1
|
Wu X, Shen J, Liu J, Kang N, Zhang M, Cai X, Zhen X, Yan G, Liu Y, Sun H. Increased EHD1 in trophoblasts causes RSM by activating TGFβ signaling†. Biol Reprod 2024; 111:1235-1248. [PMID: 39012723 DOI: 10.1093/biolre/ioae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Recurrent spontaneous miscarriage is one of the complications during pregnancy. However, the pathogenesis of recurrent spontaneous miscarriage is far from fully elucidated. OBJECTIVE Since the endocytic pathway is crucial for cellular homeostasis, our study aimed to explore the roles of endocytic recycling, especially EH domain containing 1, a member of the endocytic recycling compartment, in recurrent spontaneous miscarriage. STUDY DESIGN We first investigated the expression of the endocytic pathway member EH domain containing 1 in villi from the normal and recurrent spontaneous miscarriage groups. Then, we performed ribonucleic acid sequencing and experiments in villi, HTR8 cells and BeWo cells to determine the mechanisms by which EH domain containing 1-induced recurrent spontaneous miscarriage. Finally, placenta-specific EH domain containing 1-overexpressing mice were generated to investigate the recurrent spontaneous miscarriage phenotype in vivo. RESULTS EH domain containing 1 was expressed in extravillous trophoblasts and syncytiotrophoblast in the villi. Compared with the control group, recurrent spontaneous miscarriage patients expressed higher EH domain containing 1. A high level of EH domain containing 1 decreased proliferation, promoted apoptosis, and reduced the migration and invasion of HTR8 cells by activating the TGFβ receptor 1-SMAD2/3 signaling pathway. The TGFβ receptor 1 antagonist LY3200882 partially reversed the EH domain containing 1 overexpression-induced changes in the cell phenotype. Besides, a high level of EH domain containing 1 also induced abnormal syncytialization, which disturbed maternal-fetal material exchanges. In a mouse model, placenta-specific overexpression of EH domain containing 1 led to the failure of spiral artery remodeling, excessive syncytialization, and miscarriage. CONCLUSIONS Increased expression of EH domain containing 1 impaired the invasion of extravillous trophoblasts mediated by the TGFβ receptor 1-SMAD2/3 signaling pathway and induced abnormal syncytialization of syncytiotrophoblast, which is at least partially responsible for recurrent spontaneous miscarriage.
Collapse
Affiliation(s)
- Xing Wu
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Jiayan Shen
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Jinjin Liu
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Nannan Kang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, People's Republic of China
| | - Xinyu Cai
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Guijun Yan
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Yang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Haixiang Sun
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
2
|
Ounadjela JR, Zhang K, Kobayashi-Kirschvink KJ, Jin K, J C Russell A, Lackner AI, Callahan C, Viggiani F, Dey KK, Jagadeesh K, Maxian T, Prandstetter AM, Nadaf N, Gong Q, Raichur R, Zvezdov ML, Hui M, Simpson M, Liu X, Min W, Knöfler M, Chen F, Haider S, Shu J. Spatial multiomic landscape of the human placenta at molecular resolution. Nat Med 2024; 30:3495-3508. [PMID: 39567716 DOI: 10.1038/s41591-024-03073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 11/22/2024]
Abstract
Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta. We utilized paired single-nucleus (sn)ATAC (assay for transposase accessible chromatin) sequencing and RNA sequencing (RNA-seq), spatial snATAC-seq and RNA-seq, and in situ sequencing and hybridization mapping of transcriptomes at molecular resolution to spatially reconstruct the joint epigenomic and transcriptomic regulatory landscape. Paired analyses unraveled intricate tumor-like gene expression and transcription factor motif programs potentially sustaining the placenta in a hostile uterine environment; further investigation of gene-linked cis-regulatory elements revealed heightened regulatory complexity that may govern trophoblast differentiation and placental disease risk. Complementary spatial mapping techniques decoded these programs within the placental villous core and extravillous trophoblast cell column architecture while simultaneously revealing niche-establishing transcriptional elements and cell-cell communication. Finally, we computationally imputed genome-wide, multiomic single-cell profiles and spatially characterized the placental chromatin accessibility landscape. This spatially resolved, single-cell multiomic framework of the first trimester human placenta serves as a blueprint for future studies on early placental development and pregnancy.
