‑1β, IL‑18 and tumor necrosis factor‑α. In addition, irisin reduced the release of the molecular chaperone heat shock protein 90 (HSP90), inhibited the formation of nucleotide‑binding and oligomerization domain‑like receptor protein 3 (NLRP3) inflammasome complexes, and decreased the expression of caspase‑1 and the cleavage of gasdermin D (GSDMD), leading to reduced pyroptosis and the accompanying inflammation. On the whole, the findings of the present study demonstrate that irisin attenuates ALI by inhibiting the HSP90/NLRP3/caspase‑1/GSDMD signaling pathway, reversing macrophage polarization and reducing the pyroptosis of macrophages. These findings provide a theoretical basis for understanding the role of irisin in the treatment of ALI and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Zhuoxiao Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jiao Ma
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ying Han
- Department of Neurosurgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Guanli Yuan
- Department of Respiratory and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Rui Jiao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Aihong Meng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
21
|
Patra S, Patil S, Klionsky DJ, Bhutia SK. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol 2023; 238:287-305. [PMID: 36502521 DOI: 10.1002/jcp.30928] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
22
|
Dufour-Gaume F, Frescaline N, Cardona V, Prat NJ. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front Physiol 2023; 13:999011. [PMID: 36726379 PMCID: PMC9884701 DOI: 10.3389/fphys.2022.999011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Hemorrhage is the leading cause of death in severe trauma injuries. When organs or tissues are subjected to prolonged hypoxia, danger signals-known as damage-associated molecular patterns (DAMPs)-are released into the intercellular environment. The endothelium is both the target and a major provider of damage-associated molecular patterns, which are directly involved in immuno-inflammatory dysregulation and the associated tissue suffering. Although damage-associated molecular patterns release begins very early after trauma, this release and its consequences continue beyond the initial treatment. Here we review a few examples of damage-associated molecular patterns to illustrate their pathophysiological roles, with emphasis on emerging therapeutic interventions in the context of severe trauma. Therapeutic intervention administered at precise points during damage-associated molecular patterns release may have beneficial effects by calming the inflammatory storm triggered by traumatic hemorrhagic shock.
Collapse
Affiliation(s)
- Frédérique Dufour-Gaume
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France,*Correspondence: Frédérique Dufour-Gaume,
| | | | - Venetia Cardona
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| | - Nicolas J. Prat
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| |
Collapse
|
23
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1093985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
|
24
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023; 13:1093985. [PMID: 36776394 PMCID: PMC9910335 DOI: 10.3389/fimmu.2022.1093985] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
Affiliation(s)
- Jin Ju
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Haihai Liang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Baofeng Yang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China,*Correspondence: Baofeng Yang,
| |
Collapse
|
25
|
Gong H, Chen Y, Chen M, Li J, Zhang H, Yan S, Lv C. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:1043859. [PMID: 36452899 PMCID: PMC9701739 DOI: 10.3389/fmed.2022.1043859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2023] Open
Abstract
The introduction of the Sepsis 3.0 guidelines in 2016 improved our understanding of sepsis diagnosis and therapy. Personalized treatment strategies and nursing methods for sepsis patients are recommended in the "Save Sepsis Campaign" in 2021. However, mortality in sepsis patients remains high. Patients with sepsis-related acute respiratory distress syndrome account for around 30% of them, with fatality rates ranging from 30 to 40%. Pathological specimens from individuals with sepsis-related ARDS frequently demonstrate widespread alveolar damage, and investigations have revealed that pulmonary epithelial and pulmonary endothelial injury is the underlying cause. As a result, the purpose of this work is to evaluate the mechanism and research progress of pulmonary epithelial and pulmonary endothelial damage in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.
Collapse
Affiliation(s)
- Huankai Gong
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yao Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meiling Chen
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jiankang Li
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hong Zhang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- School of Public Health, Hainan Medical University, Haikou, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Wei T, Zhang C, Song Y. Molecular mechanisms and roles of pyroptosis in acute lung injury. Chin Med J (Engl) 2022; 135:2417-2426. [PMID: 36583860 PMCID: PMC9945565 DOI: 10.1097/cm9.0000000000002425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which are characterized by excessive inflammation and accompanied by diffuse injury of alveoli, can result in severe respiratory failures. The morbidity and mortality of patients remain high because the major treatments for ALI/ARDS are mainly supportive due to the lack of effective therapies. Numerous studies have demonstrated that the aggravation of coronavirus disease 2019 (COVID-19) leads to severe pneumonia and even ARDS. Pyroptosis, a biological process identified as a type of programed cell death, is mainly triggered by inflammatory caspase activation and is directly meditated by the gasdermin protein family, as well as being associated with the secretion and release of pro-inflammatory cytokines. Clinical and experimental evidence corroborates that pyroptosis of various cells in the lung, such as immune cells and structural cells, may play an important role in the pathogenesis of "cytokine storms" in ALI/ARDS, including those induced by COVID-19. Here, with a focus on ALI/ARDS and COVID-19, we summarized the recent advances in this field and proposed the theory of an inflammatory cascade in pyroptosis to identify new targets and pave the way for new approaches to treat these diseases.
