1
|
Daams R, Tran TTP, Jemaà M, Sime W, Mickeviciute R, Ek S, Rönnstrand L, Kazi JU, Massoumi R. Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3. Cell Death Dis 2024; 15:690. [PMID: 39327470 PMCID: PMC11427694 DOI: 10.1038/s41419-024-07067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.
Collapse
Affiliation(s)
- Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Thi Thu Phuong Tran
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden
| | - Ruta Mickeviciute
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering, Lund University, Medicon Village, Lund, Sweden
| | - Lars Rönnstrand
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden.
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden.
| |
Collapse
|
2
|
Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, Sime W, Massoumi R. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer 2024; 24:103. [PMID: 38238702 PMCID: PMC10795364 DOI: 10.1186/s12885-023-11663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Molecular targeted therapy using a drug that suppresses the growth and spread of cancer cells via inhibition of a specific protein is a foundation of precision medicine and treatment. High expression of the proto-oncogene Bcl-3 promotes the proliferation and metastasis of cancer cells originating from tissues such as the colon, prostate, breast, and skin. The development of novel drugs targeting Bcl-3 alone or in combination with other therapies can cure these patients or prolong their survival. As a proof of concept, in the present study, we focused on metastatic melanoma as a model system. High-throughput screening and in vitro experiments identified BCL3ANT as a lead molecule that could interfere with Bcl-3-mediated cyclin D1 expression and cell proliferation and migration in melanoma. In experimental animal models of melanoma, it was demonstrated that the use of a Bcl-3 inhibitor can influence the survival of melanoma cells. Since there are no other inhibitors against Bcl-3 in the clinical pipeline for cancer treatment, this presents a unique opportunity to develop a highly specific drug against malignant melanoma to meet an urgent clinical need.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Kristofer Ahlqvist
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Navisraj Balagunaseelan
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden.
| |
Collapse
|
3
|
Turnham DJ, Smith H, Clarkson RWE. Suppression of Bcl3 Disrupts Viability of Breast Cancer Cells through Both p53-Dependent and p53-Independent Mechanisms via Loss of NF-κB Signalling. Biomedicines 2024; 12:143. [PMID: 38255248 PMCID: PMC10813424 DOI: 10.3390/biomedicines12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The NF-κB co-factor Bcl3 is a proto-oncogene that promotes breast cancer proliferation, metastasis and therapeutic resistance, yet its role in breast cancer cell survival is unclear. Here, we sought to determine the effect of Bcl3 suppression alone on breast cancer cell viability, with a view to informing future studies that aim to target Bcl3 therapeutically. Bcl3 was suppressed by siRNA in breast cancer cell lines before changes in viability, proliferation, apoptosis and senescence were examined. Bcl3 suppression significantly reduced viability and was shown to induce apoptosis in all cell lines tested, while an additional p53-dependent senescence and senescence-associated secretory phenotype was also observed in those cells with functional p53. The role of the Bcl3/NF-κB axis in this senescence response was confirmed via siRNA of the non-canonical NF-κB subunit NFKB2/p52, which resulted in increased cellular senescence and the canonical subunit NFKB1/p50, which induced the senescence-associated secretory phenotype. An analysis of clinical data showed a correlation between reduced relapse-free survival in patients that expressed high levels of Bcl3 and carried a p53 mutation. Together, these data demonstrate a dual role for Bcl3/NF-κB in the maintenance of breast cancer cell viability and suggests that targeting Bcl3 may be more beneficial to patients with tumours that lack functional p53.
Collapse
Affiliation(s)
| | | | - Richard W. E. Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
5
|
Li Z, Yang J, Chen L, Chen P, Liu C, Long X, Chen B, Long J. Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer. Anticancer Agents Med Chem 2024; 24:1074-1084. [PMID: 38808719 DOI: 10.2174/0118715206307769240522075729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor. OBJECTIVE To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action Methods: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR. RESULTS Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT. CONCLUSION These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.
Collapse
Affiliation(s)
- Zhihao Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jin Yang
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Pei Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Xiaoming Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Bo Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Jun Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen J, Jing Y, Cao L, Chen X, Su J. Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells. J Orthop Translat 2022; 35:72-80. [PMID: 36186660 PMCID: PMC9471962 DOI: 10.1016/j.jot.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Background Bone fracture healing is a postnatal regenerative process in which fibrocartilaginous callus formation and bony callus formation are important. Bony callus formation requires osteoblastic differentiation of MSCs. Materials and methods The formation of callus was assessed by μCT, Safranin-O, H&E and Masson trichrome staining. Osteogenesis of MSCs was analyzed by ALP staining, ARS staining, qRT-PCR and WB. And we also used IF and TOP/FOP Flash luciferase reporter to assess the nuclear translocation of PP65. Results In this study, we found Bcl-3 showed a significant correlation with bone fracture healing. Results of μCT showed that loss of Bcl-3 delays bone fracture healing. Safranin-O, H&E and Masson trichrome staining confirmed that loss of Bcl-3 impacted the formation of cartilage and woven bone in callus. Further experiments in vitro manifested that Bcl-3-knockdown could inhibit MSCs osteoblastic differentiation through releasing the inhibition on NF-κB signaling by Co-IP, IF staining and luciferase reporter assay. Conclusions We unveiled that loss of Bcl-3 could lead to inhibited osteogenic differentiation of MSCs via promoting PP65 nuclear translocation. The translational potential of this article Our data demonstrated that overexpression of Bcl-3 accelerates bone fracture healing, which serves as a promising therapeutic target for bone fracture treatment.
Collapse
|
8
|
Argani P, Tickoo SK, Matoso A, Pratilas CA, Mehra R, Tretiakova M, Sibony M, Meeker AK, Lin MT, Reuter VE, Epstein JI, Gagan J, Palsgrove DN. Adult Wilms Tumor: Genetic Evidence of Origin of a Subset of Cases From Metanephric Adenoma. Am J Surg Pathol 2022; 46:988-999. [PMID: 35184066 PMCID: PMC9310085 DOI: 10.1097/pas.0000000000001864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genetics of nephroblastoma (Wilms tumor) occurring in adults is largely unknown, as studies have largely been limited to isolated case reports. We, therefore, studied 14 adult Wilms tumors for genetic alterations, using expanded targeted sequencing on 11 cases. The patients ranged from 17 to 46 years of age (mean and median, 31 y), and there were 8 males and 6 females. Five Wilms tumors harbored BRAF V600E mutations. All of these had better-differentiated areas identical to metanephric adenoma, as has previously been described. In 3 such cases, microdissection studies revealed that the BRAF V600E mutation was present in both the metanephric adenoma and Wilms tumor areas; however, additional genetic alterations (including TERT promoter mutations in 2 cases, ASLX1/ATR mutations in 1 other case) were limited to the Wilms tumor component. These findings suggest that the Wilms tumor developed from the metanephric adenoma. Other adult Wilms tumors harbored genetic alterations previously reported in the more common pediatric Wilms tumors, including WT1 mutations (2 cases), ASLX1 mutations (3 additional cases), NSD2 mutation (1 additional case), and 11p loss (3 cases). In summary, a significant subset of adult Wilms tumors (specifically those of epithelial type with differentiated areas) harbor targetable BRAF V600E mutations and appear to arise from metanephric adenomas as a consequence of additional acquired genetic alterations. Other adult Wilms tumors often harbor genetic alterations found in their more common pediatric counterparts, suggesting at least some similarities in their pathogenesis.
