1
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
2
|
Chen J, Yin Q, Xu S, Tan X, Liang Y, Chen C, Li L, Zhang T, Shen T. IFN-treated macrophage-derived exosomes prevents HBV-HCC migration and invasion via regulating miR-106b-3p/PCGF3/PI3K/AKT signaling axis. Front Cell Infect Microbiol 2024; 14:1421195. [PMID: 39529637 PMCID: PMC11551115 DOI: 10.3389/fcimb.2024.1421195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Background Studies revealed that exosomes from IFN-α-treated liver non-parenchymal cells (IFN-exo) mediate antiviral activity. MiR-106b-3p has been shown to play a paradoxical role in disease progressing from different studies. However, its specific role in HBV-related hepatocellular carcinoma (HBV-HCC) and the underlying mechanism remains unclear. Method Huh7 cells transient transfected with plasmids of HBV-C2 and B3 were co-cultured with IFN-exo. Cell supernatants were collected to detect miR-106b-3p, HBsAg, HBeAg and HBV DNA levels. Cell proliferation, apoptosis, migration and invasion were analyzed. The putative targets of miR-106b-3p were identified by a dual-luciferase reporter system. The expression of PCGF3, migratory proteins(MMP2/9), and the PI3K/AKT signaling pathway-related proteins were assessed by western blot. The expression of PCGF3 mRNA was quantitative analyzed by using 52 pairs of paraffin-embedded tissues from HCC patients. siRNAs-PCGF3 were used to knocked-down PCGF3 expression. Results The expression of miR-106b-3p was significantly higher in THP-1 cells and supernatants treated with IFN-exo than those untreated. Significantly increased expression of miR-106b-3p and decreased expression of HBsAg and HBV DNA were observed in Huh7-C2/B3 cells treated with IFN-exo. In addition, miR-106b-3p was directly target to PCGF3. Scratch healing assay and transwell assay showed that either IFN-exo or miRNA-106-3p over-expression, or siRNAs-PCGF3 inhibited migration and invasion of Huh7-C2/B3 cells, and subsequently resulted in suppression of p-AKT/AKT and p-PI3K/PI3K. Notably, the expression level of PCGF3 was significantly lower in HBeAg (+)-HCC tumor tissues than HBeAg (-)-HCC tumor. Conclusion IFN-α-induced macrophage-derived miR-106b-3p inhibits HBV replication, HBV- Huh7 cells migration and invasion via regulating PCGF3/PI3K/AKT signaling axis. miR-106b-3p and PCGF3 were potential biomarkers in the prevention and treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Yin
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Shiheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Tan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chaohui Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tao Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Tao Shen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
3
|
Kim Y, Kim JY, Moon S, Lee H, Lee S, Kim JY, Kim MW, Kim SI. Tumor-derived EV miRNA signatures surpass total EV miRNA in supplementing mammography for precision breast cancer diagnosis. Theranostics 2024; 14:6587-6604. [PMID: 39479442 PMCID: PMC11519808 DOI: 10.7150/thno.99245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 11/02/2024] Open
Abstract
Background: With the rising global incidence and mortality rates of breast cancer, early diagnosis is becoming increasingly crucial. The World Health Organization (WHO) recommends mammography as a primary screening tool. However, despite its clinical benefits, mammography has potential risks including radiation exposure, unnecessary follow-up, and overdiagnosis due to false positives, particularly in cases of early cancer or dense breast tissue. In this study, we aimed to address these concerns by introducing an innovative diagnostic method that employs circulating biomarkers to enhance the existing screening techniques Methods: Breast cancer-derived extracellular vesicles (BEVs) were isolated from the bloodstream using advanced immunoaffinity capture techniques. Subsequently, we analyzed the microRNA (miRNA) profiles of BEVs in plasma samples from 120 patients with breast cancer, 46 with benign tumors, and 45 healthy controls. Results: This retrospective study identified a distinct signature of five EV miRNAs (miR-21, miR-106b, miR-181a, miR-484, and miR-1260b) that effectively differentiated patients with breast cancer from healthy controls. This signature provides essential insights into tumor progression, metastasis, and the risk of recurrence. Notably, overexpression of this signature correlated with poorer survival outcomes. Conclusions: Our novel gene signature-based approach not only complements existing diagnostic methods with high accuracy but also provides a deeper understanding of the molecular aspects of breast cancer, heralding a significant advancement in precision medicine and personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Han SB, Lee SS. Isolation and Characterization of Exosomes from Cancer Cells Using Antibody-Functionalized Paddle Screw-Type Devices and Detection of Exosomal miRNA Using Piezoelectric Biosensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:5399. [PMID: 39205093 PMCID: PMC11359151 DOI: 10.3390/s24165399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 μM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR.
Collapse
Affiliation(s)
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| |
Collapse
|
5
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
6
|
Zheng C, Su H, Liu M, Qian Y, Fan H. miRNA‑mRNA network contributes to HBV‑related hepatocellular carcinoma via immune infiltration induced by GRB2. Biomed Rep 2024; 20:90. [PMID: 38682088 PMCID: PMC11046184 DOI: 10.3892/br.2024.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 05/01/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a critical causative factor in the tumorigenesis and progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) serve a critical role in the process of viral infection. However, there has been insufficient evaluation of HBV-associated miRNA-mRNA regulatory networks in HCC. The differential expression levels of miRNAs were compared in HBV-associated HCC tumor and normal tissues using the Gene Expression Omnibus database. The present study evaluated potential target genes of differentially expressed miRNAs using protein-protein interaction network, hub gene, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment and immune infiltration analysis. A total of five miRNAs and seven target genes were identified in the HBV-associated miRNA-mRNA network. miRNA-93 could positively regulate the growth factor receptor bound protein 2 (GRB2) gene, while there was a positive correlation between GRB2 and cancer immune infiltrate function in Tumor Immune Estimation Resource. Collectively, the present study investigated the miRNA-mRNA regulatory network in HCC with HBV infection and showed that miRNA-93 positively regulated immune infiltration-related GRB2. Restoring GRB2 may be a candidate strategy for the treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Liu
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
7
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
8
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
9
|
Li J, Dhilipkannah P, Holden VK, Sachdeva A, Jiang F. Red Blood Cell-Derived Exosomal Oncogenic MicroRNA Promote Cancer Development and Progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24307177. [PMID: 38766218 PMCID: PMC11100945 DOI: 10.1101/2024.05.10.24307177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The role of red blood cells (RBCs) in tumorigenesis is poorly understood. We previously identified RBC-microRNAs with aberrations linked to lung cancer, including miR-93-5p. Here we find that miR-93-5p levels are elevated in RBC-derived exosomes among lung cancer patients and are associated with their shorter survivals. RBC-derived miR-93-5p transfers to cancer cells primarily through the exosomal pathway. The transferred RBC-miR-93-5p can target PTEN in cancer cells, and hence increase cell proliferation, invasion, and migration. RBC-derived miR-93-5p accelerates, whereas targeting miR-93-5p diminishes tumor growth in xenograft models. These findings reveal a novel biological function of RBCs in tumorigenesis, where they facilitate cancer progression by transferring the oncomiR via exosomes, thereby offering new diagnostic and treatment strategies for lung cancer.