Collapse
Affiliation(s)
- Tianchang Wei
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
- Shanghai Respiratory Research Institute, Shanghai 200032, China
- Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
27
|
Zhao J, Wang H, Zhang J, Ou F, Wang J, Liu T, Wu J. Disulfiram alleviates acute lung injury and related intestinal mucosal barrier impairment by targeting GSDMD-dependent pyroptosis. J Inflamm (Lond) 2022; 19:17. [PMID: 36266722 PMCID: PMC9582395 DOI: 10.1186/s12950-022-00313-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pyroptosis was implicated in acute lung injury (ALI). Disulfiram is reported as an effective pyroptosis inhibitor by inhibiting gasdermin D(GSDMD). However, the function of pyroptosis executor GSDMD and treatment of disulfiramon on ALI, especially whether it was involved in ALI-associated intestinal mucosal barrier impairment remains unclear. This study aims to explore the role of pyroptosis and disulfiram' treatment on ALI and related intestinal mucosal barrier impairment. METHODS First, we established lipopolysaccharide (LPS)-induced ALI models in wild-type and Gsdmd knockout (Gsdmd-/-), to detect the effect of pyroptosis on ALI-related intestinal mucosal barrier impairment. Furthermore, we used wild-type mice treated with disulfiram to investigate the treatment of disulfiram on ALI and related intestinal mucosal barrier impairment. RESULTS The data showed that GSDMD-mediated pyroptosis was activated in both lung and intestinal mucosa tissues in LPS-induced ALI, and deficiency of Gsdmd ameliorated LPS-induced ALI and related intestinal mucosal barrier damage. We also disclosed that disulfiram inhibited the pyroptosis level, and alleviated ALI and related intestinal mucosal barrier impairment induced by LPS. CONCLUSION These findings suggested the role of GSDMD-mediated pyroptosis and the potential application treatment of disulfiram in ALI and related intestinal mucosal barrier damage.
Collapse
Affiliation(s)
- Jiping Zhao
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Hong Wang
- Department of Ophthalmology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Fuwei Ou
- Yanzhou Branch of Affiliated Hospital of Jining Medical University, Jining, China
| | - Junfei Wang
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Tian Liu
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
28
|
Sun J, Li Y. Pyroptosis and respiratory diseases: A review of current knowledge. Front Immunol 2022; 13:920464. [PMID: 36248872 PMCID: PMC9561627 DOI: 10.3389/fimmu.2022.920464] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a relatively newly discovered programmed cell death accompanied by an inflammatory response. In the classical view, pyroptosis is mediated by caspases-1,-4,-5,-11 and executed by GSDMD, however, recently it was demonstrated that caspase-3 and-8 also participate in the process of pyroptosis, by cleaving GSDMD/E and GSDMD respectively. Different from autophagy and apoptosis, many pores are formed on the cell membrane during pyroptosis, which makes the cell membrane lose its integrity, eventually leading to the release of cytokines interleukin(IL)-1β and IL-18. When the body is infected with pathogens or exposed to some stimulations, pyroptosis could play an immune defense role. It is found that pyroptosis exists widely in infectious and inflammatory respiratory diseases such as acute lung injury, bronchial dysplasia, chronic obstructive pulmonary disease, and asthma. Excessive pyroptosis may accompany airway inflammation, tissue injury, and airway damage, and induce an inflammatory reaction, leading to more serious damage and poor prognosis of respiratory diseases. This review summarizes the relationship between pyroptosis and related respiratory diseases.
Collapse
|
29
|
CircEXOC5 facilitates cell pyroptosis via epigenetic suppression of Nrf2 in septic acute lung injury. Mol Cell Biochem 2022; 478:743-754. [PMID: 36074295 DOI: 10.1007/s11010-022-04521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/05/2022] [Indexed: 10/14/2022]
Abstract
Acute lung injury (ALI) caused by sepsis is characterized by a destructive high inflammatory response in lungs, which is the ultimate cause of high mortality to patients diagnosed with sepsis. The objective of the present study is to explore the effect and related mechanisms of circEXOC5 on pyroptosis in septic ALI. Sepsis ALI mouse model was induced and established by CLP induction and sepsis MPVEC cell model by LPS. HE staining was used to detect lung tissue pathological changes. ELISA, flow cytometry, and Western blot were utilized to evaluate the release of inflammatory cytokines and cell pyroptosis, and RIP was applied to verify the binding relationship between EZH2 and circEXOC5 or Nrf2. Finally, the interaction between CircEXOC5 and EZH2, H3k27me3, and Nrf2 promoter regions was clarified using ChIP. CircEXOC5 levels were notably ascended in the lung tissues of septic ALI mice. And silencing circEXOC5 inhibited cell pyroptosis and the release of inflammatory cytokines in MPVEC stimulated by LPS. In addition, RIP and ChIP indicated that Nrf2 expression in MPVECs cells could be inhibited by circEXOC5 via recruiting EZH2. In addition, ML385 (a specific inhibitor of Nrf2) reversed the efficacy of Knockdown of circEXOC5 on the Inhibition of pyroptosis and inflammation of MPVEC cells stimulated by LPS. These results indicated that CircEXOC5 could promote cell pyroptosis through epigenetic inhibition of Nrf2 in septic ALI.