Collapse
Affiliation(s)
| | - Satish K. Tickoo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andres Matoso
- Departments of Pathology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Rohit Mehra
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Maria Tretiakova
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA
| | | | - Alan K. Meeker
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Victor E. Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jonathan I. Epstein
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Doreen N. Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res 2022; 24:40. [PMID: 35681213 PMCID: PMC9185916 DOI: 10.1186/s13058-022-01536-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.
Collapse
Affiliation(s)
- David Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Aiman Zein
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Josée Coulombe
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Miguel A Cabrita
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline Ward
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
10
|
Lin F, Li X, Wang X, Sun H, Wang Z, Wang X. Stanniocalcin 1 promotes metastasis, lipid metabolism and cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:129. [PMID: 35392966 PMCID: PMC8988421 DOI: 10.1186/s13046-022-02315-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stanniocalcin 1 (STC1) plays an integral role in ovarian cancer (OC). However, the functional role of STC1 in metastasis, lipid metabolism and cisplatin (DDP) chemoresistance in OC is not fully understood. METHODS Single-cell sequencing and IHC analysis were performed to reveal STC1 expression profiles in patient tissues. Metastasis, lipid metabolism and DDP chemoresistance were subsequently assessed. Cell-based in vitro and in vivo assays were subsequently conducted to gain insight into the underlying mechanism of STC1 in OC. RESULTS Single-cell sequencing assays and IHC analysis verified that STC1 expression was significantly enhanced in OC tissues compared with para-carcinoma tissues, and it was further up-regulated in peritoneal metastasis tissues compared with OC tissues. In vitro and in vivo experiments demonstrated that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance in OC. Simultaneously, STC1 promoted lipid metabolism by up-regulating lipid-related genes such as UCP1, TOM20 and perilipin1. Mechanistically, STC1 directly bound to integrin β6 (ITGB6) to activate the PI3K signaling pathway. Moreover, STC1 was directly regulated by Forkhead box C2 (FOXC2) in OC. Notably, targeting STC1 and the FOXC2/ITGB6 signaling axis was related to DDP chemoresistance in vitro. CONCLUSIONS Overall, these findings revealed that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance via the FOXC2/ITGB6 signaling axis in OC. Thus, STC1 may be used as a prognostic indicator in patients with metastatic OC. Meanwhile, STC1 could be a therapeutic target in OC patients, especially those who have developed chemoresistance to DDP.
Collapse
Affiliation(s)
- Feikai Lin
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Xinjing Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Ziliang Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
11
|
Xiao Z, Zhao H. Ferroptosis-Related APOE, BCL3 and ALOX5AP Gene Polymorphisms are Associated with the Risk of Thyroid Cancer. Pharmgenomics Pers Med 2022; 15:157-165. [PMID: 35241926 PMCID: PMC8887669 DOI: 10.2147/pgpm.s352225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose This study aimed to evaluate the association between polymorphisms in the ferroptosis-related genes apolipoprotein E (APOE), BCL3 transcription coactivator (BCL3) and arachidonate 5-lipoxygenase activating protein (ALOX5AP) and the risk of thyroid cancer. Methods Six single nucleotide polymorphisms (SNPs) of APOE (rs429358 and rs7412), BCL3 (rs34698726 and rs8100239) and ALOX5AP (rs4076128 and rs4073259) were genotyped in 520 papillary thyroid carcinoma cases and 520 healthy controls using the MassARRAY platform. Results The rs429358-TC, rs34698726-TA/TT, and rs8100239-AT/AA genotypes exhibited an elevated risk of thyroid cancer (prs429358 = 0.002, prs34698726 = 0.007, prs8100239 = 0.002), while rs7412-CT/TT and rs4076128-GA/GG were found to be protective genotypes against the risk of disease (prs7412 = 0.0003, prs4076128 = 0.0001). Genetic model analysis showed that APOE-rs429358 was correlated with an increased risk of disease under dominant and log-additive models (pdominant = 0.0004, plog-additive = 0.0006). BCL3-s34698726 and rs8100239 were associated with an elevated risk of disease under all three genetic models (p < 0.05). In contrast, APOE-rs7412 was related to a decreased risk of thyroid cancer under dominant and log-additive models (pdominant = 0.0001, plog-additive = 0.0001). Moreover, ALOX5AP-rs4076128 was also correlated with a reduced risk of disease under all three genetic models (p < 0.05). Conclusion The results help us better understand how genetic polymorphisms in ferroptosis-related genes are relevant to thyroid cancer susceptibility.
Collapse
Affiliation(s)
- Zhifu Xiao
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
- Correspondence: Zhifu Xiao, Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, 29 Shuangtasi Road, Taiyuan, Shanxi, 030012, People’s Republic of China, Tel/Fax +86 0351-4960327, Email
| | - Haixia Zhao
- Central Lab, General Hospital of Taiyuan Iron and Steel Group, Taiyuan, Shanxi, 030003, People’s Republic of China
| |
Collapse
|
12
|
Czapiewski P, Cornelius M, Hartig R, Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A, Nass N. BCL3 expression is strongly associated with the occurrence of breast cancer relapse under tamoxifen treatment in a retrospective cohort study. Virchows Arch 2022; 480:529-541. [PMID: 35020071 PMCID: PMC8989858 DOI: 10.1007/s00428-021-03238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Patients with estrogen receptor positive breast cancer are usually receiving an anti-estrogen therapy by either aromatase inhibitors or selective estrogen receptor mediators such as tamoxifen. Nevertheless, acquired resistance to tamoxifen under treatment frequently hampers therapy. One proposed explanation for this phenomenon is the interaction of the tumor cells with cells of the tumor microenvironment via the Insulin-like growth factor RNA binding protein 5/B-cell lymphoma 3 (IGFBP5/BCL3) axis. Here we investigated whether a high expression of BCL3 either cytoplasmic or nuclear is associated with the occurrence of a relapse under anti-estrogen therapy in patients. Formaldehyde-fixed, paraffin-embedded samples of 180 breast cancer patients were analyzed for BCL3 expression by immunohistochemistry. An immunoreactive score (IRS) was calculated from staining intensity in cytoplasm and nucleus as well as the percentage of positive tumor cells. These scores were correlated with clinico-pathological parameters using cross-tabulation analysis and patients’ relapse free and overall survival by Kaplan–Meier analysis and Cox regression. A tamoxifen-adapted MCF-7 derived cell line was investigated for BCL3 localization by immunofluorescence. The cytosolic BCL3-IRS significantly correlated with the proliferation marker Ki-67, and with the occurrence of a relapse under tamoxifen treatment. Nuclear score correlated only with tamoxifen-relapse. In survival analysis, both scores were highly significant prognostic factors for relapse free, but not for overall survival. This was especially obvious for estrogen receptor positive and HER2/NEU negative cases as well as lobular breast cancer. Tamoxifen-treated, but not aromatase-treated patients had a poor survival when BCL3 scores were high. A tamoxifen adapted cell line exhibited a reduced expression and mainly nuclear localization of BCL3, compared to the parental estrogen receptor positive cell-line MCF-7. Altogether, these data strongly support a function of BCL3 in tamoxifen resistance and its potential use as a predictive biomarker for tamoxifen resistance.