Collapse
|
10
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Han SB, Lee SS. Simultaneous Detection of Exosomal microRNAs Isolated from Cancer Cells Using Surface Acoustic Wave Sensor Array with High Sensitivity and Reproducibility. MICROMACHINES 2024; 15:249. [PMID: 38398977 PMCID: PMC10892992 DOI: 10.3390/mi15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
We present a surface acoustic wave (SAW) sensor array for microRNA (miRNA) detection that utilizes photocatalytic silver staining on titanium dioxide (TiO2) nanoparticles as a signal enhancement technique for high sensitivity with an internal reference sensor for high reproducibility. A sandwich hybridization was performed on working sensors of the SAW sensor array that could simultaneously capture and detect three miRNAs (miRNA-21, miRNA-106b, and miRNA-155) known to be upregulated in cancer. Sensor responses due to signal amplification varied depending on the concentration of synthetic miRNAs. It was confirmed that normalization (a ratio of working sensor response to reference sensor response) screened out background interferences by manipulating data and minimized non-uniformity in the photocatalytic silver staining step by suppressing disturbances to both working sensor signal and reference sensor signal. Finally, we were able to successfully detect target miRNAs in cancer cell-derived exosomal miRNAs with performance comparable to the detection of synthetic miRNAs.
Collapse
Affiliation(s)
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
12
|
Mohammadi M, Fazilat A, Mamalo AS, Ojarudi M, Hemmati-Dinarvand M, Beilankouhi EAV, Valilo M. Correlation of PTEN signaling pathway and miRNA in breast cancer. Mol Biol Rep 2024; 51:221. [PMID: 38281224 DOI: 10.1007/s11033-023-09191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Breast cancer (BC) is one of the most common cancers among women and can be fatal if not diagnosed and treated on time. Various genetic and environmental factors play a significant role in the development and progression of BC. Within the body, different signaling pathways have been identified that contribute to cancer progression, or conversely, cancer prevention. Phosphatase and tensin homolog (PTEN) is one of the proteins that prevent cancer by inhibiting the oncogenic PI3K/Akt/mTOR signaling pathway. MicroRNAs (miRNAs) are molecules with about 18 to 28 base pairs, which regulate about 30% of human genes after transcription. miRNAs play a key role in the progression or prevention of cancer through different signaling pathway and mechanisms, e.g., apoptosis, angiogenesis, and proliferation. miRNAs, which are upstream mediators of PTEN, can reinforce or suppress the effect of PTEN signaling on BC cells, and suppressing the PTEN signaling, linked to weakness of the cancer cells to chemotherapeutic drugs. However, the precise mechanism and function of miRNAs on PTEN in BC are not yet fully understood. Therefore, in the present study, has been focused on miRNAs regulating PTEN function in BC.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Akyüz N, Janjetovic S, Ghandili S, Bokemeyer C, Dierlamm J. EBV and 1q Gains Affect Gene and miRNA Expression in Burkitt Lymphoma. Viruses 2023; 15:1808. [PMID: 37766215 PMCID: PMC10537407 DOI: 10.3390/v15091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities of the long arm of chromosome 1 (1q) represent the most frequent secondary chromosomal aberrations in Burkitt lymphoma (BL) and are observed almost exclusively in EBV-negative BL cell lines (BL-CLs). To verify chromosomal abnormalities, we cytogenetically investigated EBV-negative BL patient material, and to elucidate the 1q gain impact on gene expression, we performed qPCR with six 1q-resident genes and analyzed miRNA expression in BL-CLs. We observed 1q aberrations in the form of duplications, inverted duplications, isodicentric chromosome idic(1)(q10), and the accumulation of 1q12 breakpoints, and we assigned 1q21.2-q32 as a commonly gained region in EBV-negative BL patients. We detected MCL1, ARNT, MLLT11, PDBXIP1, and FCRL5, and 64 miRNAs, showing EBV- and 1q-gain-dependent dysregulation in BL-CLs. We observed MCL1, MLLT11, PDBXIP1, and 1q-resident miRNAs, hsa-miR-9, hsa-miR-9*, hsa-miR-92b, hsa-miR-181a, and hsa-miR-181b, showing copy-number-dependent upregulation in BL-CLs with 1q gains. MLLT11, hsa-miR-181a, hsa-miR-181b, and hsa-miR-183 showed exclusive 1q-gains-dependent and FCRL5, hsa-miR-21, hsa-miR-155, hsa-miR-155*, hsa-miR-221, and hsa-miR-222 showed exclusive EBV-dependent upregulation. We confirmed previous data, e.g., regarding the EBV dependence of hsa-miR-17-92 cluster members, and obtained detailed information considering 1q gains in EBV-negative and EBV-positive BL-CLs. Altogether, our data provide evidence for a non-random involvement of 1q gains in BL and contribute to enlightening and understanding the EBV-negative and EBV-positive BL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.A.); (S.J.); (S.G.); (C.B.)
| |
Collapse
|
16
|
Xu D, Chen WQ, Liang MX, Chen X, Liu Z, Fei YJ, Shao XY, Wu Y, Zhang W, Tang JH. Tumor-derived small extracellular vesicles promote breast cancer progression by upregulating PD-L1 expression in macrophages. Cancer Cell Int 2023; 23:137. [PMID: 37452413 PMCID: PMC10347751 DOI: 10.1186/s12935-023-02980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The metastasis of breast cancer (BC) is a complex multi-step pathological process, strictly dependent on the intrinsic characteristics of BC cells and promoted by a predisposing microenvironment. Although immunotherapy has made important progress in metastasis BC, the heterogeneity of PD-L1 in tumor associated macrophages (TAMs) in BC and the underlying mechanisms in the metastasis development of BC are still not completely elucidated. Small extracellular vesicles (sEVs) represent essential interaction mediators between BC cells and TAMs. It is worth noting to explore the underlying mechanisms typical of sEVs and their role in the metastasis development of BC. METHODS The structure of sEVs was identified by TEM, while the particle size and amounts of sEVs were detected by BCA and NTA analysis. The specific PD-L1 + CD163 + TAM subpopulation in metastasis BC was identified by scRNA-seq data of GEO datasets and verified by IHC and IF. The function of TAMs and sEVs in metastasis BC was explored by RT-qPCR, WB, IF, flow cytometry and in vivo experiment. The expression profiles of plasma sEVs-miRNA in relation to BC metastasis was analyzed using next-generation sequencing. Further detailed mechanisms of sEVs in the metastasis development of BC were explored by bioinformatics analysis, RT-qPCR, WB and luciferase reporter assay. RESULTS In this study, we identified that the immunosuppressive molecule PD-L1 was more abundant in TAMs than in BC cells, and a specific PD-L1 + CD163 + TAM subpopulation was found to be associated with metastasis BC. Additionally, we found that BC cells-derived sEVs can upregulate the PD-L1 expression and induce the M2 polarization, enhancing the metastasis development both in vitro and in vivo. Also, Clinical data showed that sEV-miR-106b-5p and sEV-miR-18a-5p was in relation to BC metastasis development and poor prognosis of BC patients. Further mechanistic experiments revealed that BC-derived sEV-miR-106b-5p and sEV-miR-18a-5p could synergistically promoted the PD-L1 expression in M2 TAMs by modulating the PTEN/AKT and PIAS3/STAT3 pathways, resulting in the enhancement of the BC cells invasion and metastasis. CONCLUSIONS Our study demonstrated that BC-derived sEVs can induce metastasis in BC through miR-106b-5p/PTEN/AKT/PD-L1 and miR-18a-5p/PIAS3/STAT3/PD-L1 pathways in TAMs. Therefore, the inhibition of these specific interactions of signaling pathways would represent a promising target for future therapeutic strategies for treatment of BC.