Collapse
|
30
|
PSMB5 Alleviates Ulcerative Colitis by Inhibiting ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis. DISEASE MARKERS 2022; 2022:2329904. [PMID: 36061354 PMCID: PMC9439905 DOI: 10.1155/2022/2329904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease. Intestinal mucosal injury is a significant factor in UC. Pyroptosis is a kind of programmed cell death induced by inflammatory caspases. Proteasome 20S subunit beta 5 (PSMB5) promotes cell viability. The purpose of this study was to determine the impact of PSMB5 on intestinal mucosal injury and to elucidate the underlying processes in dextran sulfate sodium- (DSS-) induced UC mice. Kunming (KM) mice received 3% DSS for 5 days to induce UC. We collected clinical symptoms, body weight, colon length, and histological changes. MDA (malondialdehyde) and SOD (superoxide dismutase) levels were determined using an ELISA assay. RT-PCR was used to assess the expression of IL-1β and IL-18. PSMB5 demonstrated a significant effect against UC by increasing body weight and colon length and decreasing DAI (disease activity index), colon macroscopic damage index (CMDI), histological injury scores, and reactive oxygen species (ROS), MDA, and SOD levels, thereby alleviating histopathological changes and inhibiting oxidative stress. HIEC-6 cells were exposed to lipopolysaccharide (LPS) condition with or without PSMB5, along with caspase-1 inhibitor (Z-VAD-FMK), NLRP3 inhibitor (MCC950), and ROS scavenger N-acetylcysteine (NAC). The viability of the cells, the release of lactate dehydrogenase (LDH), and intracellular ROS generation were determined using assay kits. Western blot analysis was used to determine the levels of NLRP3, ASC, cleaved caspase-1 (p20), pro-IL-1β, IL-1β, pro-IL-18, and IL-18. PSMB5 overexpression enhanced the inflammatory damage in LPS-treated HIEC-6 cells by activating the NLRP3 inflammasome and mediating pyroptosis, as demonstrated by increased LDH release and lower cell viability, as well as increased expression of NLRP3, ASC, cleaved caspase-1 (p20), IL-1, and IL-18. Meanwhile, NAC protected HIEC-6 cells from LPS-induced damage by reversing the activation of the NLRP3 inflammasome-mediated pyroptosis. In conclusion, PSMB5 may lower HIEC-6 cell susceptibility to LPS and ameliorate UC-induced HIEC-6 cell damage by decreasing ROS generation and hence inhibiting NLRP3-mediated pyroptosis.
Collapse
|
31
|
Involvement of Pore Formation and Osmotic Lysis in the Rapid Killing of Gamma Interferon-Pretreated C166 Endothelial Cells by Rickettsia prowazekii. Trop Med Infect Dis 2022; 7:tropicalmed7080163. [PMID: 36006255 PMCID: PMC9415803 DOI: 10.3390/tropicalmed7080163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rickettsia prowazekii, the bacterial cause of epidemic typhus in humans, proliferates mainly within the microvascular endothelial cells. Previous studies have shown that murine macrophage-like RAW264.7 cells are rapidly damaged if they are pretreated with gamma interferon (IFN-γ) and then infected with R. prowazekii. In the present study, the effects of IFN-γ and R. prowazekii on murine C166 endothelial cells were evaluated. In the IFN-γ-pretreated R. prowazekii-infected endothelial cell cultures, evidence of cell damage was observed within several hours after addition of the rickettsiae. Considerable numbers of the cells became permeable to trypan blue dye and ethidium bromide, and substantial amounts of lactate dehydrogenase (LDH) were released from the cells. Such evidence of cellular injury was not observed in the untreated infected cultures or in any of the mock-infected cultures. Polyethylene glycols (PEGs) of different nominal average molecular weights were used to assess the possible involvement of pore formation and osmotic lysis in this cellular injury. PEG 8000 dramatically suppressed LDH release, PEG 4000 partially inhibited it, and PEGs 2000 and 1450 had no effect. Despite its inhibition of LDH release, PEG 8000 did not prevent the staining of the IFN-γ-pretreated infected endothelial cells by ethidium bromide. These findings suggest that the observed cellular injury involves the formation of pores in the endothelial cell membranes, followed by osmotic lysis of the cells.
Collapse
|
32
|
Zhang Y, Zhang H, Li S, Huang K, Jiang L, Wang Y. Metformin Alleviates LPS-Induced Acute Lung Injury by Regulating the SIRT1/NF-κB/NLRP3 Pathway and Inhibiting Endothelial Cell Pyroptosis. Front Pharmacol 2022; 13:801337. [PMID: 35910360 PMCID: PMC9334876 DOI: 10.3389/fphar.2022.801337] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS), a devastating complication of numerous conditions, is often associated with high mortality. It is well known that endothelial cell (EC) damage and inflammation are vital processes in the pathogenesis of ARDS. Nevertheless, the mechanisms of EC damage are largely unknown. In the present study, we investigated the role of pyroptosis in the initiation of ARDS and demonstrated that endothelial pyroptosis might play a pivotal role in the pathophysiology of ARDS. Metformin, an antidiabetic drug, exhibited a protective effect in lipopolysaccharide (LPS)-induced lung injury, and we hypothesized that metformin alleviated LPS-induced lung injury via inhibiting ECs pyroptosis. In vivo, male ICR mice were intratracheally injected with LPS, and metformin was previously administered intraperitoneally. Morphological properties of lung tissues were detected. We showed that metformin inhibited NLRP3 inflammasome activation and NLRP3-stimulated pyroptosis induction, as shown by decreased levels of cleaved caspase-1, N-terminal fragment of GSDMD, and protein contents of IL-1β in lung tissues of mice exposed to LPS. LPS-induced expression of vascular adhesion molecules was also reduced after the treatment with metformin. In vitro, exposure of pulmonary ECs to LPS resulted in increased expression of NLRP3 and pyroptosis-associated indicators. By inhibiting the expression of NLRP3 with NLRP3 inhibitor MCC950, pyroptosis-related markers and vascular adhesion molecules were ameliorated. Moreover, metformin treatment significantly inhibited the NF-κB signaling pathway and increased the expression of sirtuin 1 (SIRT1) both in LPS-stimulated lung tissues and pulmonary ECs. Administration of the selective SIRT1 inhibitor nicotinamide significantly reversed the protective effect of metformin against endothelial pyroptosis and lung injury in LPS-treated ECs and LPS-induced acute lung injury (ALI). Thus, these findings demonstrated that metformin alleviated LPS-induced ALI by inhibiting NF-κB-NLRP3–mediated ECs pyroptosis, possibly by upregulating the expression of SIRT1.
