1
|
Bi X, Wang Z, He J. Recent advances in biomimetic nanodelivery systems for the treatment of myocardial ischemia reperfusion injury. Colloids Surf B Biointerfaces 2025; 247:114414. [PMID: 39626610 DOI: 10.1016/j.colsurfb.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the treatment of myocardial infarction, a leading cause of global mortality due to irreversible cardiac damage. Biomimetic nanodelivery systems offer promising therapeutic strategies to address MIRI. In this review, we comprehensively investigate the underlying pathophysiological mechanisms of MIRI and discuss recent advances in biomimetic nanodelivery systems including cell membrane-coated nanoparticles, exosomes, and nanoenzymes as innovative approaches for MIRI treatment. We emphasize the advantages and potential of biomimetic strategies in enhancing therapeutic efficacy, assess the preclinical effectiveness of these nanodelivery systems, and discuss the challenges associated with translating these approaches into clinical practice. This paper aims to provide new perspectives on biomimetic strategies for MIRI treatment, contributing to the development of effective drug delivery systems.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ze Wang
- Dalian Medical University, Liaoning 116044, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Wang N, Chen C, Ren J, Dai D. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem 2024; 479:1909-1923. [PMID: 37542599 DOI: 10.1007/s11010-023-04821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Chunyan Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jianmin Ren
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
3
|
Ye X, Lin ZJ, Hong GH, Wang ZM, Dou RT, Lin JY, Xie JH, Shen YW. Pyroptosis inhibitors MCC950 and VX-765 mitigate myocardial injury by alleviating oxidative stress, inflammation, and apoptosis in acute myocardial hypoxia. Exp Cell Res 2024; 438:114061. [PMID: 38692345 DOI: 10.1016/j.yexcr.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.
Collapse
Affiliation(s)
- Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Zi-Jie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guang-Hui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Run-Ting Dou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun-Yi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian-Hui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi-Wen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
5
|
Niu N, Miao H, Ren H. Effect of miR-182-5p on apoptosis in myocardial infarction. Heliyon 2023; 9:e21524. [PMID: 38034598 PMCID: PMC10685254 DOI: 10.1016/j.heliyon.2023.e21524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Objective This study aimed to delineate the diagnostic significance of miR-182-5p by investigating its influence on myocardial apoptosis and function, employing both in vivo and in vitro myocardial infarction models. Methods A rat myocardial infarction model was established. Myocardial infarction area was detected using the 2,3,5-chlorotriphenyltetrazolium (TTC) method, myocardial enzyme spectrums were measured using enzyme-linked immunosorbent assay (ELISA), myocardial structure was detected by hematoxylin and eosin (HE) staining, myocardial apoptosis was detected using the TUNEL method, and expression levels of miR-182-5p and apoptosis-related molecules were detected using real-time fluorescence quantitative PCR (qPCR) and Western blot. miR-182-5p mimics and inhibitor were transfected into rat H9C2 cardiomyocytes and mouse HL-1 cardiomyocytes to establish a hypoxia model. Cardiomyocyte viability was detected using the CCK-8 method, expression levels of apoptosis-related indicators were detected using Western blot, and caspase-3/7 activity was detected using a caspase-3/7 activity detection kit. AAV9 adeno-associated virus was used to construct an miR-182-5p overexpression virus, which was injected into mice through the tail vein to create a mouse myocardial infarction model. TTC, ELISA, HE staining, echocardiography, real-time fluorescence qPCR, and Western blot methods were used to detect the effects of AAV9-miR-182-5p on myocardial injury, myocardial function, and myocardial apoptosis levels in myocardial infarction. Results The rat model displayed reduced miR-182-5p expression concurrent with an increase in apoptosis. The in vitro H9C2 and HL-1 hypoxia models revealed that miR-182-5p augmented the hypoxia-induced decrease in myocardial cell viability, suppressed Bcl-2 expression, and increased Bax, Bnip3, and caspase-3/7 activity levels. The injection of AAV9-miR-182-5p significantly exacerbated myocardial tissue damage, impaired myocardial function, and enhanced apoptosis. Conclusion miR-182-5p escalates myocardial injury during myocardial infarction by fostering apoptosis. Interventions that aim to reduce miR-182-5p levels might be crucial in halting the progression of myocardial infarction.