Collapse
Affiliation(s)
- Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Wen-Quan Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Ming-Xing Liang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Xiu Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Zhen Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Yin-Jiao Fei
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Xin-Yi Shao
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, 210029, P.R. China
| | - Yang Wu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Wei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China.
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China.
| |
Collapse
|
17
|
Pessôa R, de Souza DRV, Nukui Y, Pereira J, Fernandes LA, Marcusso RN, de Oliveira ACP, Casseb J, da Silva Duarte AJ, Sanabani SS. Small RNA Profiling in an HTLV-1-Infected Patient with Acute Adult T-Cell Leukemia-Lymphoma at Diagnosis and after Maintenance Therapy: A Case Study. Int J Mol Sci 2023; 24:10643. [PMID: 37445821 DOI: 10.3390/ijms241310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small RNAs (sRNAs) are epigenetic regulators of essential biological processes associated with the development and progression of leukemias, including adult T-cell leukemia/lymphoma (ATLL) caused by human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic human retrovirus originally discovered in a patient with adult T-cell leukemia/lymphoma. Here, we describe the sRNA profile of a 30-year-old woman with ATLL at the time of diagnosis and after maintenance therapy with the aim of correlating expression levels with response to therapy.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Daniela Raguer Valadão de Souza
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Youko Nukui
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Lorena Abreu Fernandes
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Rosa Nascimento Marcusso
- Department of Neurology, Emilio Ribas Institute of Infectious Diseases, São Paulo 01246-900, Brazil
| | | | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3° andar, São Paulo 05403-000, Brazil
| |
Collapse
|
18
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
19
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Fan X, Qiu L, Huang L, Zhu W, Zhang Y, Miao Y. MiR-190a regulates milk protein biosynthesis through the mTOR and JAK2–STAT5 signaling pathways by targeting PTHLH in buffalo mammary epithelial cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
21
|
Wang X, Li F, Cheng J, Hou N, Pu Z, Zhang H, Chen Y, Huang C. MicroRNA-17 Family Targets RUNX3 to Increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:71-84. [PMID: 37017671 DOI: 10.1615/critreveukaryotgeneexpr.v33.i3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one common cancer in the world. Previous studies have shown that miR-17 family members are elevated in most tumors and promote tumor progression. However, there is no comprehensive analysis of the expression and functional mechanism of the microRNA-17 (miR-17) family in HCC. The aim of this study is to comprehensively analyze the function of the miR-17 family in HCC and the molecular mechanism of its role. Bioinfoimatics analysis of the miR-17 family expression profile and its relationship to clinical significance using The Cancer Genome Atlas (TCGA) database, and this result was confirmed using quantitative real-time polymerase chain reaction. miR-17 family members were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability and migration by cell count and wound healing assays. In addition, we using dual-luciferase assay and Western blot demonstrated the targeting relationship between the miRNA-17 family and RUNX3. These members of miR-17 family were highly expressed in HCC tissues, and the overexpression of the miR-17 family promoted the proliferation and migration of SMMC-7721 cells, whereas treatment with anti-miR17 inhibitors caused the opposite effects. Notably, we also found that inhibitors anti-each member of miR-17 can suppress the expression of the entire family member. In addition, they can bind to the 3' untranslated region of RUNX3 to regulate its expression at the translational level. Our results proved that miR-17 family has oncogenic characteristics, overexpression every member of the family contributed to HCC cell proliferation and migration by reducing the translation of RUNX3.
Collapse
Affiliation(s)
- Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhiying Pu
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710021, Shaanxi, China
| | - Hua Zhang
- First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Huang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
22
|
Multi-omics inference of differential breast cancer-related transcriptional regulatory network gene hubs between young Black and White patients. Cancer Genet 2023; 270-271:1-11. [PMID: 36410105 DOI: 10.1016/j.cancergen.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Breast cancers (BrCA) are a leading cause of illness and mortality worldwide. Black women have a higher incidence rate relative to white women prior to age 40 years, and a lower incidence rate after 50 years. The objective of this study is to identify -omics differences between the two breast cancer cohorts to better understand the disparities observed in patient outcomes. MATERIALS AND METHODS Using Standard SQL, we queried ISB-CGC hosted Google BigQuery tables storing TCGA BrCA gene expression, methylation, and somatic mutation data and analyzed the combined multi-omics results using a variety of methods. RESULTS Among Stage II patients 50 years or younger, genes PIK3CA and CDH1 are more frequently mutated in White (W50) than in Black or African American patients (BAA50), while HUWE1, HYDIN, and FBXW7 mutations are more frequent in BAA50. Over-representation analysis (ORA) and Gene Set Enrichment Analysis (GSEA) results indicate that, among others, the Reactome Signaling by ROBO Receptors gene set is enriched in BAA50. Using the Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER) algorithm, putative top 20 master regulators identified include NUPR1, NFKBIL1, ZBTB17, TEAD1, EP300, TRAF6, CACTIN, and MID2. CACTIN and MID2 are of prognostic value. We identified driver genes, such as OTUB1, with suppressed expression whose DNA methylation status were inversely correlated with gene expression. Networks capturing microRNA and gene expression correlations identified notable microRNA hubs, such as miR-93 and miR-92a-2, expressed at higher levels in BAA50 than in W50. DISCUSSION/CONCLUSION The results point to several driver genes as being involved in the observed differences between the cohorts. The findings here form the basis for further mechanistic exploration.
Collapse
|
23
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Kiran S, Patra A, Verma P, Purkait S, Chhabra G, Guttula PK, Ghosh A. Restoration of Altered Oncogenic and Tumor Suppressor microRNA Expression in Breast Cancer and Colorectal Cancer Cell using Epicatechin. Curr Mol Pharmacol 2023; 16:915-926. [PMID: 36809960 DOI: 10.2174/1874467216666230210091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are small non-coding RNAs that regulate the function of mRNA post-transcriptionally in a tissue-specific manner. miRNA expressions are heavily dysregulated in human cancer cells through various mechanisms, including epigenetic changes, karyotype abnormalities, and miRNA biogenesis defects. miRNAs may act as either oncogenes or tumor suppressors under different conditions. Epicatechin is a natural compound found in green tea which possesses antioxidant and antitumor properties. OBJECTIVE The objective of this study is to investigate the effect of epicatechin treatment on the expression level of several oncogenic and tumor suppressor miRNAs in breast and colorectal cancer cell lines (MCF7 and HT-29) and identify its mechanism of action. METHODS The MCF-7 and HT29 cells were treated with epicatechin for 24 hours and untreated cells were considered control cultures. miRNA was isolated and qRT-PCR was used to measure the expression profile changes of different oncogenic and tumor suppressor miRNAs. Furthermore, the mRNA expression profile was also screened at different concentrations of epicatechin. RESULTS Our results showed several-fold changes in miRNAs expression level, which is cell line specific. Also, epicatechin at different concentrations induces biphasic changes in mRNA expression levels in both cell lines. CONCLUSION Our findings first time demonstrated that epicatechin can reverse the expression of these miRNAs and may trigger the cytostatic effect at a lower concentration.