Collapse
Affiliation(s)
| | | | | | | | - Lai Jiang
- *Correspondence: Yan Wang, ; Lai Jiang,
| | - Yan Wang
- *Correspondence: Yan Wang, ; Lai Jiang,
| |
Collapse
|
33
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
34
|
Li W, Wang K, Liu Y, Wu H, He Y, Li C, Wang Q, Su X, Yan S, Su W, Zhang Y, Lin N. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Front Immunol 2022; 13:912933. [PMID: 35799788 PMCID: PMC9253268 DOI: 10.3389/fimmu.2022.912933] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we verified its immunomodulatory and anti-inflammatory activities. However, bioactive compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein, an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance, microscale thermophoresis, and pharmacological experiments was carried out to identify the putative targets of BHGZD and underlying BACs. After that, both in vitro and in vivo experiments were performed to determine the drug effects and pharmacological mechanisms. As a result, the calculation and functional modularization based on the interaction network of the “RA-related gene–BHGZD effective gene” screened the TLR4/PI3K/AKT/NFκB/NLRP3 signaling-mediated pyroptosis to be one of the candidate effective targets of BHGZD for reversing the imbalance network of “immune-inflammation” during RA progression. In addition, both mangiferin (MG) and cinnamic acid (CA) were identified as representative BACs acting on that target, for the strong binding affinities between compounds and target proteins, good pharmacokinetic features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the two-BAC combination of MG and CA effectively alleviated the disease severity of the adjuvant-induced arthritis-modified rat model, including elevating pain thresholds, relieving joint inflammation and bone erosion via inhibiting NF-κB via TLR4/PI3K/AKT signaling to suppress the activation of the NLRP3 inflammasome, leading to the downregulation of downstream caspase-1, the reduced release of IL-1β and IL-18, and the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP. In conclusion, these findings offer an evidence that the MG and CA combination identified from BHGZD may interact with TLR4/PI3K/AKT/NFκB signaling to inhibit NLRP3 inflammasome activation and modulate pyroptosis, which provides the novel representative BACs and pharmacological mechanisms of BHGZD against active RA. Our data may shed new light on the mechanisms of the TCM formulas and promote the modernization development of TCM and drug discovery.
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Congchong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| |
Collapse
|
35
|
Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, Li C, Zhao X, Li J, Wan M, Tang W. Emodin Ameliorates Acute Pancreatitis-Associated Lung Injury Through Inhibiting the Alveolar Macrophages Pyroptosis. Front Pharmacol 2022; 13:873053. [PMID: 35721108 PMCID: PMC9201345 DOI: 10.3389/fphar.2022.873053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Xiajia Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Kang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Li ZF, Wang YC, Feng QR, Zhang YS, Zhuang YF, Xie ZX, Bai XJ. Inhibition of the C3a receptor attenuates sepsis-induced acute lung injury by suppressing pyroptosis of the pulmonary vascular endothelial cells. Free Radic Biol Med 2022; 184:208-217. [PMID: 35367342 DOI: 10.1016/j.freeradbiomed.2022.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is the leading cause of bacterial sepsis-related death because of disrupted pulmonary endothelial barrier, resulting in protein-rich pulmonary oedema, an influx of pro-inflammatory cells and refractory hypoxaemia. Several studies have reported that C3a levels are significantly higher in organs with sepsis and their peripheral organs and are closely associated with organ dysfunction and poor prognosis in sepsis. However, the role of the C3a complement in sepsis ALI remains unclear. Therefore, this study aimed to investigate the important role and mechanism of C3a in preventing the occurrence of pyroptosis (a pro-inflammatory form of cell death) to protect the lung endothelial cells (ECs) in sepsis-induced ALI. A septic mouse model was established with cecal ligation and puncture (CLP), which demonstrated that C3a mediated EC pyroptosis through its C3aR receptor. Furthermore, inhibition of the C3a-C3aR axis could block both NLRP3/caspase-1 and caspase-11 pathways, thus preventing pulmonary EC from pyroptosis. These results indicate that inhibition of the C3A-C3AR complement axis can inhibit pulmonary vascular EC pyroptosis, a potential target for the treatment of ALI.
Collapse
Affiliation(s)
- Zhan-Fei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Yu-Chang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Quan-Rui Feng
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Yong-Sheng Zhang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Yang-Fan Zhuang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Zhen-Xing Xie
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| | - Xiang-Jun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, People's Republic of China
| |
Collapse
|
37
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
38
|
Song M, Wang J, Sun Y, Pang J, Li X, Liu Y, Zhou Y, Yang P, Fan T, Liu Y, Li Z, Qi X, Li B, Zhang X, Wang J, Wang C. Inhibition of gasdermin D-dependent pyroptosis attenuates the progression of silica-induced pulmonary inflammation and fibrosis. Acta Pharm Sin B 2022; 12:1213-1224. [PMID: 35530143 PMCID: PMC9069405 DOI: 10.1016/j.apsb.2021.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide, but the molecular basis underlying its development remains unclear. An accumulating body of evidence supports gasdermin D (GSDMD)-mediated pyroptosis as a key component in the development of various pulmonary diseases. However, there is little experimental evidence connecting silicosis and GSDMD-driven pyroptosis. In this work, we investigated the role of GSDMD-mediated pyroptosis in silicosis. Single-cell RNA sequencing of healthy and silicosis human and murine lung tissues indicated that GSDMD-induced pyroptosis in macrophages was relevant to silicosis progression. Through microscopy we then observed morphological alterations of pyroptosis in macrophages treated with silica. Measurement of interleukin-1β release, lactic dehydrogenase activity, and real-time propidium iodide staining further revealed that silica induced pyroptosis of macrophages. Additionally, we verified that both canonical (caspase-1-mediated) and non-canonical (caspase-4/5/11-mediated) signaling pathways mediated silica-induced pyroptosis activation, in vivo and in vitro. Notably, Gsdmd knockout mice exhibited dramatically alleviated silicosis phenotypes, which highlighted the pivotal role of pyroptosis in this disease. Taken together, our results demonstrated that macrophages underwent GSDMD-dependent pyroptosis in silicosis and inhibition of this process could serve as a viable clinical strategy for mitigating silicosis.