Collapse
Affiliation(s)
- Nan Niu
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Huangtai Miao
- Coronary Heart Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Hongmei Ren
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, 750021, PR China
| |
Collapse
|
6
|
Pei G, Chen L, Wang Y, He C, Fu C, Wei Q. Role of miR-182 in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol 2023; 11:1181515. [PMID: 37228653 PMCID: PMC10203221 DOI: 10.3389/fcell.2023.1181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The treatment of cardiovascular and cerebrovascular diseases have undergone major advances in recent decades, allowing for a more effective prevention of cardiovascular and cerebrovascular events. However, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. Novel therapeutic strategies are critical to improve patient outcomes following cardiovascular diseases. miRNAs are small non-coding RNAs, that regulate gene expression. Here, we discuss the role of miR-182 in regulating myocardial proliferation, migration, hypoxia, ischemia, apoptosis and hypertrophy in atherosclerosis, CAD, MI, I/R injury, organ transplant, cardiac hypertrophy, hypertension, heart failure, congenital heart disease and cardiotoxicity. Besides, we also summarize the current progress of miR-182 therapeutics in clinical development and discuss challenges that will need to be overcome to enter the clinic for patients with cardiac disease.
Collapse
Affiliation(s)
- Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Li Chen
- Department of Rehabilitation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Yang Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xiong Y, Leng Y, Li W, Li W, Tian H, Tao J, Chen R, Xia Z. Nogo-A Mediated Endoplasmic Reticulum Stress During Myocardial Ischemic-Reperfusion Injury in Diabetic Rats. Cardiovasc Toxicol 2023; 23:147-160. [PMID: 36964845 DOI: 10.1007/s12012-023-09788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Among the three isoforms encoded by neurite outgrowth inhibitor proteins has been intensely investigated as a central nervous system inhibitor. Although neurite outgrowth inhibitor protein-A (Nogo-A) expression is increased in plasma of patients who have experienced a coronary heart disease, its role in heart disease is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in diabetic myocardial ischemia reperfusion (MI/R) injury conditions. Accelerated Nogo-A and MI/R injury in diabetic rats was attenuated by tauroursodeoxycholic acid treatment and knockdown of Nogo-A per se is sufficient to decrease endoplasmic reticulum (ER) stress as well as prevents cardiomyocyte apoptosis. We hypothesized that decreased Nogo-A levels might reducing diabetic MI/R injury. Nogo-A interacted with C/EBP homologous protein, suggesting a role for Nogo-A in ER stress during diabetic MI/R. In conclusion, Nogo-A mediated ER stress plays a major role in diabetic MI/R injury, and pathologically altered Nogo-A expression mediates diabetic MI/R injury, suggesting Nogo-A as a novel target for the treatment of diabetic MI/R injury in clinical settings.
Collapse
Affiliation(s)
- Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
9
|
Soto A, Nieto-Díaz M, Reigada D, Barreda-Manso MA, Muñoz-Galdeano T, Maza RM. miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15050529. [PMID: 35631355 PMCID: PMC9146179 DOI: 10.3390/ph15050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity. Our results show that miR-182-5p mimic specifically downregulates the expression of the luciferase reporter gene fused to the mouse Nogo-A 3′UTR, and Nogo-A protein expression in Neuro-2a and C6 cells. Finally, we observed that when rat primary hippocampal neurons are co-cultured with C6 cells transfected with miR-182-5p mimic, there is a promotion of the outgrowth of neuronal neurites in length. From all these data, we suggest that miR-182-5p may be a potential therapeutic tool for the promotion of axonal regeneration in different diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo M. Maza
- Correspondence: (M.N.-D.); (R.M.M.); Tel.: +34-92539-6834 (R.M.M.)