Collapse
Affiliation(s)
- Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Pathology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Maximilian Cornelius
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany.,Multi-Parametric Bioimaging and Cytometry Platform, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.,Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Angela Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Atanas Ignatov
- Department of Obstetrics and Gynecology, Otto Von Guericke University Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Dessau Medical Center, Department for Internal Medicine I, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
13
|
Zhou HZ, Chen B, Li XJ, Du JJ, Zhang N, Shao YX, Zhang K, Tong ZC. MicroRNA-545-5p regulates apoptosis, migration and invasion of osteosarcoma by targeting dimethyladenosine transferase 1. Oncol Lett 2021; 22:763. [PMID: 34539867 PMCID: PMC8436355 DOI: 10.3892/ol.2021.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Bo Chen
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiao-Ju Li
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Juan-Juan Du
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Nan Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yu-Xiong Shao
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhi-Chao Tong
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
14
|
Huang Y, Yang X, Meng Y, Shao C, Liao J, Li F, Li R, Jing Y, Huang A. The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci 2021; 11:173. [PMID: 34530917 PMCID: PMC8447591 DOI: 10.1186/s13578-021-00683-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Liver cancer is one of the most common malignancies in the world with a poor prognosis. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, accounting for 80–90% of cases. The initiation and progression of HCC are closely associated with chronic liver inflammation. In addition, HCC is often accompanied by cell senescence. Senescent hepatocytes can secrete various inflammatory factors, collectively called the senescence-associated secretory phenotype (SASP). The SASP has been confirmed to promote the occurrence of liver cancer by affecting the inflammatory microenvironment. However, its role and the underlying mechanism of hepatic SASP in hepatocarcinogenesis are not clearly understood. Therefore, a better understanding of the pathogenic mechanisms of the effect of the hepatic SASP on the occurrence of HCC is still needed. Methods The study aims to explore the role of SASP factors and the underlying mechanism in tumorigenesis and the progression of HCC in vivo. We used diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) (DEN-CCl4) to establish liver cancer model in wild-type (WT) mice and Bcl3 knockout (Bcl3−/−) mice. β-galactosidase (β-gal) staining was performed to evaluate the degree of cellular senescence. Immunohistochemistry (IHC) were used to detect the degree of cellular senescence and the activation of macrophage. PCR chip and clinical tissue chip assays were used to estimate the RNA levels of SASP factors and NF-κB related genes, and their protein levels were examined by Western blot assays. Results DEN-CCl4 induced cellular senescence in mouse hepatocytes. In addition, senescent hepatocytes might release a variety of inflammatory factors that further activate macrophages, thereby changing the microenvironmental state and promoting the occurrence of HCC. Mechanistically, the NF-κB pathway is important because it regulates the SASP. Therefore, we used a PCR chip to detect the expression of NF-κB-related genes in senescent liver tissue. Our results showed that the expression of Bcl3 was increased in senescent hepatocytes, and knocking out Bcl3 significantly inhibited the secretion of hepatocyte SASP factors and the activation of macrophages, thereby inhibiting hepatocarcinogenesis. Finally, in clinical tissues adjacent to HCC tissues in patients, the expression of Bcl3 and IL-8 correlated with poor prognosis in HCC patients. Conclusion The hepatic SASP can further induce the activation of macrophages during hepatocarcinogenesis, thereby promoting the occurrence of HCC, and that this process is closely related to the expression of Bcl3 in hepatocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00683-5.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Fengwei Li
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China.
| |
Collapse
|
15
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
16
|
Turnham DJ, Yang WW, Davies J, Varnava A, Ridley AJ, Conlan RS, Clarkson RWE. Bcl-3 promotes multi-modal tumour cell migration via NF-κB1 mediated regulation of Cdc42. Carcinogenesis 2021; 41:1432-1443. [PMID: 31957805 DOI: 10.1093/carcin/bgaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.
Collapse
Affiliation(s)
- Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - William W Yang
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Julia Davies
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Soukupová J, Bordoni C, Turnham DJ, Yang WW, Seaton G, Gruca A, French R, Lee KY, Varnava A, Piggott L, Clarkson RWE, Westwell AD, Brancale A. The Discovery of a Novel Antimetastatic Bcl3 Inhibitor. Mol Cancer Ther 2021; 20:775-786. [PMID: 33649105 DOI: 10.1158/1535-7163.mct-20-0283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
The development of antimetastatic drugs is an urgent healthcare priority for patients with cancer, because metastasis is thought to account for around 90% of cancer deaths. Current antimetastatic treatment options are limited and often associated with poor long-term survival and systemic toxicities. Bcl3, a facilitator protein of the NF-κB family, is associated with poor prognosis in a range of tumor types. Bcl3 has been directly implicated in the metastasis of tumor cells, yet is well tolerated when constitutively deleted in murine models, making it a promising therapeutic target. Here, we describe the identification and characterization of the first small-molecule Bcl3 inhibitor, by using a virtual drug design and screening approach against a computational model of the Bcl3-NF-kB1(p50) protein-protein interaction. From selected virtual screening hits, one compound (JS6) showed potent intracellular Bcl3-inhibitory activity. JS6 treatment led to reductions in Bcl3-NF-kB1 binding, tumor colony formation, and cancer cell migration in vitro; and tumor stasis and antimetastatic activity in vivo, while being devoid of overt systemic toxicity. These results represent a successful application of in silico screening in the identification of protein-protein inhibitors for novel intracellular targets, and confirm Bcl3 as a potential antimetastatic target.
Collapse
Affiliation(s)
- Jitka Soukupová
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Cinzia Bordoni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - William W Yang
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gillian Seaton
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Aleksandra Gruca
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Rhiannon French
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kok Yung Lee
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Luke Piggott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom.