Collapse
|
39
|
Huang YD, Fang Y, Ma L, Feng PJ, Li WL, Zhou YQ, Qin YH, You ZJ, Dong L. Kindlin-2 Mediates Lipopolysaccharide-Induced Acute Lung Injury Partially via Pyroptosis in Mice. Inflammation 2022; 45:1199-1208. [PMID: 35133562 DOI: 10.1007/s10753-021-01613-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) is characteristic of the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of pro-inflammatory leukocytes, and intractable hypoxemia, contributing to high mortality. Kindlin-2 is involved in the process of tumor- and wound healing-associated inflammation. However, the effects of kindlin-2 on lipopolysaccharide (LPS)-induced ALI and its mechanisms remain unknown. In this study, we found that the concentration of kindlin-2 was elevated in the lungs of ALI mice. The specific deletion of kindlin-2 by kindlin-2 siRNA attenuated the severity of lung injury, which was demonstrated by the reduced number of pro-inflammatory cells in bronchoalveolar lavage fluid and lung wet/dry weight ratio, and ameliorated pathologic changes in the lungs of ALI mice. Furthermore, kindlin-2 siRNA decreased the mRNA levels of pro-inflammatory factors (IL-1β, IL-6, and TNF-α) and the protein levels of pyroptosis-related proteins. In vitro studies confirmed that LPS + ATP promoted the expressions of pro-inflammatory factors and pyroptosis-related proteins, which was prevented by kindlin-2 siRNA pretreatment in endothelial cells (ECs). In conclusion, inhibition of kindlin-2 developes protective effects against LPS-induced ALI and the cytotoxicity of ECs, which may depend on blocking pyroptosis.
Collapse
Affiliation(s)
- Yi-Dan Huang
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yu Fang
- Medical Laboratory and Pathology Center, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Li Ma
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Peng-Jiu Feng
- Department of Anesthesiology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, Guangxi, China
| | - Wen-Long Li
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yi-Qi Zhou
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yuan-Hao Qin
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China.
| | - Liang Dong
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
40
|
Wu Y, Pan B, Zhang Z, Li X, Leng Y, Ji Y, Sun K, Chen AF. Caspase-4/11-Mediated Pulmonary Artery Endothelial Cell Pyroptosis Contributes to Pulmonary Arterial Hypertension. Hypertension 2022; 79:536-548. [PMID: 34984912 DOI: 10.1161/hypertensionaha.121.17868] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial dysfunction enhances vascular inflammation, which initiates pulmonary arterial hypertension (PAH) pathogenesis, further induces vascular remodeling and right ventricular failure. Activation of inflammatory caspases is an important initial event at the onset of pyroptosis. Studies have shown that caspase-1-mediated pyroptosis has played a crucial role in the pathogenesis of PAH. However, the role of caspase-11, another inflammatory caspase, remains to be elucidated. Therefore, the purpose of this study was to clarify the role of caspase-11 in the development of PAH and its mechanism on endothelial cell function. METHODS The role of caspase-11 in the progression of PAH and vascular remodeling was assessed in vivo. In vitro, the effect of caspase-4 silencing on the human pulmonary arterial endothelial cells pyroptosis was determined. RESULTS We confirmed that caspase-11 and its human homolog caspase-4 were activated in PAH animal models and TNF (tumor necrosis factor)-α-induced human pulmonary arterial endothelial cells. Caspase-11-/- relieved right ventricular systolic pressure, right ventricle hypertrophy, and vascular remodeling in Sugen-5416 combined with chronic hypoxia mice model. Meanwhile, pharmacological inhibition of caspase-11 with wedelolactone exhibited alleviated development of PAH on the monocrotaline-induced rat model. Moreover, knockdown of caspase-4 repressed the onset of TNF-α-induced pyroptosis in human pulmonary arterial endothelial cells and inhibited the activation of pyroptosis effector GSDMD (gasdermin D) and GSDME (gasdermin E). CONCLUSIONS These observations identified the critical role of caspase-4/11 in the pyroptosis pathway to modulate pulmonary vascular dysfunction and accelerate the progression of PAH. Our findings provide a potential diagnostic and therapeutic target in PAH.
Collapse
Affiliation(s)
- Yusi Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China (Y.W., X.L.).,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Y.W., Z.Z., Y.L., A.F.C.)
| | - Bingjie Pan
- Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi, China (B.P.)