| |
Collapse
|
10
|
Xu L, Wang F. LINC00936 exacerbated myocardial infarction progression via miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. Perfusion 2022; 38:706-716. [PMID: 35410528 DOI: 10.1177/02676591221076788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE LncRNAs show great potential in diagnosing and treating myocardial infarction (MI). Clarifying the mechanism of lncRNAs on MI is of great significance for the application of MI biomarkers. Therefore, this report intended to determine the role and mechanism of LINC00936 on MI by biological and imaging methods. METHODS Hypoxia H9C2 model was established by hypoxia treatment. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay detected the apoptosis of H9C2. H2DCFDA staining and enzyme-linked immunosorbent assay (ELISA) was used to detect the reactive oxygen species (ROS) accumulation and Lactate dehydrogenase (LDH) contents, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect LINC00936, Wnt3a and miR-4795-3p levels. Western blot detected Wnt3a protein expression. Dual luciferase reporter assays detected the relationship of miR-4795-3p to LINC00936 or Wnt3a. Echocardiography analysis detected cardiac function. 2,3,5-Triphenyltetrazolium chloride (TTC) detected the infarct size. Masson staining detected the pathological changes. RESULTS LINC00936 level was elevated in the MI patients compared with the controls. Overexpression of LINC00936 promoted apoptosis and ROS accumulation in hypoxia H9C2 model and exacerbated MI progression in vivo. miR-4795-3p bound with LINC00936 in H9C2 cells and miR-4795-3p mimics inhibited apoptosis and ROS accumulation in hypoxia H9C2 model regulated by LINC00936. Wnt3a was targeted by miR-4795-3p and Wnt3a elevation promoted apoptosis and ROS accumulation in hypoxia H9C2 model. CONCLUSION In this report, we illustrated that LINC00936 exacerbated MI progression via the miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. These findings might provide potential molecular target for the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Lvyun Xu
- Department of Emergency, Affiliated Taikang Xianlin Drum Tower Hospital, 117559Medical School of Nanjing University, Nanjing, China
| | - Fan Wang
- Department of Radiology, Nanjing BenQ Medical Center, 189779The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Yao J, Ma R, Wang C, Zhao G. LncRNA-HOTAIR Inhibits H9c2 Apoptosis After Acute Myocardial Infarction via miR-206/FN1 Axis. Biochem Genet 2022; 60:1781-1792. [DOI: 10.1007/s10528-022-10185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
|
12
|
Liu Y, Hu R, Shen H, Mo Q, Wang X, Zhang G, Li S, Liang G, Hou N, Luo J. Endophilin A2-mediated alleviation of endoplasmic reticulum stress-induced cardiac injury involves the suppression of ERO1α/IP 3R signaling pathway. Int J Biol Sci 2021; 17:3672-3688. [PMID: 34512174 PMCID: PMC8416715 DOI: 10.7150/ijbs.60110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure.
Collapse
Affiliation(s)
- Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Huanjia Shen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Qinxin Mo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Xinqiuyue Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guiping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Sujuan Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guanfeng Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ning Hou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Jiandong Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| |
Collapse
|
13
|
Wang W, Zheng H. Myocardial Infarction: The Protective Role of MiRNAs in Myocardium Pathology. Front Cardiovasc Med 2021; 8:631817. [PMID: 33748196 PMCID: PMC7973051 DOI: 10.3389/fcvm.2021.631817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases have been regarded as the leading cause of death around the world, with myocardial infarction (MI) being the most severe form. MI leads to myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, ultimately leading to heart failure, and death. Micro RNAs (miRNAs) participate in the genesis and progression of myocardial pathology after MI by playing an important regulatory role. This review aims to summarize all available knowledge on the role of miRNAs in the myocardial pathological process after MI to uncover potential major target pathways. In addition, the main therapeutic methods and their latest progress are also reviewed. miRNAs can regulate the main signaling pathways as well as pathological processes. Thus, they have the potential to induce therapeutic effects. Hence, the combination of miRNAs with recently developed exosome nanocomplexes may represent the future direction of therapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Hao Zheng
- Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
14
|