Collapse
Affiliation(s)
- Johain R Ounadjela
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Jin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J C Russell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Viggiani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karthik Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Naeem Nadaf
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiyu Gong
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth Raichur
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan L Zvezdov
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mingyang Hui
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattew Simpson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinwen Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications. Biol Reprod 2024:ioae149. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), preterm birth, fetal growth restriction (FGR), etc., may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications (PTMs) are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction and gene transcription. In this review, we focus on the impact of various PTMs on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, P.R. China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Murthi P, Kalionis B. Homeobox genes in the human placenta: Twists and turns on the path to find novel targets. Placenta 2024; 157:28-36. [PMID: 38908943 DOI: 10.1016/j.placenta.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Fetal growth restriction (FGR) is a clinically important human pregnancy disorder that is thought to originate early in pregnancy and while its aetiology is not well understood, the disorder is associated with placental insufficiency. Currently treatment for FGR is limited by increased surveillance using ultrasound monitoring and premature delivery, or corticosteroid medication in the third trimester to prolong pregnancy. There is a pressing need for novel strategies to detect and treat FGR at its early stage. Homeobox genes are well established as master regulators of early embryonic development and increasing evidence suggests they are also important in regulating early placental development. Most important is that specific homeobox genes are abnormally expressed in human FGR. This review focusses on identifying the molecular pathways controlled by homeobox genes in the normal and FGR-affected placenta. This information will begin to address the knowledge gap in the molecular aetiology of FGR and lay the foundation for identifying potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Bill Kalionis
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Wu ZH, Li FF, Ruan LL, Feng Q, Zhang S, Li ZH, Otoo A, Tang J, Fu LJ, Liu TH, Ding YB. miR-181d-5p, which is upregulated in fetal growth restriction placentas, inhibits trophoblast fusion via CREBRF. J Assist Reprod Genet 2023; 40:2725-2737. [PMID: 37610607 PMCID: PMC10643557 DOI: 10.1007/s10815-023-02917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Fetal growth restriction (FGR) is a common complication characterized by impaired placental function and unfavorable pregnancy outcomes. This study aims to elucidate the expression pattern of miR-181d-5p in FGR placentas and explore its effects on trophoblast fusion. METHODS The expression pattern of miR-181d-5p in human FGR placentas were evaluated using qRT-PCR. Western blot, qRT-PCR, and Immunofluorescence analysis were performed in a Forskolin (FSK)-induced BeWo cell fusion model following the transfection of miR-181d-5p mimic or inhibitor. Potential target genes for miR-181d-5p were identified by screening miRNA databases. The interaction between miR-181d-5p and Luman/CREB3 Recruitment Factor (CREBRF) was determined through a luciferase assay. Moreover, the effect of CREBRF on BeWo cell fusion was examined under hypoxic conditions. RESULTS Aberrant up-regulation of miR-181d-5p and altered expression of trophoblast fusion makers, including glial cell missing 1 (GCM1), Syncytin1 (Syn1), and E-cadherin (ECAD), were found in human FGR placentas. A down-regulation of miR-181d-5p expression was observed in the FSK-induced BeWo cell fusion model. Transfection of the miR-181d-5p mimic resulted in the inhibition of BeWo cell fusion, characterized by a down-regulation of GCM1 and Syn1, accompanied by an up-regulation of ECAD. Conversely, the miR-181d-5p inhibitor promoted BeWo cell fusion. Furthermore, miR-181d-5p exhibited negative regulation of CREBRF, which was significantly down-regulated in the hypoxia-induced BeWo cell model. The overexpression of CREBRF was effectively ameliorated the impaired BeWo cell fusion induced by hypoxia. CONCLUSIONS Our study demonstrated that miR-181d-5p, which is elevated in FGR placenta, inhibited the BeWo cell fusion through negatively regulating the expression of CREBRF.
Collapse
Affiliation(s)
- Zhi-Hong Wu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Shuang Zhang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Zhuo-Hang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Antonia Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Li-Juan Fu
- Department of Pharmacology, the School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Academician Workstation, Changsha Medical University, Changsha, China.