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Y.W., Z.Z., Y.L., A.F.C.)
| | - Xiaohui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China (Y.W., X.L.)
| | - Yiping Leng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Y.W., Z.Z., Y.L., A.F.C.).,The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China (Y.L.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (Y.J.)
| | - Kun Sun
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (K.S., A.F.C.)
| | - Alex F Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Y.W., Z.Z., Y.L., A.F.C.).,Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (K.S., A.F.C.)
| |
Collapse
|
41
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:jcm10245815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Correspondence: ; Tel.: +381-11-2665-125
| |
Collapse
|
42
|
Liu L, Yang Y, Fang R, Zhu W, Wu J, Li X, Patankar JV, Li W. Giardia duodenalis and Its Secreted PPIB Trigger Inflammasome Activation and Pyroptosis in Macrophages through TLR4-Induced ROS Signaling and A20-Mediated NLRP3 Deubiquitination. Cells 2021; 10:cells10123425. [PMID: 34943932 PMCID: PMC8700504 DOI: 10.3390/cells10123425] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular protozoan parasite Giardia duodenalis is a well-known and important causative agent of diarrhea on a global scale. Macrophage pyroptosis has been recognized as an important innate immune effector mechanism against intracellular pathogens. Yet, the effects of noninvasive Giardia infection on macrophage pyroptosis and the associated molecular triggers and regulators remain poorly defined. Here we initially observed that NLRP3 inflammasome-mediated pyroptosis was activated in Giardia-treated macrophages, and inhibition of ROS, NLRP3, or caspase-1 could block GSDMD cleavage, IL-1β, IL-18 and LDH release, and the cell viability reduction. We also confirmed that Giardia-induced NLRP3 inflammasome activation was involved in its K63 deubiquitination. Thus, six candidate deubiquitinases were screened, among which A20 was identified as an effective regulator. We then screened TLRs on macrophage membranes and found that upon stimulation TLR4 was tightly correlated to ROS enhancement, A20-mediated NLRP3 deubiquitination, and pyroptotic signaling. In addition, several Giardia-secreted proteins were predicted as trigger factors via secretome analysis, of which peptidyl-prolyl cis-trans isomerase B (PPIB) independently induced macrophage pyroptosis. This was similar to the findings from the trophozoite treatment, and also led to the TLR4-mediated activation of NLRP3 through K63 deubiquitination by A20. Collectively, the results of this study have significant implications for expanding our understanding of host defense mechanisms after infection with G. duodenalis.
Collapse
Affiliation(s)
- Lin Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Yongwu Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Rui Fang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Weining Zhu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Jingxue Wu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Xiaoyun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
| | - Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Wei Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (L.L.); (Y.Y.); (R.F.); (W.Z.); (J.W.); (X.L.)
- Correspondence: or
| |
Collapse
|
43
|
Ding H, Yang J, Chen L, Li Y, Jiang G, Fan J. Memantine Alleviates Acute Lung Injury Via Inhibiting Macrophage Pyroptosis. Shock 2021; 56:1040-1048. [PMID: 33882517 DOI: 10.1097/shk.0000000000001790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Acute lung injury (ALI) is caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis and trauma. Alveolar macrophages are the main and critical leukocytes in the airspace, and through the synthesis and release of various inflammatory mediators critically influence the development of ALI following infection and non-infectious stimuli. There is increasing recognition that inflammation and cell death reciprocally affect each other, which forms an auto-amplification loop of these two factors, and in turn, exaggerates inflammation. Therefore, pharmacological manipulation of alveolar macrophage death signals may serve as a logical therapeutic strategy for ALI. In this study, we demonstrate that memantine, a N-methyl-D-aspartic acid receptor (NMDAR) antagonist, through suppressing Ca2+ influx and subsequent ASC oligomerization inhibits macrophage Nlrp3 inflammasome activation and pyroptosis, therefore, alleviates ALI in septic mice. This finding explores a novel application of memantine, an FDA already approved medication, in the treatment of ALI, which is currently lacking effective therapy.
Collapse
Affiliation(s)
- Hongdou Ding
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jie Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Linsong Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
44
|
Yang X, An X, Wang C, Gao F, Lin Y, Chen W, Deng Q, Xu D, Li S, Zhang P, Sun B, Hou Y, Wu J. Protective Effect of Oxytocin on Ventilator-Induced Lung Injury Through NLRP3-Mediated Pathways. Front Pharmacol 2021; 12:722907. [PMID: 34733156 PMCID: PMC8558354 DOI: 10.3389/fphar.2021.722907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation is an indispensable life-support treatment for acute respiratory failure in critically ill patients, which is generally believed to involve uncontrolled inflammatory responses. Oxytocin (OT) has been reported to be effective in animal models of acute lung injury. However, it is not clear whether Oxytocin has a protective effect on ventilator-induced lung injury (VILI). Therefore, in this study, we aimed to determine whether OT can attenuate VILI and explore the possible mechanism of this protection. To this end, a mouse VILI model was employed. Mice were pretreated with OT 30 min before the intraperitoneal injection of saline or nigericin and ventilation for 4 h, after which they were euthanized. Pathological changes, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, the levels of inflammatory cytokines [i.e., interleukin (IL)-1β, IL-6, and IL-18] in lung tissues and bronchoalveolar lavage fluid (BALF), and expression of NLRP3, Toll-like receptor 4 (TLR4), caspase-1, nuclear factor (NF)-κB, and GSDMD in lung tissues were measured. OT treatment could reduce pathological injury, the W/D ratio, and MPO activity in VILI mice. Our data also indicated that OT administration alleviated the expression of TLR4/My-D88 and the activation of NF-κB, NLRP3, and caspase-1 in lung tissues from the VILI mice model. Furthermore, OT also decreased the levels of IL-1β, IL-6, and IL-18 in the bronchoalveolar lavage fluid. Moreover, the OT administration may alleviate the activation of GSDMD partially through its effects on the NLRP3-mediated pathway. Collectively, OT exerted a beneficial effect on VILI by downregulating TLR4-and NLRP3-mediated inflammatory pathways.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China.,Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaona An
- Department of Anesthesiology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Cheng Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China
| | - Feng Gao
- School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China
| | - Yicheng Lin
- Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjing Chen
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiming Deng
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongsheng Xu
- Department of Kidney Transplantation, The Second Hospital, Shandong University, Jinan, China
| | - Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuedong Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