Collapse
Affiliation(s)
- Sheetal Kiran
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Abhilipsa Patra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Poonam Verma
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Gaurav Chhabra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
25
|
Advani D, Kumar P. Deciphering the molecular mechanism and crosstalk between Parkinson's disease and breast cancer through multi-omics and drug repurposing approach. Neuropeptides 2022; 96:102283. [PMID: 35994781 DOI: 10.1016/j.npep.2022.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Epidemiological studies indicate a higher occurrence of breast cancer (BRCA) in patients with Parkinson's disease. However, the exact molecular mechanism is still not precise. Herein, we tested the hypothesis that this inverse comorbidity result from shared genetic and molecular processes. We conducted an integrated omics analysis to identify the common gene signatures associated with PD and BRCA. Secondly, several dysregulated biological processes in both indications were analyzed by functional enrichment methods, and significant overlapping processes were identified. To establish common regulatory mechanisms, information about transcription factors and miRNAs associated with both the disorders was extracted. Finally, disease-specific gene expression signatures were compared through LINCS L1000 analysis to identify potential repurposing drugs for PD. The potential repurposed drug candidates were then correlated with PD-specific gene signatures by Cmap analysis. In conclusion, this study highlights the shared genes, biological pathways and regulatory signatures associated with PD and BRCA with an improved understanding of crosstalk involved. Additionally, the role of therapeutics was investigated in context with their comorbid associations. These findings could help to explain the complex molecular patterns of associations between PD and BRCA.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
26
|
Inhibition of the AKT/mTOR pathway negatively regulates PTEN expression via miRNAs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1637-1647. [PMID: 36331296 PMCID: PMC9827858 DOI: 10.3724/abbs.2022159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PI3K/AKT/mTOR pathway plays important roles in cancer development, and the negative role of PTEN in the PI3K/AKT/mTOR pathway is well known, but whether PTEN can be inversely regulated by PI3K/AKT/mTOR has rarely been reported. Here we aim to investigate the potential regulatory relationship between PTEN and Akt/mTOR inhibition in MEFs. AKT1 E17K and TSC2 -/- MEFs were treated with the AKT inhibitor MK2206 and the mTOR inhibitors rapamycin and Torin2. Our results reveal that inhibition of AKT or mTOR suppresses PTEN expression in AKT1 E17K and TSC2 -/- MEFs, but the transcription, subcellular localization, eIF4E-dependent translational initiation or lysosome- and proteasome-mediated degradation of PTEN change little, as shown by the real time PCR, nucleus cytoplasm separation assay and immunofluorescence analysis. Moreover, mTOR suppression leads to augmentation of mouse PTEN-3'UTR-binding miRNAs, including miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p, as shown by the dual luciferase reporter assay and miRNA array analysis, and miRNA inhibitors collaborately rescue the decline of PTEN level. Collectively, our findings confirm that inhibition of mTOR suppresses PTEN expression by upregulating miRNAs, provide a novel explanation for the limited efficacy of mTOR inhibitors in the treatment of mTOR activation-related tumors, and indicate that dual inhibition of mTOR and miRNA is a promising therapeutic strategy to overcome the resistance of mTOR-related cancer treatment.
Collapse
|
27
|
Hu F, Wang Y, Wu X, Liu S, Ren H, Zhou W. RETRACTED: Overexpressed miR-106b-5p promotes epithelial-mesenchymal transition in endometriosis by targeting PTEN. Reprod Toxicol 2022; 113:62-70. [PMID: 35902026 DOI: 10.1016/j.reprotox.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The journal was contacted by the corresponding author to claim that they were not aware of the submission of the article, do not own the email address listed by the paper, and did not participate in the study. When contacted by the journal, the co-authors Shan Liu and Haiying Ren also denied that they participated in the study and that they were aware of the article. The co-authors Fen Hu, Yonglian Wang and Xueqing Wu did not respond to the journal's request for clarifications. The uncertainty about the identity of the author who submitted the article also cast doubt on the data and the Editor decided to retract the paper.
Collapse
Affiliation(s)
- Fen Hu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Yonglian Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haiying Ren
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Awadalla A, Abol-Enein H, Hamam ET, Ahmed AE, Khirallah SM, El-Assmy A, Mostafa SA, Babalghith AO, Ali M, Abdel-Rahim M, Shokeir AA, Harraz AM. Identification of Epigenetic Interactions between miRNA and Gene Expression as Potential Prognostic Markers in Bladder Cancer. Genes (Basel) 2022; 13:genes13091629. [PMID: 36140796 PMCID: PMC9498328 DOI: 10.3390/genes13091629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: To identify the role of a set of microRNAs and their target genes and protein expression levels in the pathogenesis of bladder cancer with a muscular invasion (T2−T4) and non-muscular invasion (T1). Methods: In 157 patients, bladder specimen was examined for the expression of a set of miRNAs including let-7a-5p, miRNA-449a-5p, miRNA-145-3P, miRNA-124-3P, miRNA-138-5p, and miRNA-23a-5p and their targeted genes; β-catenin, WNT7A, IRS2, FZD4, SOS1, HDAC1, HDAC2, HIF1α, and PTEN using the qRT-PCR technique. The prognostic effect of miRNAs and their targeted genes on cancer-specific survival (CSS) was evaluated in pT2−pT4 stages. Results: pT1 was found in 40 patients while pT2−4 was found in 117 patients. The expression of let-7a-5P, miR-124-3P, miR-449a-5P, and miR-138-5P significantly decreased in pT2−4 compared with pT1 (p < 0.001), in contrast, miR-23a-5P increased significantly in pT2−pT4 compared with pT1 (p < 0.001). Moreover, the expression of miR-145 did not show a significant change (p = 0.31). Higher expression levels of WNT7A, β-catenin, IRS2, FZD4, and SOS1 genes were observed in pT2−pT4 compared with pT1, whereas HDAC1, HDAC2, HIF1α, and PTEN genes were downregulated in pT2−pT4 compared with pT1. Lower CSS was significantly associated with lower expression of let-7a-5P, miR-124-3P, miR-449a-5P, and miR-138-5P. Higher expression of β-catenin, FZD4, IRS2, WNT7a, and SOS1 was significantly associated with worse CSS. In contrast, lower levels of HDAC1, HDAC2, HIF1α, and PTEN were associated with lower CSS. Conclusion: Our results support let-7a-5P, miR-124-3P, miR-138-5P, and their target genes can be developed as accurate biomarkers for prognosis in bladder cancer with a muscular invasion.
Collapse
Affiliation(s)
- Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Hassan Abol-Enein
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Eman T. Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Asmaa E. Ahmed
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Salma M. Khirallah
- Biochemistry Division, Chemistry Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Ahmed El-Assmy
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Ali
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona Abdel-Rahim
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-50-2202222; Fax: +20-50-2202717
| | - Ahmed M. Harraz
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
29
|
Fang Y, Ji W, Yan C. Research Progress of PI3K/PTEN/AKT Signaling Pathway Associated with Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:1195875. [PMID: 36046376 PMCID: PMC9420629 DOI: 10.1155/2022/1195875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma is a common renal malignancy of the urinary system and the most malignant type of kidney cancer. Phosphatidylinositol 3-kinase (PI3K) is an intracellular phosphatidylinositol kinase associated with oncogene products such as v-src and with serine/threonine kinase activity, and its increased activity correlates with the development of several cancers. Protein kinase B (AKT) is a cyclic guanosine phosphate-dependent protein kinase that plays an important role in cell survival and apoptosis. Phosphatase and tensin homolog (PTEN), a newly discovered oncogene in recent years, participates in tumorigenesis and development by competing with tyrosine kinases for common substrates. The product encoded by PTEN was found to negatively regulate the PI3K/Akt signaling pathway, thereby inhibiting cell proliferation and promoting apoptosis. The PI3K/PTEN/AKT signaling pathway has also been identified in several studies as being involved in the development of several malignancies, including renal cell carcinoma. Radiotherapy is currently one of the most effective means of treatment for renal cell carcinoma, whereas it is predisposed to significant tolerance during the course of radiotherapy, thereby leading to treatment failure. Therefore, new treatment options may potentiate the efficiency of renal cell carcinoma treatment. With the development of tumor molecular biology, targeted biological therapy for malignant tumors has gradually become a research hotspot. Given the above research background, this study reviews the application of the PI3K/PTEN/AKT signaling pathway in renal cell carcinoma, aiming to provide more references for the treatment of clinical renal cell carcinoma.