| |
Collapse
|
18
|
Wang Q, Chen X, Jiang Y, Liu S, Liu H, Sun X, Zhang H, Liu Z, Tao Y, Li C, Hu Y, Liu D, Ye D, Liu Y, Wang M, Zhang X. Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. J Mol Cell Biol 2021; 12:125-137. [PMID: 31065671 PMCID: PMC7109602 DOI: 10.1093/jmcb/mjz032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Histone methylation is a context-dependent modification that regulates gene expression, and the trimethylation of histone H3 lysine 27 (H3K27me3) usually induces gene silencing. Overcoming colorectal cancer (CRC) chemoresistance is currently a huge challenge, but the relationship between H3K27me3 modification and chemoresistance remains largely unclear. Here, we found that H3K27me3 levels positively correlated with the metastasis-free survival of CRC patients and a low H3K27me3 level predicted a poor outcome upon chemotherapeutic drug treatment. Oxaliplatin stimulation significantly induced the expression of H3K27 lysine demethylase 6A/6B (KDM6A/6B), thus decreasing the level of H3K27me3 in CRC cells. Elevation of H3K27me3 level through KDM6A/6B depletion or GSK-J4 (a KDM6A/6B inhibitor) treatment significantly enhanced oxaliplatin-induced apoptosis. Conversely, when inhibiting the expression of H3K27me3 by EPZ-6438, an inhibitor of the histone methyltransferase EZH2, the proportion of apoptotic cells remarkably decreased. In addition, the combination of GSK-J4 and oxaliplatin significantly inhibited tumor growth in an oxaliplatin-resistant patient-derived xenograft model. Importantly, we revealed that oxaliplatin treatment dramatically induced NOTCH2 expression, which was caused by downregulation of H3K27me3 level on the NOTCH2 transcription initiation site. Thus, the activated NOTCH signaling promoted the expression of stemness-related genes, which resulted in oxaliplatin resistance. Furthermore, oxaliplatin-induced NOTCH signaling could be interrupted by GSK-J4 treatment. Collectively, our findings suggest that elevating H3K27me3 level can improve drug sensitivity in CRC patients.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Xi Chen
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Yuhang Jiang
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Sanhong Liu
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China.,Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510000, 195 Dongfeng West Road, Guangzhou, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, 393 Huaxia Middle Road, Shanghai, China
| | - Hanshao Liu
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China.,Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510000, 195 Dongfeng West Road, Guangzhou, China
| | - Xiaohua Sun
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Haohao Zhang
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Zhi Liu
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Yu Tao
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Cuifeng Li
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Yiming Hu
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Dandan Liu
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Deji Ye
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, Ruijin 2nd Road, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Ruijin 2nd Road, Shanghai, China
| | - Xiaoren Zhang
- The Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, 227 Chongqing South Road, Shanghai, China.,Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510000, 195 Dongfeng West Road, Guangzhou, China
| |
Collapse
|
19
|
PIWIL1 interacting RNA piR-017061 inhibits pancreatic cancer growth via regulating EFNA5. Hum Cell 2021; 34:550-563. [PMID: 33389678 DOI: 10.1007/s13577-020-00463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
PIWI (P element induced wimpy testis) integrating RNAs (piRNAs) are small non-coding RNAs with the length of approximately 30 nucleotides that plays crucial roles in germ cells and adult stem cells. Recently, accumulating data have shown that piRNA and PIWI proteins are involved in tumorigenesis. However, the roles of PIWI proteins and piRNAs in pancreatic cancer are still elusive. Here, we showed that piR-017061 is significantly downregulated in pancreatic cancer patients' samples and pancreatic cancer cell lines. Furthermore, we studied the function of piR-017061 in pancreatic cancer and our data revealed that piR-017061 inhibits pancreatic cancer cell growth in vitro and in vivo. Moreover, we analyzed the genomic loci around piR-017061 and identified EFNA5 as a novel target of piR-017061. Importantly, our data further revealed a direct binding between piR-017061 and EFNA5 mRNA mediated by PIWIL1. Mechanically, piR-017061 cooperates with PIWIL1 to facilitate EFNA5 mRNA degradation and loss of piR-017061 results in accumulation of EFNA5 which facilitates pancreatic cancer development. Hence, our data provided novel insights into PIWI/piRNA-mediated gene regulation and their function in pancreatic cancer. Since PIWI proteins and piRNA predominately express in germline and cancer cells, our study provided novel therapeutic strategy for pancreatic cancer treatment.
Collapse
|
20
|
Cui X, Wang J, Li Y, Couse ZG, Risoleo TF, Moayeri M, Leppla SH, Malide D, Yu ZX, Eichacker PQ. Bacillus anthracis edema toxin inhibits hypoxic pulmonary vasoconstriction via edema factor and cAMP-mediated mechanisms in isolated perfused rat lungs. Am J Physiol Heart Circ Physiol 2021; 320:H36-H51. [PMID: 33064559 PMCID: PMC7847081 DOI: 10.1152/ajpheart.00362.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Bacillus anthracis edema toxin (ET) inhibited lethal toxin-stimulated pulmonary artery pressure (Ppa) and increased lung cAMP levels in our previous study. We therefore examined whether ET inhibits hypoxic pulmonary vasoconstriction (HPV). Following baseline hypoxic measures in isolated perfused lungs from healthy rats, compared with diluent, ET perfusion reduced maximal Ppa increases (mean ± SE percentage of maximal Ppa increase with baseline hypoxia) during 6-min hypoxic periods (FIO2 = 0%) at 120 min (16 ± 6% vs. 51 ± 6%, P = 0.004) and 180 min (11.4% vs. 55 ± 6%, P = 0.01). Protective antigen-mAb (PA-mAb) and adefovir inhibit host cell edema factor uptake and cAMP production, respectively. In lungs perfused with ET following baseline measures, compared with placebo, PA-mAb treatment increased Ppa during hypoxia at 120 and 180 min (56 ± 6% vs. 10 ± 4% and 72 ± 12% vs. 12 ± 3%, respectively, P ≤ 0.01) as did adefovir (84 ± 10% vs. 16.8% and 123 ± 21% vs. 26 ± 11%, respectively, P ≤ 0.01). Compared with diluent, lung perfusion with ET for 180 min reduced the slope of the relationships between Ppa and increasing concentrations of endothelin-1 (ET-1) (21.12 ± 2.96 vs. 3.00 ± 0.76 × 108 cmH2O/M, P < 0.0001) and U46619, a thromboxane A2 analogue (7.15 ± 1.01 vs. 3.74 ± 0.31 × 107 cmH2O/M, P = 0.05) added to perfusate. In lungs isolated from rats after 15 h of in vivo infusions with either diluent, ET alone, or ET with PA-mAb, compared with diluent, the maximal Ppa during hypoxia and the slope of the relationship between change in Ppa and ET-1 concentration added to the perfusate were reduced in lungs from animals challenged with ET alone (P ≤ 0.004) but not with ET and PA-mAb together (P ≥ 0.73). Inhibition of HPV by ET could aggravate hypoxia during anthrax pulmonary infection.NEW & NOTEWORTHY The most important findings here are edema toxin's potent adenyl cyclase activity can interfere with hypoxic pulmonary vasoconstriction, an action that could worsen hypoxemia during invasive anthrax infection with lung involvement. These findings, coupled with other studies showing that lethal toxin can disrupt pulmonary vascular integrity, indicate that both toxins can contribute to pulmonary pathophysiology during infection. In combination, these investigations provide a further basis for the use of antitoxin therapies in patients with worsening invasive anthrax disease.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zoe G Couse
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas F Risoleo
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Daniela Malide
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Astragaloside and/or Hydroxysafflor Yellow A Attenuates Oxygen-Glucose Deprivation-Induced Cultured Brain Microvessel Endothelial Cell Death through Downregulation of PHLPP-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3597527. [PMID: 33381198 PMCID: PMC7755473 DOI: 10.1155/2020/3597527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of ischemic stroke, a life-threatening condition in humans, amongst Asians is high and the prognosis is poor. In the absence of effective therapeutics, traditional Chinese medicines have been used that have shown promising results. It is crucial to identify traditional Chinese medicine formulas that protect the blood-brain barrier, which is damaged by an ischemic stroke. In this study, we aimed to elucidate such formulas. Brain microvascular endothelial cells (BMECs) were used to establish an in vitro ischemia-reperfusion model for oxygen-glucose deprivation (OGD) experiments to evaluate the function of two traditional Chinese medicines, namely, astragaloside (AS-IV) and hydroxysafflor yellow A (HSYA), in protecting against BMEC. Our results revealed that AS-IV and HSYA attenuated the cell loss caused by OGD by increasing cell proliferation and inhibiting cell apoptosis. In addition, these compounds promoted the migration and invasion of BMECs in vitro. Furthermore, we found that BMECs rescued by AS-IV and HSYA could be functionally activated in vitro, with AS-IV and HSYA showing synergetic effects in rescuing BMECs survival in vitro by reducing the expression of PHLPP-1 and activating Akt signaling. Our results elucidated the potential of AS-IV and HSYA in the prevention and treatment of stroke by protecting against cerebral ischemia-reperfusion injury.