45
|
Li W, Mao X, Wang X, Liu Y, Wang K, Li C, Li T, Zhang Y, Lin N. Disease-Modifying Anti-rheumatic Drug Prescription Baihu-Guizhi Decoction Attenuates Rheumatoid Arthritis via Suppressing Toll-Like Receptor 4-mediated NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:743086. [PMID: 34675809 PMCID: PMC8525175 DOI: 10.3389/fphar.2021.743086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
As a traditional Chinese medicine-originated disease-modifying anti-rheumatic drug prescription, Baihu-Guizhi decoction (BHGZD) is extensively used for the treatment of rheumatoid arthritis (RA) with a satisfying therapeutic efficacy. Mechanically, our previous data indicated that BHGZD may ameliorate RA partially by restoring the balance of the “inflammation-immune” system through regulating the TLR4-c-Fos-IL2-TNF-alpha axis. Toll-like receptor 4 (TLR4) has been revealed to be involved in the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome complex. Thus, the aim of the current study was to determine the regulatory effects of BHGZD on the TLR4–mediated inflammasome activation during RA progression based on the modified adjuvant-induced arthritis model (AIA-M) and the lipopolysaccharide/adenosine triphosphate (LPS/ATP)–induced pyroptosis cellular models. As a result, oral administration of BHGZD exhibited prominent improvement in the disease severity of AIA-M rats, such as reducing the redness and swelling of joints, arthritis incidence, arthritic scores, and diameter of the limb and increasing pain thresholds. In line with the in vivo findings, BHGZD treatment effectively inhibited the LPS/ATP–induced pyroptosis of both Raw264.7 macrophage and MH7A cells in vitro by reducing pyroptotic cell death morphology (swollen cells) and decreasing propidium iodide–positive and terminal deoxynucleotidyl transferase–mediated dUTP-fluorescein nick end labeling (TUNEL)–positive cells. Notably, the increased expression levels of TLR4, NLRP3, interleukin 1β, and interleukin 18 proteins and the elevated activities of caspase-1 and lactic dehydrogenase in in vivo and in vitro disease models were markedly reversed by the treatment with BHGZD. In conclusion, the above findings proved the immunomodulatory and anti-inflammatory activities of BHGZD, especially in pyroptosis, which may be attributed to the activation of TLR4–mediated NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Congchong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Taixian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Li T, Zheng G, Li B, Tang L. Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Prolif 2021; 54:e13137. [PMID: 34590363 PMCID: PMC8560609 DOI: 10.1111/cpr.13137] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis, which is characterized by gasdermin family protein-mediated pore formation, cellular lysis and the release of pro-inflammatory cytokines, is a form of programmed cell death associated with intracellular pathogens-induced infection. However, emerging evidence indicates that pyroptosis also contributes to sterile inflammation. In this review, we will first illustrate the biological process of pyroptosis. Then, we will focus on the pathogenic effects of pyroptosis on multiple noninfectious disorders. At last, we will characterize several specific pyroptotic inhibitors targeting the pyroptotic signalling pathway. These data demonstrate that pyroptosis plays a prominent role in sterile diseases, thereby providing a promising approach to the treatment of noninfective inflammatory disorders.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ben Li
- Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Feng L, Liang L, Zhang S, Yang J, Yue Y, Zhang X. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy 2021; 18:320-339. [PMID: 34024230 PMCID: PMC8942416 DOI: 10.1080/15548627.2021.1926655] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes mellitus and currently one of the major causes of blindness. Several previous studies have demonstrated that autophagy, which is regulated by HMGB1 (high mobility group box 1), is involved in DR development. However, the role of autophagy in DR is quite complicated in that it promotes pericyte survival in early DR, whereas excessive autophagy causes excess stress and leads to necrosis. Therefore, this study aimed to investigate the relationship between HMGB1, the macroautophagy/autophagy-lysosome pathway, and DR, as well as their underlying molecular mechanisms. In brief, the relationship between high glucose (HG) and the autophagy-lysosome pathway was examined in retinal pigment epithelial (RPE) cells. The relationship was studied by detecting classical autophagic features, and siRNAs targeting HMGB1 and pharmacological regulators were used to explore the role of the autophagy-lysosome pathway in DR development. The results demonstrated that HG inhibited autophagy and diminished the degradative capacity of autophagy due to lysosome membrane permeabilization (LMP). In addition, HMGB1 was found to be involved in LMP via the CTSB (cathepsin B)-dependent pathway, but not the CTSL (cathepsin L)-dependent pathway. Knockdown of HMGB1 expression rescued LMP, restored the degradative capacity of autophagy, decreased the expression of inflammatory factors and VEGF (vascular endothelial growth factor), and protected against apoptosis in RPE cells in the early stages of DR.
Collapse
Affiliation(s)
- Lujia Feng
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Liang Liang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Shaochong Zhang
- Shenzhen Key Laboratory of Ophthalmology, Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Jinglu Yang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Yanan Yue
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xuedong Zhang
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
48
|
Gabarin RS, Li M, Zimmel PA, Marshall JC, Li Y, Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun 2021; 13:323-332. [PMID: 34004605 PMCID: PMC8613564 DOI: 10.1159/000515740] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis is defined as organ dysfunction due to a dysregulated systemic host response to infection. During gram-negative bacterial infection and other acute illness such as absorption from the gut infection, lipopolysaccharide (LPS) is a major mediator in sepsis. LPS is able to trigger inflammation through both intracellular and extracellular pathways. Classical interactions between LPS and host cells first involve LPS binding to LPS binding protein (LBP), a carrier. The LPS-LBP complex then binds to a receptor complex including the CD14, MD2, and toll-like receptor 4 (TLR4) proteins, initiating a signal cascade which triggers the secretion of pro-inflammatory cytokines. However, it has been established that LPS is also internalized by macrophages and endothelial cells through TLR4-independent pathways. Once internalized, LPS is able to bind to the cytosolic receptors caspases-4/5 in humans and the homologous caspase-11 in mice. Bound caspases-4/5 oligomerize and trigger the assembly of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome followed by the activation of inflammatory caspase-1 resulting in subsequent release of interleukin-1β. Caspases-4/5 also activate the perforin gasdermin D and purinergic receptor P2X7, inducing cell lysis and pyroptosis. Pyroptosis is a notable source of inflammation and damage to the lung endothelial barrier during sepsis. Thus, inhibition of caspases-4/5/1 or downstream effectors to block intracellular LPS signaling may be a promising therapeutic approach in adjunction with neutralizing extracellular LPS for treatment of sepsis.