Collapse
Affiliation(s)
- Yakun Fang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Wenjun Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
30
|
Fedorova O, Parfenyev S, Daks A, Shuvalov O, Barlev NA. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel) 2022; 14:cancers14153786. [PMID: 35954450 PMCID: PMC9367281 DOI: 10.3390/cancers14153786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved developmental program, which, upon aberrant reactivation, is also involved in the formation of cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this knowledge, we speculate about new possible strategies for cancer treatment. Abstract Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.
Collapse
|
31
|
Peng W, Tang W, Li JD, He RQ, Luo JY, Chen ZX, Zeng JH, Hu XH, Zhong JC, Li Y, Ma FC, Xie TY, Huang SN, Ge LY. Downregulation of the enhancer of zeste homolog 1 transcriptional factor predicts poor prognosis of triple-negative breast cancer patients. PeerJ 2022; 10:e13708. [PMID: 35846880 PMCID: PMC9285492 DOI: 10.7717/peerj.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Yi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
32
|
miR-106b as an emerging therapeutic target in cancer. Genes Dis 2022; 9:889-899. [PMID: 35685464 PMCID: PMC9170583 DOI: 10.1016/j.gendis.2021.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) comprise short non-coding RNAs that function in regulating the expression of tumor suppressors or oncogenes and modulate oncogenic signaling pathways in cancer. miRNAs expression alters significantly in several tumor tissues and cancer cell lines. For example, miR-106b functions as an oncogene and increases in multiple cancers. The miR-106b directly targets genes involved in tumorigenesis, proliferation, invasion, migration, and metastases. This review has focused on the miR-106b function and its downstream target in different cancers and provide perspective into how miR-106 regulates cancer cell proliferation, migration, invasion, and metastases by regulating the tumor suppressor genes. Since miRNAs-based therapies are currently being developed to enhance cancer therapy outcomes, miR-106b could be an attractive and prospective candidate in different cancer types for detection, diagnosis, and prognosis assessment in the tumor.
Collapse
|
33
|
Chen F, Lin W. Anti-apoptosis effects of codonolactone on cerebral ischemia-reperfusion injury. J Investig Med 2022; 70:1265-1272. [DOI: 10.1136/jim-2021-002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
Codonolactone is the main biologically active ingredient in Atractylodes lancea. Studies have shown various functions of codonolactone, while its protective effect against neurotoxicity caused by ischemic stroke is unclear. This study investigated the roles of codonolactone in inflammation, oxidative stress and apoptosis after cerebral ischemia-reperfusion (I/R) injury. Rats with codonolactone treatment, I/R treatment and the sham operation group were used in this study. After reperfusion for 24 hours, nerve damage was detected by nerve staining, and the neurological deficits of the rats were analyzed. The contents of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in rat brain tissues were also determined. Western blot analysis was performed to determine the expression levels of Akt/Nrf2 pathway-associated proteins. Compared with the I/R group, the cerebral blood flow, infarct volume, brain water content, coronary blood flow and neurological deficits in the codonolactone treatment group, especially with the 80 mg/kg dosage, were significantly reduced. Codonolactone could significantly reduce the expression levels of caspase-3 and Bax, and significantly increase the expression levels of Bcl-2 after I/R. In addition, codonolactone could significantly reduce MDA content and the expression levels of TNF-α and IL-1β in ischemic brain tissues. It also significantly increased SOD activity, the expression levels of heme oxygenase-1 (HO-1) and the phosphorylation of Akt and Nrf2. Codonolactone ameliorated the cerebral I/R injury by improving anti-oxidant, anti-inflammatory activities and reducing apoptosis. Besides, the Akt/Nrf2 pathway was involved in the pharmacological action of the codonolactone.
Collapse
|
34
|
Yang F, Sun Z, Wang D, Du T. MiR-106b-5p regulates esophageal squamous cell carcinoma progression by binding to HPGD. BMC Cancer 2022; 22:308. [PMID: 35317779 PMCID: PMC8941792 DOI: 10.1186/s12885-022-09404-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Several studies have documented the key role of microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). Although the expression of the 15-hydroxyprostaglandin dehydrogenase (HPGD) gene and miR-106b-5p are reportedly linked to cancer progression, their underlying mechanisms in ESCC remain unclear. METHODS mRNA and miRNA expression in ESCC tissues and cells were analyzed using RT-qPCR. Luciferase and RNA pull-down assays were used to identify the interaction between miR-106b-5p and HPGD. Xenograft and pulmonary metastasis models were used to assess tumor growth and metastasis. CCK-8, BrdU, colony formation, adhesion, cell wound healing, Transwell, and caspase-3/7 activity assays, and flow cytometry and western blot analyses were used to examine the function of miR-106-5p and HPGD in ESCC cell lines. RESULTS The findings revealed that miR-106b-5p expression was upregulated in ESCC tissues and cell lines. miR-106b-5p augmented cellular proliferation, colony formation, adhesion, migration, invasion, and proportion of cells in the S-phase, but reduced apoptosis and the proportion of cells in G1-phase. Silencing of miR-106-5p inhibited tumor growth in vivo and pulmonary metastasis. Although HPGD overexpression suppressed proliferation, colony formation, adhesion, migration, and invasion of ESCC cells, it promoted apoptosis and caused cell cycle arrest of the ESCC cells. The results also indicated a direct interaction of HPGD with miR-106b-5p in ESCC cells. Furthermore, miR-106b-5p inhibited HPGD expression, thereby suppressing ESCC tumorigenesis. CONCLUSION Our data suggest that miR-106b-5p enhances proliferation, colony formation, adhesion, migration, and invasion, and induces the cycle progression, but represses apoptosis of ESCC cells by targeting HPGD. This suggests that the miR-106b-5p/HPGD axis may serve as a promising target for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, No. 114, Tianjin Street, Huangshi, 435000, Hubei, P.R. China
| | - Zhanwen Sun
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, No. 114, Tianjin Street, Huangshi, 435000, Hubei, P.R. China
| | - Dengyun Wang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, No. 114, Tianjin Street, Huangshi, 435000, Hubei, P.R. China
| | - Tian Du
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, No. 114, Tianjin Street, Huangshi, 435000, Hubei, P.R. China.
| |
Collapse
|
35
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
36
|
Li T, Xu Q, Wei Y, Lin R, Hong Z, Zeng R, Hu W, Wu X. Overexpression of miRNA-93-5p Promotes Proliferation and Migration of Bladder Urothelial Carcinoma via Inhibition of KLF9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8911343. [PMID: 35495878 PMCID: PMC9042641 DOI: 10.1155/2022/8911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
We focused on studying the effects of a key miRNA-mRNA axis in bladder urothelial carcinoma (BUC). Firstly, miRNAs and mRNAs differentially expressed in BUC were analyzed. Clinical information in the TCGA database was used for survival analysis, and the regulator of miRNA-93-5p was predicted. miRNA-93-5p and KLF9 mRNA expression were detected by qRT-PCR. Protein level detection and targeting measurement were, respectively, achieved by western blot and dual-luciferase approaches. The proliferative, invasive, and migratory abilities were tested through CCK-8, Transwell, and wound healing methods. Cell apoptosis in each group was detected through flow cytometry. As discovered, miRNA-93-5p level was markedly high in BUC cells while KLF9 expression was remarkably low. miRNA-93-5p overexpression promoted BUC cell abilities. Besides, miRNA-93-5p inhibited KLF9 expression. Furthermore, KLF9 overexpression dramatically attenuated such promotion on cancer cell abilities. On the whole, miRNA-93-5p/KLF9 axis facilitated BUC progression, offering a new potential target for BUC patients.