Collapse
|
22
|
Liu Q, Dai SJ, Dong L, Li H. Long noncoding RNA RP11-909N17.2 promotes proliferation, invasion, and migration of hepatocellular carcinoma by regulating microRNA-767-3p. Biochem Cell Biol 2020; 98:709-718. [PMID: 33210543 DOI: 10.1139/bcb-2019-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, especially in developing countries. Although advances in surgical procedures and targeted medicine have improved the overall survival of patients with HCC, the prognosis is poor. Hence, there is a need to identify novel therapeutic targets for HCC. Here, we report that the expression of RP11-909N17.2, a novel, long, noncoding RNA (lncRNA), is dysregulated in patients with HCC and cell lines. Additionally, this study demonstrated that RP11-909N17.2 facilitates the proliferation and invasion of HCC cells by binding to miRNA-767-3p, a tumor-suppressive microRNA (miRNA). Small integral membrane protein 7 (SMIM7) was identified as the downstream target of miRNA-767-3p. The expression of SMIM7 was upregulated in HCC clinical samples and cell lines. Moreover, SMIM7 was involved in the proliferation and invasion of HCC cells. Furthermore, SMIM7 inhibited the apoptosis of HCC cells, which indicated the oncogenic role of SMIM7 in HCC. The findings of this study suggest that the lncRNA-miRNA-mRNA regulatory axis, which regulates the pathogenesis of HCC, can be a potential novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Medical Imaging, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - She-Jiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xinwu Road, Xi'an, 710004, People's Republic of China
| |
Collapse
|
23
|
Leng X, Huang G, Ding J, Ma F. Circ_0000043 promotes the proliferation, migration, invasiveness, and epithelial-mesenchymal transition in breast cancer cells via the miR-136-Smad3 axis. Biochem Cell Biol 2020; 99:277-285. [PMID: 33043682 DOI: 10.1139/bcb-2020-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Circular RNAs (circRNAs) are tissue-specific RNAs with a more stable structure than linear RNAs, and their association with breast cancer (BC) is poorly understood. This study examined the biological effects of circ_0000043 in the progression of BC. In this study, expression of circ_0000043 in BC tissue samples was measured using quantitative real-time polymerase chain reaction. Immunohistochemistry and Western blot were used to detect the expression of Smad family member 3 (Smad3). CCK-8, wound healing, and Transwell assays were used to assess the effect of circ_0000043 on the proliferation, migration, and invasiveness of BC cells. Moreover, the binding relationships between circ_0000043 and miR-136, and miR-136 and Smad3 were detected by dual-luciferase reporter assay. Additionally, Western blot was used to detect the expressions of markers related to epithelial-mesenchymal transition, including E-cadherin, N-cadherin, and vimentin. Our results show that the expression of circ_0000043 is up-regulated in BC tissues and cell lines. The proliferation, migration, invasiveness, and epithelial-mesenchymal transition of BC cells were significantly inhibited by knockdown of circ_0000043, and overexpression of circ_0000043 had the opposite effects. Additionally, circ_0000043 up-regulate the expression of Smad3 by sponging miR-136. In conclusion, our study demonstrates that circ_0000043 promote the progression of BC via regulating the miR-136-Smad3 axis.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Ultrasonography, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Guofu Huang
- Department of Radio-Chemotherapy, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Fucheng Ma
- Department of Ultrasonography, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| |
Collapse
|
24
|
Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis 2020; 41:249-256. [PMID: 31930327 PMCID: PMC7221501 DOI: 10.1093/carcin/bgaa003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed ‘Hallmarks of Cancer’. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Christopher T Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Li BB, Scott EY, Chamberlain MD, Duong BTV, Zhang S, Done SJ, Wheeler AR. Cell invasion in digital microfluidic microgel systems. SCIENCE ADVANCES 2020; 6:eaba9589. [PMID: 32832633 PMCID: PMC7439438 DOI: 10.1126/sciadv.aba9589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/02/2020] [Indexed: 05/27/2023]
Abstract
Microfluidic methods for studying cell invasion can be subdivided into those in which cells invade into free space and those in which cells invade into hydrogels. The former techniques allow straightforward extraction of subpopulations of cells for RNA sequencing, while the latter preserve key aspects of cell interactions with the extracellular matrix (ECM). Here, we introduce "cell invasion in digital microfluidic microgel systems" (CIMMS), which bridges the gap between them, allowing the stratification of cells on the basis of their invasiveness into hydrogels for RNA sequencing. In initial studies with a breast cancer model, 244 genes were found to be differentially expressed between invading and noninvading cells, including genes correlating with ECM-remodeling, chemokine/cytokine receptors, and G protein transducers. These results suggest that CIMMS will be a valuable tool for probing metastasis as well as the many physiological processes that rely on invasion, such as tissue development, repair, and protection.
Collapse
Affiliation(s)
- Bingyu B. Li
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Erica Y. Scott
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - M. Dean Chamberlain
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Bill T. V. Duong
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Shuailong Zhang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Susan J. Done
- Laboratory Medicine Program, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Aaron R. Wheeler
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| |
Collapse
|
26
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma. Food Sci Nutr 2020; 8:3515-3524. [PMID: 32724614 PMCID: PMC7382131 DOI: 10.1002/fsn3.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 μmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.
Collapse
Affiliation(s)
- Chong‐Xiang Lin
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Wei Tu
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ke Ma
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Peng‐Cheng Ye
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xia Shao
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhao‐An Yang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ming Fang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
27
|
Zhan W, Liao X, Liu J, Tian T, Yu L, Li R. USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3. Oncogenesis 2020; 9:48. [PMID: 32404892 PMCID: PMC7220910 DOI: 10.1038/s41389-020-0234-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
Histone modification represents a crucial level of gene expression regulation and is actively involved in the carcinogenesis of human colorectal cancer. Histone acetyltransferases and deacetylases modulate the landscape of histone acetylation, which controls key genes of colorectal cancer pathology. However, the fine tune of histone deacetylases, especially the modification of histone deacetylases that facilitate colorectal cancer, remains elusive. Here, we identified that an ubiquitin-specific protease (USP), USP38, was downregulated in clinical colorectal cancer samples and colorectal cancer cell lines. Importantly, our results showed that USP38 was a specific deubiquitinase of histone deacetylase 3 (HDAC3), which cleaved the lysine 63 ubiquitin chain. Ubiquitination of HDAC3 resulted in a decreased level of histone acetylation and finally led to upregulation of cancer stem cell-related genes. In addition, our results demonstrated a tumor suppressor role of USP38 in colorectal cancer via inhibiting cancer stem cell populations. Most importantly, the ubiquitination level of HDAC3 was responsible for USP38 mediated regulation of cancer stem cell-related transcripts. Our data provided functional insights of USP38 and HDAC3 in colorectal cancer and revealed novel mechanisms of ubiquitination mediated epigenetic regulation.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Xin Liao
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Department of Pathophysiology in Basic Medical College, Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Jing Liu
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Tian Tian
- Department of Pathophysiology in Basic Medical College, Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, 550002, Guiyang, Guizhou, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, 550002, Guiyang, Guizhou, China.