Nogo-A Is Critical for Pro-Inflammatory Gene Regulation in Myocytes and Macrophages. Cells 2021; 10:cells10020282. [PMID: 33572505 PMCID: PMC7912613 DOI: 10.3390/cells10020282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nogo-A (Rtn 4A), a member of the reticulon 4 (Rtn4) protein family, is a neurite outgrowth inhibitor protein that is primarily expressed in the central nervous system (CNS). However, previous studies revealed that Nogo-A was upregulated in skeletal muscles of Amyotrophic lateral sclerosis (ALS) patients. Additionally, experiments showed that endoplasmic reticulum (ER) stress marker, C/EBP homologous protein (CHOP), was upregulated in gastrocnemius muscle of a murine model of ALS. We therefore hypothesized that Nogo-A might relate to skeletal muscle diseases. According to our knocking down and overexpression results in muscle cell line (C2C12), we have found that upregulation of Nogo-A resulted in upregulation of CHOP, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while downregulation of Nogo-A led to downregulation of CHOP, IL-6 and TNF-α. Immunofluorescence results showed that Nogo-A and CHOP were expressed by myofibers as well as tissue macrophages. Since resident macrophages share similar functions as bone marrow-derived macrophages (BMDM), we therefore, isolated macrophages from bone marrow to study the role of Nogo-A in activation of these cells. Lipopolysaccharide (LPS)-stimulated BMDM in Nogo-KO mice showed low mRNA expression of CHOP, IL-6 and TNF-α compared to BMDM in wild type (WT) mice. Interestingly, Nogo knockout (KO) BMDM exhibited lower migratory activity and phagocytic ability compared with WT BMDM after LPS treatment. In addition, mice experiments data revealed that upregulation of Nogo-A in notexin- and tunicamycin-treated muscles was associated with upregulation of CHOP, IL-6 and TNF-α in WT group, while in Nogo-KO group resulted in low expression level of CHOP, IL-6 and TNF-α. Furthermore, upregulation of Nogo-A in dystrophin-deficient (mdx) murine model, myopathy and Duchenne muscle dystrophy (DMD) clinical biopsies was associated with upregulation of CHOP, IL-6 and TNF-α. To the best of our knowledge, this is the first study to demonstrate Nogo-A as a regulator of inflammation in diseased muscle and bone marrow macrophages and that deletion of Nogo-A alleviates muscle inflammation and it can be utilized as a therapeutic target for improving muscle diseases.
Collapse
|
15
|
Jia B, Huang W, Wang Y, Zhang P, Wang Z, Zheng M, Wang T. Nogo-C Inhibits Peripheral Nerve Regeneration by Regulating Schwann Cell Apoptosis and Dedifferentiation. Front Neurosci 2021; 14:616258. [PMID: 33584179 PMCID: PMC7873940 DOI: 10.3389/fnins.2020.616258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Bo Jia
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Yu Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Zhiwei Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
16
|
Park S, Park JH, Kang UB, Choi SK, Elfadl A, Ullah HMA, Chung MJ, Son JY, Yun HH, Park JM, Yim JH, Jung SJ, Kim SH, Choi YC, Kim DS, Shin JH, Park JS, Hur K, Lee SH, Lee EJ, Hwang D, Jeong KS. Nogo-A regulates myogenesis via interacting with Filamin-C. Cell Death Discov 2021; 7:1. [PMID: 33414425 PMCID: PMC7791112 DOI: 10.1038/s41420-020-00384-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Un-Beom Kang
- R&D Division, BERTIS, Inc., Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.,Core Protein Resources Center, DGIST, Daegu, 42988, Republic of Korea
| | - Ahmed Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun Ho Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Min Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jun Jung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Hyup Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06058, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
17
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Translationally controlled tumor protein (TCTP) plays a pivotal role in cardiomyocyte survival through a Bnip3-dependent mechanism. Cell Death Dis 2019; 10:549. [PMID: 31320615 PMCID: PMC6639386 DOI: 10.1038/s41419-019-1787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Prevention of cardiomyocyte death is an important therapeutic strategy for heart failure. In this study, we focused on translationally controlled tumor protein (TCTP), a highly conserved protein that is expressed ubiquitously in mammalian tissues, including heart. TCTP plays pivotal roles in survival of certain cell types, but its function in cardiomyocytes has not been examined. We aimed to clarify the role of TCTP in cardiomyocyte survival and the underlying mechanism. Here, we demonstrated that downregulation of TCTP with siRNA induced cell death of cardiomyocytes with apoptotic and autophagic features, accompanied with mitochondrial permeability transition pore (mPTP) opening. TCTP loss did not induce cell death of cardiac fibroblasts. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) was found to mediate the TCTP-loss-induced cardiomyocyte death. In exploring the clinical significance of the TCTP expression in the heart, we found that DOX treatment markedly downregulated the protein expression of TCTP in cultured cardiomyocytes and in mouse heart tissue. Exogenous rescue of TCTP expression attenuated DOX-induced cardiomyocyte death. In mice, cardiomyocyte-specific overexpression of TCTP resulted in decreased susceptibility to DOX-induced cardiac dysfunction, accompanied with attenuated induction of Bnip3. Dihydroartemisinin, a pharmacological TCTP inhibitor, induced development of heart failure and cardiomyocyte death in control mice, but not in mice with cardiomyocyte-specific TCTP overexpression. Our findings revealed TCTP has a pivotal role in cardiomyocyte survival, at least in part through a Bnip3-dependent mechanism. TCTP could be considered as a candidate therapeutic target to prevent DOX-induced heart failure.
Collapse
|
19
|
Luo Y, Duan X, Bian L, Chen Z, Kuang L, Li Y. Ischemic Preconditioning Preventing Downregulation of miR-182 Protects Intestine Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis. Arch Med Res 2019; 50:241-248. [DOI: 10.1016/j.arcmed.2019.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023]
|
20
|
Zhao H, Su W, Zhu C, Zeng T, Yang S, Wu W, Wang D. Cell fate regulation by reticulon-4 in human prostate cancers. J Cell Physiol 2018; 234:10372-10385. [PMID: 30480803 DOI: 10.1002/jcp.27704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Reticulon-4 (RTN4), a reticulon family protein localized in the endoplasmic reticulum, is reported to be involved in multiple physiological processes like neuroendocrine secretion and membrane trafficking in neuroendocrine cells. Previous studies have presented a great potential of RTN4 for the treatment of autoimmune-mediated demyelinating diseases and spinal cord injury regeneration. While interaction with Bcl-2 and Bcl-2-like family in apoptosis modulation implicated its possible role in various human cancers. However, the investigation of this gene in prostate cancer is mainly ignored. Here in our current study, we focused on its role in prostate cancer and found that RTN4 DNA copy numbers were higher in prostate cancer than normal prostate gland while its RNA and protein expressions were relatively lower. Chromosomal neighbor gene EML6 had similar expression patterns with RTN4 in prostate cancer tissues and cell lines, and further research found that they could be both targeted by miR-148a-3p. Lentivirus-mediated RTN4 overexpression potently inhibited DU145 and LNCaP cells proliferation. Cell cycle was blocked in G2/M phase and significant cell senescence was observed in RTN4 overexpressed prostate cancer cells. Finally, interaction networks in the normal prostate gland and cancer tissues further revealed that RTN4 maybe phosphorylated by MAPKAPK2 and FYN at tyrosine 591 and serine 107, respectively. All these results implied that RTN4 might somehow participate in prostate tumor progression, and this elicits possibility to develop or identify selective agents targeting RTN4 for prostate cancer therapy.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Weipeng Su
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Changyan Zhu
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Tengyue Zeng
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Shunliang Yang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Weizhen Wu
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Wang
- Department of Urology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Michalak M, Agellon LB. Stress Coping Strategies in the Heart: An Integrated View. Front Cardiovasc Med 2018; 5:168. [PMID: 30519562 PMCID: PMC6258784 DOI: 10.3389/fcvm.2018.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is made up of an ordered amalgam of cardiac cell types that work together to coordinate four major processes, namely energy production, electrical conductance, mechanical work, and tissue remodeling. Over the last decade, a large body of information has been amassed regarding how different cardiac cell types respond to cellular stress that affect the functionality of their elaborate intracellular membrane networks, the cellular reticular network. In the context of the heart, the manifestations of stress coping strategies likely differ depending on the coping strategy outcomes of the different cardiac cell types, and thus may underlie the development of distinct cardiac disorders. It is not clear whether all cardiac cell types have similar sensitivity to cellular stress, how specific coping response strategies modify their unique roles, and how their metabolic status is communicated to other cells within the heart. Here we discuss our understanding of the roles of specialized cardiac cells that together make the heart function as an organ with the ability to pump blood continuously and follow a regular rhythm.