Collapse
Affiliation(s)
- Tao Li
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingjiang Xu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yongbao Wei
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Rongcheng Lin
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Zhiwei Hong
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Rong Zeng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weilie Hu
- Department of Urology, Guangdong Hydropower Hospital, Guangzhou 511340, China
| | - Xiang Wu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
37
|
Wen P, Xie Y, Wang L. The Role of microRNA in Pathogenesis, Diagnosis, Different Variants, Treatment and Prognosis of Mycosis Fungoides. Front Oncol 2021; 11:752817. [PMID: 34966672 PMCID: PMC8710607 DOI: 10.3389/fonc.2021.752817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), accounting for approximately 50% of all CTCLs. Although various molecular changes in MF have been described in existing studies, no obvious disease-specific changes have been found thus far. microRNAs (miRs) are short, noncoding RNA molecules that play roles in the post-transcriptional regulation of oncogenes and tumor suppressor genes in various diseases. Recently, there has been rapidly expanding experimental evidence for the role of miRs in the progression, early diagnosis, prognosis prediction for MF. Efforts to improve early diagnosis and develop personalized therapy options have become more important in recent years. Here, we provide an overview and update of recent advances regarding miRs associated with MF. Furthermore, we provide insights into future opportunities for miR-based therapies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
39
|
Hong BS. Regulation of the Effect of Physical Activity Through MicroRNAs in Breast Cancer. Int J Sports Med 2021; 43:455-465. [PMID: 34872116 DOI: 10.1055/a-1678-7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise can induce beneficial molecular and biological regulations that have been associated with an incidence of various diseases, including breast cancer. Recent studies demonstrated that the potential links between physical activity-induced circulating microRNAs (miRNAs) and cancer risk and progression. Here, we investigated whether altered miRNAs by exercise could influence breast cancer progression. After primary searching in PubMed and reviewing the full-text papers, candidate miRNAs altered by exercise in breast cancer were identified. Analysis of expression profiles and clinical outcomes of altered miRNAs using The Cancer Genome Atlas datasets showed altered miRNAs expressions were significantly associated with the patient's prognosis, whereas prognostic values of each miRNA varied in different stages and subtypes. In addition, altered miRNAs profiles regulated various target genes and key signaling pathways in tumorigenesis, including pathways in cancer and the PI3K-Akt signaling pathway; however, miRNAs regulated the expression of target genes differently according to tumor stages and subtypes. These results indicate that circulating miRNAs are promising noninvasive stable biomarkers for early detection, diagnosis, prognosis, and monitoring the response to clinical therapies of breast cancer. Moreover, stages and subtype-stratified approaches for breast cancer progression would be needed to evaluate the prognostic value of miRNAs for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bok Sil Hong
- Cheju Halla University, Life Science Research Center, Department of Nursing, Jeju, Korea (the Republic of)
| |
Collapse
|
40
|
Sadeghi H, Kamal A, Ahmadi M, Najafi H, Sharifi Zarchi A, Haddad P, Shayestehpour B, Kamkar L, Salamati M, Geranpayeh L, Lashkari M, Totonchi M. A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA Biol 2021; 18:747-756. [PMID: 34793290 DOI: 10.1080/15476286.2021.1989218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) as a leading cause of cancer death among women, exhibits a wide range of genetic heterogeneity in affected individuals. Satisfactory management of BC depends on early diagnosis and proper monitoring of patients' response to therapy. In this study, we aimed to assess the relation between the expression patterns of blood-based microRNAs (miRNAs) with demographic characteristics of the patients with BC in an attempt to find novel diagnostic markers for BC with acceptable precision in clinical applications. To this end, we performed comprehensive statistical analysis of the data of the Cancer Genome Atlas (TCGA) database and the blood miRNome dataset (GSE31309). As a result, 21 miRNAs were selected for experimental verification by quantitative RT-PCR on blood samples of 70 BC patients and 60 normal individuals (without any lesions or benign breast diseases). Statistical one-way ANOVA revealed no significant difference in the blood levels of the selected miRNAs in BC patients compared to any lesions or benign breast diseases. However, the multi-marker panel consisting of hsa-miR-106b-5p, -126-3p, -140-3p, -193a-5p, and -10b-5p could detect early-stages of BC with 0.79 sensitivity, 0.86 specificity and 0.82 accuracy. Furthermore, this multi-marker panel showed the potential of detecting benign breast diseases from BC patients with 0.67 sensitivity, 0.80 specificity, and 0.74 accuracy. In conclusion, these data indicate that the present panel might be considered an asset in detecting benign breast disease and BC.
Collapse
Affiliation(s)
- Hanieh Sadeghi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Aryan Kamal
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Marzieh Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Hadi Najafi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Peyman Haddad
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Shayestehpour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Leila Kamkar
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Masoumeh Salamati
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Loabat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Lashkari
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| |
Collapse
|
41
|
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B, Majidinia M. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci 2021; 285:119984. [PMID: 34592229 DOI: 10.1016/j.lfs.2021.119984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 01/07/2023]
Abstract
Phosphoinositide-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important proliferative signaling pathways with critical undeniable function in various aspects of cancer initiation/progression, including proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. On the other hand, numerous genetic alterations in the key genes involved in the PI3K/AKT/mTOR signaling pathway have been identified in multiple solid and hematological tumors. In addition, accumulating recent evidences have demonstrated a reciprocal interaction between this signaling pathway and microRNAs, a large group of small non-coding RNAs. Therefore, in this review, it was attempted to discuss about the interaction between key components of PI3K/AKT/mTOR signaling pathway with various miRNAs and their importance in cancer biology.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Akbarzadeh
- Department of Physical Education and Sport Medicine, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
42
|
Kashani B, Zandi Z, Kaveh V, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Small molecules with huge impacts: the role of miRNA-regulated PI3K pathway in human malignancies. Mol Biol Rep 2021; 48:8045-8059. [PMID: 34689281 DOI: 10.1007/s11033-021-06739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Along with evolution, a considerable number of signaling cascades have evolved within cells to meet their multifaceted needs. Among transmitting molecules, phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) have teamed up to build a signaling axis that effectively regulates various cellular processes including cell proliferation and migration. Given the extensive output of the PI3K/Akt/mTOR signaling axis, its aberrancy could subsequently lead to the formation of a wide range of human cancers spanning from hematologic malignancies to different types of solid tumors. Despite the high frequency of the PI3K pathway over-activation in most malignancies, mutations in the DNA sequence are not equally common. Such incompatibility sheds light on the possible effects of post-translational modification mechanisms that may take control of this pathway, some of the most important ones of which are through microRNAs (miRNAs or miRs). The present review is designed to take off the veil from the regulatory role of these small non-coding RNAs on the PI3K/Akt/mTOR signaling axis in carcinogenesis.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Kaveh
- Department of Medical Oncology and Hematology, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Hussain SA, Deepak KV, Nanjappa DP, Sherigar V, Nandan N, Suresh PS, Venkatesh T. Comparative expression analysis of tRF-3001a and tRF-1003 with corresponding miRNAs (miR-1260a and miR-4521) and their network analysis with breast cancer biomarkers. Mol Biol Rep 2021; 48:7313-7324. [PMID: 34661810 DOI: 10.1007/s11033-021-06732-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND MicroRNAs and tRFs (tRNA-derived fragments) are small non-coding RNAs that are promising breast cancer (BC) biomarkers. miRNA sequences are found within tRFs. For example, miR-1260a and miR-4521 sequences are found within tRF-3001a and tRF-1003, respectively. No study has addressed the biomarker potential of these tRF-miRNA pairs in BC or their association with other BC miRNA biomarkers. METHODS AND RESULTS Real-time PCR was performed to examine the expression of miR-1260a-tRF-3001a and miR-4521-tRF-1003 pairs in plasma of BC patients. miR-4521 and miR-1260a showed no change in plasma of breast cancer patients (n = 19). On the contrary, both the corresponding tRFs (tRF-1003 and tRF-3001a) were down-regulated. Also, we performed miRNA/mRNA network analysis for miR-1260a and miR-4521 with top degree BC biomarkers miR-16-5p and miR-93-5p. We found that they shared nine target genes. Moreover, miR-16-5p was down-regulated, and miR-93-5p was up-regulated in the same sample set. Survival analysis plotted using clinical data from Kaplan-Meier Plotter showed that all four miRNAs and 8/9 target gene expressions could predict the survival of BC patients. CONCLUSIONS Our cohort analyses suggest that tRF-3001a and tRF-1003 serve as better biomarkers than their miRNA counterparts in addition to miR-93-5p and miR-16-5p. Also, they form a significant miRNA/mRNA biomarker cluster.