| |
Collapse
|
28
|
Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress. Oncogenesis 2020; 9:46. [PMID: 32398651 PMCID: PMC7217873 DOI: 10.1038/s41389-020-0230-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer cells adapt to nutrient-deprived tumor microenvironment during progression via regulating the level and function of metabolic enzymes. Acetyl-coenzyme A (AcCoA) is a key metabolic intermediate that is crucial for cancer cell metabolism, especially under metabolic stress. It is of special significance to decipher the role acetyl-CoA synthetase short chain family (ACSS) in cancer cells confronting metabolic stress. Here we analyzed the generation of lipogenic AcCoA in bladder cancer cells under metabolic stress and found that in bladder urothelial carcinoma (BLCA) cells, the proportion of lipogenic AcCoA generated from glucose were largely reduced under metabolic stress. Our results revealed that ACSS3 was responsible for lipogenic AcCoA synthesis in BLCA cells under metabolic stress. Interestingly, we found that ACSS3 was required for acetate utilization and histone acetylation. Moreover, our data illustrated that ACSS3 promoted BLCA cell growth. In addition, through analyzing clinical samples, we found that both mRNA and protein levels of ACSS3 were dramatically upregulated in BLCA samples in comparison with adjacent controls and BLCA patients with lower ACSS3 expression were entitled with longer overall survival. Our data revealed an oncogenic role of ACSS3 via regulating AcCoA generation in BLCA and provided a promising target in metabolic pathway for BLCA treatment.
Collapse
|
29
|
Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, Zhao Y, Hu Y, Li C, Ye D, Liu D, Jiang W, Chin EY, Chen S, Liu Y, Wang M, Liu S, Zhang X. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther 2020; 5:52. [PMID: 32355204 PMCID: PMC7193563 DOI: 10.1038/s41392-020-0138-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in colorectal cancer (CRC) tumorigenesis and the homeostasis of colorectal cancer stem cells (CSCs), but its molecular mechanism remains unclear. B-cell lymphoma 3 (Bcl-3), a member of the IκB family, is overexpressed in CRC and promotes tumorigenicity. Here, we report a novel function of Bcl-3 in maintaining colorectal CSC homeostasis by activating Wnt/β-catenin signaling. Silencing Bcl-3 suppresses the self-renewal capacity of colorectal CSCs and sensitizes CRC cells to chemotherapeutic drugs through a decrease in Wnt/β-catenin signaling. Moreover, our data show that Bcl-3 is a crucial component of Wnt/β-catenin signaling and is essential for β-catenin transcriptional activity in CRC cells. Interestingly, Wnt3a increases the level and nuclear translocation of Bcl-3, which binds directly to β-catenin and enhances the acetylation of β-catenin at lysine 49 (Ac-K49-β-catenin) and transcriptional activity. Bcl-3 depletion decreases the Ac-K49-β-catenin level by increasing the level of histone deacetylase 1 to remove acetyl groups from β-catenin, thus interrupting Wnt/β-catenin activity. In CRC clinical specimens, Bcl-3 expression negatively correlates with the overall survival of CRC patients. A significantly positive correlation was found between the expression of Bcl-3 and Ac-K49-β-catenin. Collectively, our data reveal that Bcl-3 plays a crucial role in CRC chemoresistance and colorectal CSC maintenance via its modulation of the Ac-K49-β-catenin, which serves as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chen Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhang Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yu Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Haohao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongxu Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yiming Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Cuifeng Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Wenxia Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Eugene Y Chin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Sheng Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sanhong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China. .,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiaoren Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China. .,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Li K, Cui M, Zhang K, Wang G, Zhai S. LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3. Cell Cycle 2020; 19:1036-1047. [PMID: 32240036 PMCID: PMC7217363 DOI: 10.1080/15384101.2020.1743915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022] Open
Abstract
Previous studies show that Long non-coding RNAs (LncRNAs) are involved in the regulation of various human diseases. This study aimed to reveal how LncRNA CRNDE regulated vascular smooth muscle cells (VSMCs) proliferation and apoptosis in abdominal aortic aneurysms (AAA). Here, we found CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. The overexpression of CRNDE promoted VSMCs proliferation and inhibited cell apoptosis. The interaction between CRNDE and Bcl-3 or Bcl-3 and Smad3 was verified. The interference with Bcl-3 or CRNDE reduced Smad3 stability or promoted Smad3 ubiquitination. After pcDNA-CRNDE or pcDNA-CRNDE+si-Bcl-3 was transfected into VSMCs and stimulated with AngII, CRNDE affected VSMCs proliferation and apoptosis via regulating Smad3 via Bcl-3. Vivo experiments showed the overexpression of CRNDE repressed AAA growth. Therefore, we concluded that CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. Furthermore, the overexpression of CRNDE promoted VSMCs proliferation and repressed cell apoptosis in AAA by up-regulating Smad3 via Bcl-3.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/genetics
- B-Cell Lymphoma 3 Protein/genetics
- B-Cell Lymphoma 3 Protein/metabolism
- Cell Proliferation/genetics
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation
- Genetic Vectors/administration & dosage
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- Smad3 Protein/metabolism
- Transfection
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Kun Li
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Mingzhe Cui
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Kewei Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Guoquan Wang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
31
|
Chang Y, Xue X, Li C, Zhao W, Ma Y, Xu F, Wu Z, Dai Y, Li Y, Liu Y, Chen L. MIR205HG facilitates carcinogenesis of lung squamous cell carcinoma in vitro revealed by long noncoding RNA profiling. Acta Biochim Biophys Sin (Shanghai) 2020; 52:371-381. [PMID: 32188965 DOI: 10.1093/abbs/gmaa006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
As a subtype of non-small-cell lung cancer, lung squamous cell carcinoma (LUSC) accounts for one-fifth of all lung cancers. Unfortunately, no specific targetable aberration has yet been identified. Hence, it is of huge urgency and potential to identify aberrantly regulated genes in LUSC. Here, five pairs of LUSC samples and their corresponding adjacent tissues were subject to whole transcriptome sequencing. Our results showed that CTD-2562J17.6 and FENDRR were significantly downregulated while MIR205HG, LNC_000378, RP11-116G8.5, RP3-523K23.2, and RP5-968D22.1 were significantly upregulated in all five LUSC samples. Importantly, MIR205HG was upregulated in LUSC clinical samples as well as in LUSC cell lines. Interestingly, our results demonstrated that the expression level of MIR205HG is positively correlated with the malignancy. In addition, MIR205HG is required for LUSC cell growth and cell migration. Most importantly, our results showed that MIR205HG prohibits LUSC apoptosis via regulating Bcl-2 and Bax. Taken together, our data shed lights on the lncRNA regulatory nexus that controls the carcinogenesis of LUSC and provided potential novel diagnostic markers and therapeutic targets for LUSC.