Collapse
Affiliation(s)
- Ramy S Gabarin
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - Manshu Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Paige A Zimmel
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yimin Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Palmblad K, Schierbeck H, Sundberg E, Horne AC, Erlandsson Harris H, Henter JI, Andersson U. Therapeutic administration of etoposide coincides with reduced systemic HMGB1 levels in macrophage activation syndrome. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2021; 27:48. [PMID: 33975537 PMCID: PMC8111379 DOI: 10.1186/s10020-021-00308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Macrophage activation syndrome (MAS) is a potentially fatal complication of systemic inflammation. HMGB1 is a nuclear protein released extracellularly during proinflammatory lytic cell death or secreted by activated macrophages, NK cells, and additional cell types during infection or sterile injury. Extracellular HMGB1 orchestrates central events in inflammation as a prototype alarmin. TLR4 and the receptor for advanced glycation end products operate as key HMGB1 receptors to mediate inflammation. METHODS Standard ELISA and cytometric bead array-based methods were used to examine the kinetic pattern for systemic release of HMGB1, ferritin, IL-18, IFN-γ, and MCP-1 before and during treatment of four children with critical MAS. Three of the patients with severe underlying systemic rheumatic diseases were treated with biologics including tocilizumab or anakinra when MAS developed. All patients required intensive care therapy due to life-threatening illness. Add-on etoposide therapy was administered due to insufficient clinical response with standard treatment. Etoposide promotes apoptotic rather than proinflammatory lytic cell death, conceivably ameliorating subsequent systemic inflammation. RESULTS This therapeutic intervention brought disease control coinciding with a decline of the increased systemic HMGB1, IFN-γ, IL-18, and ferritin levels whereas MCP-1 levels evolved independently. CONCLUSION Systemic HMGB1 levels in MAS have not been reported before. Our results suggest that the molecule is not merely a biomarker of inflammation, but most likely also contributes to the pathogenesis of MAS. These observations encourage further studies of HMGB1 antagonists. They also advocate therapeutic etoposide administration in severe MAS and provide a possible biological explanation for its mode of action.
Collapse
Affiliation(s)
- Karin Palmblad
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Hanna Schierbeck
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Erik Sundberg
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Anna-Carin Horne
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Rheumatology Unit, Department of Medicine, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women׳s and Children׳s Health, Karolinska Institute, 17177, Stockholm, Sweden.,Theme of Children, Karolinska University Hospital, 17176, Solna, Stockholm, Sweden
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
50
|
Ding R, Sun X, Yi B, Liu W, Kazama K, Xu X, Deshpande D, Liang C, Sun J. Nur77 Attenuates Inflammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. Am J Respir Cell Mol Biol 2021; 65:288-299. [PMID: 33971110 DOI: 10.1165/rcmb.2020-0524oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that help trigger and maintain the inflammatory response as part of the innate immune system. Recently, it has been increasingly recognized that aberrant inflammasome activation is critically involved endothelial dysfunction in a variety of human diseases, such as atherosclerosis, acute lung injury (ALI), and type 2 diabetes. The molecular mechanisms underlying endothelial inflammasome activation, however, are not completely elucidated. In the present study, we identified orphan nuclear receptor Nur77 as a novel regulator in controlling inflammasome activation in vascular endothelial cells (ECs). We demonstrated that LPS-induced inflammasome activation was significantly inhibited by ectopic overexpression of Nur77, predominantly through transcriptionally suppression of caspase-1 expression in vascular ECs. Consistent with this observation, we found that LPS-induced inflammasome activation was significantly augmented in lung ECs isolated from Nur77 knockout (KO) mice. Mechanistically, we showed that Nur77-induced inhibition of caspase-1 expression was due to an inhibition of Interferon Regulatory Factor 1 (IRF1) expression and its subsequent binding to the caspase-1 promoter. Importantly, in a mouse model of LPS-induced acute lung injury (ALI), Nur77 KO led to a marked activation of caspase-1 in the lung, increased alveolar and circulating IL-1β levels, and exacerbated ALI, all of which were substantially inhibited by administration of caspase-1 inhibitor. Together, our results support an important role for Nur77 in controlling inflammasome activation in vascular ECs and suggest that Nur77 could be a novel therapeutic target for the treatment of human diseases associated with aberrant inflammasome activation, such as ALI and atherosclerosis.
Collapse
Affiliation(s)
- Ru Ding
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xiaobo Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Bing Yi
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Wennan Liu
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Kyosuke Kazama
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xinyun Xu
- Changzheng Hospital, 56652, Shanghai, China
| | - Deepak Deshpande
- Thomas Jefferson University, 6559, Center for Translational Medicine, Philadelphia, Pennsylvania, United States
| | - Chun Liang
- Changzheng Hospital, 56652, Shanghai, China
| | - Jianxin Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States;
| |
Collapse
|