Collapse
Affiliation(s)
- Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
22
|
Cai H, Saiyin H, Liu X, Han D, Ji G, Qin B, Zuo J, Shen S, Yu W, Wu J, Wu Y, Yu L. Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Mol Oncol 2018; 12:2042-2054. [PMID: 30019429 PMCID: PMC6275258 DOI: 10.1002/1878-0261.12358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/27/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of cancer as well as an attractive target for cancer therapy. Characterization of novel pathways that act in parallel with the VEGF/VEGFR axis to promote tumor angiogenesis may provide insights into novel anti‐angiogenic therapeutic targets. We found that the expression level of Nogo‐B is positively correlated with tumor vessel density in hepatocellular carcinoma (HCC). While Nogo‐B depletion inhibited tumor angiogenesis, Nogo‐B overexpression promoted tumor angiogenesis in a tumor xenograft subcutaneous model of the human HCC cell line. Mechanically, Nogo‐B regulates tumor angiogenesis based on its association with integrin αvβ3 and activation of focal adhesion kinase. Moreover, Nogo‐B antibody successfully abolished the function of Nogo‐B in tumor angiogenesis in vitro and in vivo. Collectively, our results strongly suggest that Nogo‐B is an important tumor angiogenic factor and blocking Nogo‐B selectively inhibits tumor angiogenesis.
Collapse
Affiliation(s)
- Hao Cai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xing Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dingding Han
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoqing Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Qin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Zuo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Ding S, Abudupataer M, Zhou Z, Chen J, Li H, Xu L, Zhang W, Zhang S, Zou Y, Hong T, Wang TC, Yang X, Ge J. Histamine deficiency aggravates cardiac injury through miR-206/216b-Atg13 axis-mediated autophagic-dependant apoptosis. Cell Death Dis 2018; 9:694. [PMID: 29880830 PMCID: PMC5992227 DOI: 10.1038/s41419-018-0723-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/22/2023]
Abstract
Histamine is a widely distributed biogenic amine involved in the regulation of an array of biological processes. Serum histamine level is markedly elevated in the early stages of acute myocardial infarction, whereas the role it plays remains unclear. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine production, and cardiac injury is significantly aggravated in HDC knockout mice (HDC−/−), in which histamine is deficient. We also observed that autophagy was highly activated in cardiomyocytes of HDC−/− mice post acute myocardial infarction (AMI), which was abolished by compensation of exogenous histamine. The in vivo and in vitro results showed that acting through histamine 1 receptor, histamine increased miR-206 and miR-216b, which worked in concert to target to Atg13, resulting in the reduction of autophagy activation under hypoxia and AMI condition. Further study revealed that Atg13 interacted with FADD to promote the activation of caspase-8 and cell apoptosis. Taken together, these data unveil a novel intracellular signaling pathway involved in histamine regulating myocardial autophagy and apoptosis under hypoxia and AMI condition, which might help to more comprehensively evaluate the usage of histamine receptor antagonists and to develop new therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | | | - Zheliang Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinmiao Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lili Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Hong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY, 10032, USA
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Weng L, Jia S, Xu C, Ye J, Cao Y, Liu Y, Zheng M. Nogo-C regulates post myocardial infarction fibrosis through the interaction with ER Ca 2+ leakage channel Sec61α in mouse hearts. Cell Death Dis 2018; 9:612. [PMID: 29795235 PMCID: PMC5966439 DOI: 10.1038/s41419-018-0598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is an independent risk factor for heart failure and even the leading cause of death in myocardial infarction patients. However, molecular mechanisms associated with the pathogenesis of cardiac fibrosis following myocardial infarction are not yet fully understood. Nogo-C protein ubiquitously expresses in tissues including in the heart. Our previous study found that