Collapse
Affiliation(s)
- Shaharbhanu A Hussain
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Kunhi Valappil Deepak
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru, 575018, India
| | - Viswanath Sherigar
- Department of Oncosurgery, A.J. Hospital and Research Centre, Mangalore, Karnataka, 575004, India
| | - Neetha Nandan
- Department of Obstetrics and Gynaecology, KS Hegde Medical Academy, Mangalore, Karnataka, 575018, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye, Kasargod, Kerala, 671316, India.
| |
Collapse
|
44
|
Liu B, Shyr Y, Liu Q. Pan-Cancer Analysis Reveals Common and Specific Relationships between Intragenic miRNAs and Their Host Genes. Biomedicines 2021; 9:1263. [PMID: 34572448 PMCID: PMC8471046 DOI: 10.3390/biomedicines9091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play important roles in regulating gene expression. Most miRNAs are located within or close to genes (host). miRNAs and their host genes have either coordinated or independent transcription. We performed a comprehensive investigation on co-transcriptional patterns of miRNAs and host genes based on 4707 patients across 21 cancer types. We found that only 11.6% of miRNA-host pairs were co-transcribed consistently and strongly across cancer types. Most miRNA-host pairs showed a strong coexpression only in some specific cancer types, demonstrating a high heterogenous pattern. For two particular types of intergenic miRNAs, readthrough and divergent miRNAs, readthrough miRNAs showed higher coexpression with their host genes than divergent ones. miRNAs located within non-coding genes had tighter co-transcription with their hosts than those located within protein-coding genes, especially exonic and junction miRNAs. A few precursor miRNAs changed their dominate form between 5' and 3' strands in different cancer types, including miR-486, miR-99b, let-7e, miR-125a, let-7g, miR-339, miR-26a, miR-16, and miR-218, whereas only two miRNAs with multiple host genes switched their co-transcriptional partner in different cancer types (miR-219a-1 with SLC39A7/HSD17B8 and miR-3615 with RAB37/SLC9A3R1). miRNAs generated from distinct precursors (such as miR-125b from miR-125b-1 or miR-125b-2) were more likely to have cancer-dependent main contributors. miRNAs and hosts were less co-expressed in KIRC than other cancer types, possibly due to its frequent VHL mutations. Our findings shed new light on miRNA biogenesis and cancer diagnosis and treatments.
Collapse
Affiliation(s)
- Baohong Liu
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
45
|
Shi W, Hu D, Xing Y, Zhuo R, Lao Q, Liu H, Pang W. Deciphering the Oncogenic Role of VPS28 Modulated by miR-491-5p in Breast Cancer Cells Using In Silico and Functional Analysis. Front Mol Biosci 2021; 8:634183. [PMID: 34395516 PMCID: PMC8360854 DOI: 10.3389/fmolb.2021.634183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Vacuolar protein sorting–associated protein 28 (VPS28), one of the four cytosolic proteins comprising the endosomal sorting complex required for the transport I (ESCRT-I) component, has been reported to be linked to various cancers. However, less evidence is available regarding the involvement of VPS28 in breast cancer. To this end, this study focused on exploring the function of VPS28 in breast cancer cells using the in silico analysis. VPS28 expression pattern data in breast cancer tissues were collected using the Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases and analyzed to assess the association of VPS28 with breast cancer prognosis. The elevated VPS28 expression was found in breast cancer tissues and was associated with a poor prognosis (p < 0.001). A higher VPS28 expression indicated a short survival duration (HR = 2.43; 95% CI: 1.44–4.1; p < 0.001). The CCLE database showed that VPS28 was expressed in breast cancer cell lines. The upstream targets of VPS28 were identified using the mirDIP, starBase, and TargetScan online tools. The correlation and binding relationship between miR-491-5p and VPS28 was analyzed. VPS28 or miR-491-5p gain and loss of function experiments were performed to verify their potential effect on the biological functions of breast cancer cells. Knockdown of VPS28 was shown to suppress the biological functions and enhance the apoptosis of breast cancer cell lines. Micro RNA-491-5p, identified as a posttranscriptional regulator of VPS28, was downregulated in breast cancer tissues. In contrast to the miR-491-5p inhibitor, the miR-491-5p mimic could suppress the migration, wound healing ability, and proliferation, while accelerating apoptosis. However, co-transfection of VPS28 and miR-491-5p counteracted the effect of the miR-491-5p mimic on breast cancer cell functions. Thus, our in silico analysis demonstrates that miR-491-5p can suppress breast cancer progression by attenuating the expression of VPS28.
Collapse
Affiliation(s)
- Wenjie Shi
- School of Public Health, Guilin Medical University, Guilin, China
| | - Daojun Hu
- Department of Clinical Laboratory, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yu Xing
- School of Public Health, Guilin Medical University, Guilin, China
| | - Rui Zhuo
- Department of Breast Surgery, Guilin TCM Hospital of China, Affiliated to Guang Xi University of Chinese Medicine Guilin, Guilin, China
| | - Qiufeng Lao
- School of Public Health, Guilin Medical University, Guilin, China
| | - Hui Liu
- School of Public Health, Guilin Medical University, Guilin, China
| | - Weiyi Pang
- School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
46
|
MicroRNA-103a-3p Promotes Cell Proliferation and Invasion in Non-Small-Cell Lung Cancer Cells through Akt Pathway by Targeting PTEN. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7590976. [PMID: 34307670 PMCID: PMC8279842 DOI: 10.1155/2021/7590976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/26/2021] [Indexed: 01/01/2023]
Abstract
Background Increasing evidence has suggested that microRNA- (miR-) 103a-3p is crucial for cancer progression. However, the specific mechanism of miR-103a-3p in non-small-cell lung cancer (NSCLC) remains unclear until now. So, it is particularly urgent to clarify the mechanism between them. Methods qRT-PCR and western blot were used to measure the expression of miR-103a-3p, PTEN, Akt, and p-Akt. Cell biology experiment was applied to detect the biological function of miR-103a-3p in NSCLC cell lines. Moreover, bioinformatics analysis, luciferase reporter assay, and functional complementation analysis were carried out to investigate the target gene. Results miR-103a-3p was highly expressed in primary NSCLC samples and cell lines. miR-103a-3p mimics promoted the proliferation and invasion of NSCLC cells; miR-103a-3p inhibitor had the opposite effect. A double luciferase reporter gene experiment revealed that miR-103a-3p directly targets the PTEN mRNA 3'UTR region. siPTEN inhibited the proliferation and invasion of NSCLC cells. Further mechanistic studies showed that both overexpression of miR-103a-3p and PTEN knockdown reduced the expression of the p-Akt protein. Overexpression of PTEN partially reversed the cancer-promoting effect of miR-103a-3p. Conclusion miR-103a-3p promotes the progression of NSCLC via Akt signaling by targeting PTEN, highlighting the role of miR-103a-3p/PTEN/Akt signaling and suggesting miR-103a-3p as a novel therapeutic target for NSCLC.