Collapse
Affiliation(s)
- Yan Chang
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
- People’s Liberation Army Rocke Force Characteristic Medical Center, Beijing 100853, China
| | - Xinying Xue
- Department of Respiratory and Critical Care Medicine, the Affiliated Beijing Shijitan Hospital of Capital Medical University, Beijing 100853, China
| | - Chunsun Li
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wei Zhao
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yongfu Ma
- Departments of Thoracic Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Fei Xu
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Zhen Wu
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yu Dai
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yunjing Li
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yang Liu
- Departments of Thoracic Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Liang'an Chen
- Departments of Respiratory Medicine, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
32
|
Xue Z, Yang B, Xu Q, Zhu X, Qin G. Long non-coding RNA SSTR5-AS1 facilitates gemcitabine resistance via stabilizing NONO in gallbladder carcinoma. Biochem Biophys Res Commun 2019; 522:952-959. [PMID: 31810606 DOI: 10.1016/j.bbrc.2019.10.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/12/2019] [Indexed: 01/13/2023]
Abstract
Gallbladder carcinoma (GBC) is the most aggressive carcinoma of the biliary tract, effective chemotherapy was critical for the patients with unresectable GBC. However, chemotherapy resistance is still problematic for clinicians. Here, we identified a specific long non-coding RNA, SSTR5-AS1, in GBC patient that facilitates gemcitabine resistance. SSTR5-AS1 is significantly increased in GBC samples and cell lines, especially in gemcitabine-resistant cell lines, and higher SSTR5-AS1 expression was correlated with poorer overall survival rate in GBC patients. Our data revealed that upregulated SSTR5-AS1 facilitates gemcitabine resistance via inhibiting apoptosis. Knockdown of SSTR5-AS1 sensitized drug resistant GBC cells to gemcitabine in vitro and strongly inhibited xenografts formed by drug resistant GBC cells in vivo. Moreover, we found via streptavidin pull down assay that NONO specifically binds to sense sequence of SSTR5-AS1 and prevented proteasome mediated NONO degradation, which resulted in increased NONO protein level without affecting the transcription of NONO. NONO functions as the downstream effector of SSTR5-AS1 and is required for SSTR5-AS1 mediated gemcitabine resistance. Collectively, our data provided novel insights into lncRNA-mediated chemotherapy resistance and suggested a novel therapeutic target to improve chemotherapy strategies for unresectable GBC patients.
Collapse
Affiliation(s)
- Zhuowei Xue
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bikang Yang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qinyang Xu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaolu Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Guangyi Qin
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
33
|
Myosin Heavy Chain-Associated RNA Transcripts Promotes Gastric Cancer Progression Through the miR-4529-5p/ROCK2 Axis. Dig Dis Sci 2019; 64:3539-3548. [PMID: 31273599 DOI: 10.1007/s10620-019-05708-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Characterization of genetic aberrations provides novel strategies for diagnosis and treatment of gastric cancer. Accumulating evidence has shown the involvement of long non-coding RNA (lncRNA) in the pathology of gastric cancer, especially in proliferation and metastasis. The aim of this study was to delineate the role of myosin heavy chain-associated RNA transcripts (MHRT), a heart-specific lncRNA, in gastric cancer and to understand the correlation between MHRT, miR-4529-5p, and ROCK2. METHODS To study expression level of MHRT, clinical gastric cancer samples, gastric cancer cell lines, adjacent normal tissues, and gastric epithelial cell lines were used. Additionally, apoptosis, proliferation, and invasion of gastric cancer cells were studied with or without downregulation of MHRT and miR-4529-5p. RESULTS We identified that MHRT was ectopically expressed in gastric cancer tissues and cell lines. Interestingly, similar to the anti-apoptotic role of MHRT in cardiomyocytes, our data illustrated that MHRT inhibits apoptosis of gastric cancer cells. Moreover, we found that MHRT promotes proliferation and invasion of gastric cancer cells in vitro. Importantly, our data revealed that MHRT regulates the expression of miR-4529-5p via direct binding. Additionally, functional experiments illustrated that miR-4529-5p is particularly responsible for MHRT-mediated regulation of apoptosis. Besides, ROCK2 was identified as a downstream target of miR-4529-5p. Additionally, upregulated MHRT promotes the expression of ROCK2 by inhibiting miR-4529-5p. CONCLUSION Our data illustrated a MHRT/miR-4529-5p/ROCK2 regulatory axis that contributes to the tumorigenesis of gastric cancer and provided potential therapeutic targets for precise gastric cancer treatment.
Collapse
|
34
|
Dittmer A, Lange T, Leyh B, Dittmer J. Protein‑ and growth‑modulatory effects of carcinoma‑associated fibroblasts on breast cancer cells: Role of interleukin‑6. Int J Oncol 2019; 56:258-272. [PMID: 31789400 PMCID: PMC6910226 DOI: 10.3892/ijo.2019.4918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) secrete factors that increase the expression and/or activities of proteins in breast cancer cells and induce resistance to anti-estrogens, such as fulvestrant. A major factor is interleukin-6 (IL-6). This study demonstrated that, across estrogen receptor (ER) α-positive and -negative cell lines, recombinant human IL-6 (rhIL-6) mimicked most of the CAF-conditioned medium (CM)-induced changes in protein expression patterns; however, in most cases, it failed to recapitulate CAF-CM-triggered alterations in ERK1/2 and AKT activities. The ability of rhIL-6 to induce fulvestrant resistance was dependent upon the culture conditions. In 3D, but not in 2D cultures, rhIL-6 increased the survival of fulvestrant-treated cells, although not to the same extent as observed with CAF-CM. In 2D cultures, rhIL-6 acted in a pro-apoptotic manner and decreased the expression of ATP-binding cassette transporter G2 (ABCG2). The inhibition of the PI3K/AKT pathway had similar effects on apoptosis and ABCG2 expression, linking the failure of rhIL-6 to induce fulvestrant resistance to its inability to activate the PI3K/AKT pathway. In 3D cultures, both CAF-CM and rhIL-6 acted in an anti-apoptotic manner. These activities are likely independent on the PI3K/AKT pathway and ABCG2. Experiments on ERα-negative breast cancer cells revealed a growth-inhibitory effects of both CAF-CM and rhIL-6, which coincided with a reduction in the c-Myc level. These data suggest that IL-6 plays a role in several effects of CAF-CM, including alterations in protein expression patterns, fulvestrant resistance in 3D cultures and growth inhibition. By contrast, IL-6 is unlikely to be responsible for the CAF-CM-induced activation of the PI3K/AKT pathway and fulvestrant resistance in 2D cultures.
Collapse
Affiliation(s)
- Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
35
|
Ets-1 deficiency alleviates nonalcoholic steatohepatitis via weakening TGF-β1 signaling-mediated hepatocyte apoptosis. Cell Death Dis 2019; 10:458. [PMID: 31189885 PMCID: PMC6561928 DOI: 10.1038/s41419-019-1672-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Hepatocyte apoptosis is a hallmark of nonalcoholic steatohepatitis (NASH) and contributes to liver injury, fibrosis, and inflammation. However, the molecular mechanisms underlying excessive hepatocyte apoptosis in NASH remain largely unknown. This study aimed to explore whether and how the v-ets avian erythroblastosis virus E26 oncogene homolog 1 (Ets-1) is involved in diet-induced hepatocyte apoptosis in mice. The study found that the expression level of hepatic Ets-1 was elevated in a NASH mouse model as a result of the activation of transforming growth factor beta1 (TGF-β1) signaling. In the presence of TGF-β1, phosphorylated mothers against decapentaplegic homolog 2/3 (p-Smad2/3) translocated to the binding sites of the Ets-1 promoter to upregulate the expression of Ets-1 in primary hepatocytes. In addition, Ets-1 bound directly to phosphorylated Smad3 (p-Smad3), thereby preventing the ubiquitination and proteasomal degradation of p-Smad3 and enhancing the activity of TGF-β1/Smad3 signaling. Consequently, elevated Ets-1 stimulated TGF-β1-induced hepatocyte apoptosis. However, Ets-1 knockdown alleviated diet-induced hepatocyte apoptosis and NASH with reduced liver injury, inflammation, and fibrosis. Taken together, Ets-1 had an adverse impact on hepatocyte survival under TGF-β1 treatment and accelerated the development of NASH in mice.