Nogo-C regulated cardiomyocyte apoptosis during myocardial infarction. In the present study, we found that Nogo-C was upregulated in fibrotic hearts after myocardial infarction and in Ang II- or TGF-β1-stimulated cardiac fibroblasts. Overexpression of Nogo-C in cardiac fibroblasts increased expression of pro-fibrogenic proteins, while knockdown of Nogo-C inhibited the fibrotic responses of cardiac fibroblasts to Ang II- or TGF-β1 stimulation. Functionally, Nogo-C deficiency suppressed pro-fibrogenic proteins in post-myocardial infarction hearts and ameliorated post-myocardial infarction cardiac function. Mechanistically, we found that Nogo-C increased intracellular Ca2+ concentration and buffering Ca2+ totally abolished Nogo-C-induced fibrotic responses. Moreover, overexpression of Nogo-C caused increased Sec61α, the Ca2+ leakage channel on endoplasmic reticulum membrane. Nogo-C interacted with Sec61α on endoplasmic reticulum and stabilized Sec61α protein by inhibiting its ubiquitination. Inhibition or knockdown of Sec61α blocked Nogo-C-induced increase of cytosolic Ca2+ concentration and inhibited Nogo-C- and TGF-β1-induced fibrotic responses in cardiac fibroblasts, suggesting that Nogo-C regulates cardiac fibrosis through interacting with Sec61α to mediate the Ca2+ leakage from endoplasmic reticulum. Thus, our results reveal a novel mechanism underlying cardiac fibrosis following myocardial infarction, and provide a therapeutic strategy for cardiac remodeling related heart diseases.
Collapse
Affiliation(s)
- Lin Weng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Shi Jia
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chunling Xu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jingjing Ye
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yangpo Cao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingying Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ming Zheng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
25
|
Zhang H, Wang J, Li L, Chai N, Chen Y, Wu F, Zhang W, Wang L, Shi S, Zhang L, Bian S, Xu C, Tian Y, Zhao Y. Spermine and spermidine reversed age-related cardiac deterioration in rats. Oncotarget 2017; 8:64793-64808. [PMID: 29029392 PMCID: PMC5630292 DOI: 10.18632/oncotarget.18334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/21/2017] [Indexed: 01/08/2023] Open
Abstract
Aging is the most important risk factor for cardiovascular disease (CVD). Slowing or reversing the physiological impact of heart aging may reduce morbidity and mortality associated with age-related CVD. The polyamines, spermine (SP) and spermidine (SPD) are essential for cell growth, differentiation and apoptosis, and levels of both decline with age. To explore the effects of these polyamines on heart aging, we administered SP or SPD intraperitoneally to 22- to 24-month-old rats for 6 weeks. Both treatments reversed and inhibited age-related myocardial morphology alterations, myocardial fibrosis, and cell apoptosis. Using combined proteomics and metabolomics analyses, we identified proteins and metabolites up- or downregulated by SP and SPD in aging rat hearts. SP upregulated 51 proteins and 28 metabolites while downregulating 80 proteins and 29 metabolites. SPD upregulated 44 proteins and 24 metabolites and downregulated 84 proteins and 176 metabolites. These molecules were mainly associated with immune responses, blood coagulation, lipid metabolism, and glutathione metabolism pathways. Our study provides novel molecular information on the cardioprotective effects of polyamines in the aging heart, and supports the notion that SP and SPD are potential clinical therapeutics targeting heart disease.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Junying Wang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Lingxu Li
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Nannan Chai
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,College of Nursing, Medical School of Chifeng University, Chifeng, China
| | - Yuhan Chen
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Feixiang Wu
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Lina Wang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Sa Shi
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Li Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuling Bian
- Experiment Center of Function, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ye Tian
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|