Collapse
|
47
|
Ma H, Li X, Yu S, Hu Y, Yin M, Zhu F, Xu L, Wang T, Wang H, Li H, Zhao B, Huang Y. Deletion of the miR-25/93/106b cluster induces glomerular deposition of immune complexes and renal fibrosis in mice. J Cell Mol Med 2021; 25:7922-7934. [PMID: 34197043 PMCID: PMC8358857 DOI: 10.1111/jcmm.16721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/17/2023] Open
Abstract
IgA nephropathy (IgAN), the most common form of primary glomerulonephritis, is caused by immune system dysfunction and affects only the kidneys. miRNA was involved in IgAN, in which their roles are still unknown. Herein, we found increased glomerular medulla size, proteinuria, kidney artery resistance, kidney fibrosis and immune complex deposition in 5‐month miR‐25/93/106b cluster knockout (miR‐TKO) mice. In vitro, the inhibition of miR‐25 cluster could promote cell proliferation and increase fibrosis‐related protein and transferrin receptor (TFRC) expression in human renal glomerular mesangial cell (HRMC). Luciferase assay revealed that inhibition of miR‐93/106b cluster could upregulate Ccnd1 expression through direct binding with the 3’UTR of Ccnd1. Conversely, inhibition of Ccnd1 expression prevented miR‐93/106b‐induced effect in HRMC. These findings suggested that miR‐25 cluster played an important role in the progression of IgAN, which provided new insights into the pathogenesis and treatment of IgAN.
Collapse
Affiliation(s)
- Hongchuang Ma
- Department of Cell Biology, Jinan University, Guangzhou, China.,Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Xiang Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Shanshan Yu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Yanling Hu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | | | - Fubin Zhu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Licheng Xu
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Tianhe Wang
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Gao S, Lu X, Ma J, Zhou Q, Tang R, Fu Z, Wang F, Lv M, Lu C. Comprehensive Analysis of lncRNA and miRNA Regulatory Network Reveals Potential Prognostic Non-coding RNA Involved in Breast Cancer Progression. Front Genet 2021; 12:621809. [PMID: 34220926 PMCID: PMC8253500 DOI: 10.3389/fgene.2021.621809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women and is the second leading cause of cancer deaths among women. The tumorigenesis and progression of breast cancer are not well understood. The existing researches have indicated that non-coding RNAs, which mainly include long non-coding RNA (lncRNA) and microRNA (miRNA), have gradually become important regulators of breast cancer. We aimed to screen the differential expression of miRNA and lncRNA in the different breast cancer stages and identify the key non-coding RNA using TCGA data. Based on series test of cluster (STC) analysis, bioinformatics analysis, and negatively correlated relationships, 122 lncRNAs, 67 miRNAs, and 119 mRNAs were selected to construct the regulatory network of lncRNA and miRNA. It was shown that the miR-93/20b/106a/106b family was at the center of the regulatory network. Furthermore, 6 miRNAs, 10 lncRNAs, and 15 mRNAs were significantly associated with the overall survival (OS, log-rank P < 0.05) of patients with breast cancer. Overexpressed miR-93 in MCF-7 breast cancer cells was associated with suppressed expression of multiple lncRNAs, and these downregulated lncRNAs (MESTIT1, LOC100128164, and DNMBP-AS1) were significantly associated with poor overall survival in breast cancer patients. Therefore, the miR-93/20b/106a/106b family at the core of the regulatory network discovered by our analysis above may be extremely important for the regulation of lncRNA expression and the progression of breast cancer. The identified key miRNA and lncRNA will enhance the understanding of molecular mechanisms of breast cancer progression. Targeting these key non-coding RNA may provide new therapeutic strategies for breast cancer treatment and may prevent the progression of breast cancer from an early stage to an advanced stage.
Collapse
Affiliation(s)
- Sheng Gao
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington, DC, United States
| | - Jingjing Ma
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhou
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - RanRan Tang
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Lu
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Costanzi E, Simioni C, Varano G, Brenna C, Conti I, Neri LM. The Role of Extracellular Vesicles as Shuttles of RNA and Their Clinical Significance as Biomarkers in Hepatocellular Carcinoma. Genes (Basel) 2021; 12:genes12060902. [PMID: 34207985 PMCID: PMC8230662 DOI: 10.3390/genes12060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell-cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs' potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.C.); (G.V.); (C.B.); (I.C.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
50
|
Han L, Wang Y, Sun S. Curcumin inhibits proliferation of hepatocellular carcinoma cells through down regulation of DJ-1. Cancer Biomark 2021; 29:1-8. [PMID: 32417759 DOI: 10.3233/cbm-190427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PTEN exerts tumor suppressor role through inhibiting PI3K/AKT signaling. DJ-1 plays an oncogenic role through negatively regulation of PTEN expression. Curcumin (Cur) is a phenolic compound extracted from a variety of plant roots, with multiple anti-tumor pharmacological effects. This study aims to investigate whether Cur plays a role in the regulation of DJ-1-PENT/PI3K/AKT signaling as well as the proliferation and apoptosis of hepatocellular carcinoma cells. Normal human hepatocyte HL-7702 and hepatocellular carcinoma cell lines SMMC-7721 and HepG2 were cultured followed by analysis of the expression of DJ-1 and PTEN. SMMC-7721 and HepG2 cells were treated with different concentrations of Cur (0, 5, 10 μM) followed by measuring cell proliferation by CCK-8, caspase-3 activity as well as DJ-1 expression by western blot. In addition, SMMC-7721 or HepG2 cells were divided into two groups: Cur+pcDNA3.1-Blank and Cur+pcDNA3.1-DJ-1 for analysis of the expression of DJ-1, PTEN and p-AKT, cell apoptosis and proliferation. Compared with HL-7702, SMMC-7721 and HepG2 cells displayed significantly higher DJ-1 expression and lower PTEN expression. Cur treatment significantly inhibited proliferation of SMMC-7721 and HepG2 cells, increased caspase-3 activity and downregulated DJ-1 expression. Transfection of pcDNA3.1-DJ-1 significantly increased DJ-1 and p-AKT expression, promoted cell proliferation, but decreased PTEN expression and cell apoptosis. In conclusion, Cur inhibits proliferation of hepatocellular carcinoma cells and PTEN/PI3K/AKT signaling pathway via the reduction of DJ-1 expression, which provides new insights to the anticancer effects of curcumin in hepatocellular carcinoma.
Collapse
|