Collapse
|
36
|
Yin J, Wu K, Ma Q, Dong H, Zhu Y, Hu L, Kong X. Revisiting Non-BRCA1/2 Familial Whole Exome Sequencing Datasets Implicates NCK1 as a Cancer Gene. Front Genet 2019; 10:527. [PMID: 31214250 PMCID: PMC6557995 DOI: 10.3389/fgene.2019.00527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Through linkage and candidate gene screening, many breast cancer (BC) predisposition genes have been identified in the past 20 years. However, the majority of genetic risks that contribute to familial BC remains undetermined. In this study, we revisited whole exome sequencing datasets from non-BRCA1/2 familial BC patients, to search for novel BC predisposition genes. Based on the infinite mutation model, we supposed that rare non-silent variants that cooccurred between familial and TCGA-germline datasets, might play a predisposition contributing role. In our analysis, we not only identified novel potential pathogenic variants from known cancer predisposition genes, such as MRE11, CTR9 but also identified novel candidate predisposition genes, such as NCK1. According to the TCGA mRNA expression dataset of BC, NCK1 was significantly upregulated in basal-like subtypes and downregulated in luminal subtypes. In vitro, NCK1 mutants (D73H and R42Q) transfected MCF7 cell lines, which attributed to the luminal subtype, were much more viable and invasive than the wild type. On the other side, our results also showed that overall survival and disease-free survival of patients with NCK1 variations might be dependent on the genomic context. In conclusion, genetic heterogeneity exists among non-BRCA1/2 BC pedigrees and NCK1 could be a novel BC predisposition gene.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingyang Ma
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hang Dong
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufei Zhu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Landian Hu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Wang C, Yang ZZ, Guo FH, Shi S, Han XS, Zeng A, Lin H, Jing Q. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J Biol Chem 2019; 294:9873-9887. [PMID: 31076507 DOI: 10.1074/jbc.ra118.004445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1-knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.
Collapse
Affiliation(s)
- Chen Wang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Zhen-Zhen Yang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fang-Hao Guo
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shuo Shi
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Shuai Han
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - An Zeng
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Haifan Lin
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China, .,the Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06511
| | - Qing Jing
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
38
|
Li M, Shen Y, Wang Q, Zhou X. MiR-204-5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 2019; 158:224-232. [DOI: 10.1016/j.biochi.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
|
39
|
Chen X, Wang C, Liao K, Zhou S, Cao L, Chen J, Xu C, Lin Y. USP17 Suppresses Tumorigenesis and Tumor Growth through Deubiquitinating AEP. Int J Biol Sci 2019; 15:738-748. [PMID: 30906206 PMCID: PMC6429017 DOI: 10.7150/ijbs.30106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-specific protease 17 (USP17), a novel member of deubiquitinase, is reported to play essential roles in several solid tumors. However, the expression and function of USP17 in breast cancer tumorigenesis remains ambiguity. Here we found that the mRNA level of USP17 was lower in breast cancer tissues than normal tissues. Meanwhile, higher USP17 level was detected in normal epithelial cell MCF-10A and a less-malignant cell MCF-7 than malignant cell line MDA-MB-231. Inhibition of USP17 in MCF7 cells enhanced tumorigenesis and tumor growth while overexpression of USP17 in malignant MDA-MB-231 cells reduced its tumorigenesis and growth ability in vitro and in vivo. Further study revealed that USP17 interacted with and deubiquitinated Asparaginyl endopeptidase (AEP), resulting in decreased protein levels of AEP. Moreover, knockdown of AEP inhibited breast cancer tumorigenesis and growth in vitro and in vivo through the inactivation of ERK signaling. Taken together, our works indicate that USP17 deubiquitinates AEP, down-regulates its protein level, and inhibits breast cancer tumorigenesis through disturbing ERK signaling. Thus, our data suggests that USP17 is a potential tumor suppressor in breast cancer and AEP is a promising target in breast cancer therapy.
Collapse
Affiliation(s)
- Xi Chen
- CAS key laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chen Wang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Keman Liao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai, 200127, China
| | - Sunhai Zhou
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai, 200127, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai 200025, China
| | - Cheng Xu
- Department of Radiation Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai 200025, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao-tong University, Shanghai, 200127, China
| |
Collapse
|
40
|
Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 2018; 293:15483-15496. [PMID: 30135206 DOI: 10.1074/jbc.ra118.004084] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that Bcl3 expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1. The Bcl3 expression in OC cells is further increased by IFN, resulting in increased PD-L1 transcription. The mechanism consists of an IFN-induced, Bcl3- and p300-dependent PD-L1 promoter occupancy by Lys-314/315 acetylated p65 NF-κB. Blocking PD-L1 by neutralizing antibody reduces proliferation of OC cells overexpressing Bcl3, suggesting that the pro-proliferative effect of Bcl3 in OC cells is partly mediated by PD-L1. Together, this work identifies PD-L1 as a novel target of Bcl3, and links Bcl3 to IFNγ signaling and PD-L1-mediated immune escape.
Collapse
Affiliation(s)
- Yue Zou
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Mohammad M Uddin
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Sveta Padmanabhan
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Yan Zhu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ivana Vancurova
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| |
Collapse
|
41
|
Chen R, Wang L, Liu S, Chen X, Hu Y, Liu H, Zhang H, Jiang Y, Wang Q, Ye D, Li L, Liu D, Pan X, Wei L, Li X, Zhang X. Bcl-3 is a novel biomarker of renal fibrosis in chronic kidney disease. Oncotarget 2017; 8:97206-97216. [PMID: 29228604 PMCID: PMC5722556 DOI: 10.18632/oncotarget.21692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Progressive renal fibrosis in chronic kidney disease (CKD) greatly contributes to end-stage renal failure and is associated with high mortality. The identification of renal fibrosis biomarkers for the diagnosis and the monitoring of disease progression in CKD is urgently needed. Whole-transcriptomic analysis of renal tissues in a unilateral ureteral obstruction (UUO) mouse model revealed that the mRNA level of Bcl-3, an atypical member of the IκB family, was induced 6.3-fold 2 days after UUO. Compared with renal tissues in sham-operated mice, increases in Bcl-3 mRNA and protein in the renal tissues in the UUO model were accompanied with increases in other markers of renal fibrosis, including human epididymis protein 4 (HE4), a recently identified biomarker of renal fibrosis. Immunohistochemical analysis revealed that both Bcl-3 and HE4 were located in the plasma of renal tubule cells. Serum protein levels of Bcl-3 and HE4 rose with the development of renal fibrosis in UUO mouse model. We found that the serum protein levels of both HE4 and Bcl-3 were elevated in CKD patients compared with healthy controls. Moreover, a significant positive correlation between Bcl-3 and HE4 (r = 0.939, p < 0.0001) was observed in CKD patients. These data suggest that Bcl-3 can serve as a novel valuable biomarker of renal fibrosis in CKD.
Collapse
Affiliation(s)
- Ran Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Lunshan Wang
- Clinical Laboratory Department, The Chinese People's Liberation Army 105th Hospital, Hefei 230001, China
| | - Sanhong Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xi Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yiming Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Hanshao Liu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Haohao Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yuhang Jiang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Qi Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Deji Ye
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Lingling Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Dandan Liu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Xiaorong Pan
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100723, China
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| |
Collapse
|