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
7
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
8
|
Procoagulant Extracellular Vesicles Alter Trophoblast Differentiation in Mice by a Thrombo-Inflammatory Mechanism. Int J Mol Sci 2021; 22:ijms22189873. [PMID: 34576036 PMCID: PMC8466022 DOI: 10.3390/ijms22189873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Procoagulant extracellular vesicles (EV) and platelet activation have been associated with gestational vascular complications. EV-induced platelet-mediated placental inflammasome activation has been shown to cause preeclampsia-like symptoms in mice. However, the effect of EV-mediated placental thrombo-inflammation on trophoblast differentiation remains unknown. Here, we identify that the EV-induced thrombo-inflammatory pathway modulates trophoblast morphology and differentiation. EVs and platelets reduce syncytiotrophoblast differentiation while increasing giant trophoblast and spongiotrophoblast including the glycogen-rich cells. These effects are platelet-dependent and mediated by the NLRP3 inflammasome. In humans, inflammasome activation was negatively correlated with trophoblast differentiation marker GCM1 and positively correlated with blood pressure. These data identify a crucial role of EV-induced placental thrombo-inflammation on altering trophoblast differentiation and suggest platelet activation or inflammasome activation as a therapeutic target in order to achieve successful placentation.
Collapse
|
9
|
Song F, Chen Y, Chen L, Li H, Cheng X, Wu W. Association of Elevated Maternal Serum Total Bile Acids With Low Birth Weight and Intrauterine Fetal Growth Restriction. JAMA Netw Open 2021; 4:e2117409. [PMID: 34279647 PMCID: PMC8290304 DOI: 10.1001/jamanetworkopen.2021.17409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Bile acids play essential roles in metabolic modulation. Excessive serum total bile acid (sTBA) levels during pregnancy are associated with adverse perinatal outcomes; however, their association with the risk of intrauterine growth restriction (IUGR) remains unclear. OBJECTIVE To investigate the association between maternal sTBA concentration during pregnancy and the risk of IUGR. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included pregnant individuals who delivered live singleton neonates and had regular antenatal examination records available at a hospital-based center in Shanghai, China, from 2014 to 2018. Data were analyzed from July to November 2020. EXPOSURES Maternal sTBA concentration during pregnancy. MAIN OUTCOMES AND MEASURES Fetal birth weight and probability of low birth weight (LBW) and IUGR. RESULTS This study included 68 245 singleton pregnancies with live births for analysis. The mean (SD) age of the pregnant individuals was 30.5 (3.8) years, 67 168 patients (98.4%) were Han, and 50 155 (73.5%) were nulliparous. Nonlinear regression models suggested that there was an inverted J-shaped association between maternal sTBA level during pregnancy and fetal birth weight, with a steep decrease in birth weight at high sTBA levels (estimated mean [SE] birth weight for sTBA of 40.8 ug/mL, 2879 [39.9] g) and greater birth weights at lower sTBA levels (estimated mean [SE] birth weight for sTBA 0.4 μg/mL, 3290 [3.9] g; and for 4.1 μg/mL, 3334 [1.6] g). Lower birth weight and a higher incidence of IUGR were observed in patients with gestational hypercholanemia (sTBA ≥4.08 μg/mL) compared with those without gestational hypercholanemia (birth weight: estimated adjusted mean [SE], 3309 [3.32] vs 3338 [0.80] g; P = .005; incidence of IUGR: 62 of 4467 [1.4%] vs 312 of 63 778 [0.5%]; P < .001). Moreover, compared with patients with sTBA concentrations of less than 4.08 μg/mL, those with gestational hypercholanemia had an increased risk of LBW (adjusted odds ratio [aOR], 1.29; 95% CI, 1.09-1.53) and IUGR (aOR, 2.18; 95% CI, 1.62-2.91). In addition, there was an additive interaction between hypertensive disorders in pregnancy (HDP) and hypercholanemia on LBW and IUGR risk. The highest risks of LBW and IUGR were found in pregnant individuals with both HDP and hypercholanemia compared with those with normotensive pregnancies with sTBA concentrations less than 4.08 μg/mL (LBW: aOR, 9.13; 95% CI, 6.88-12.12; IUGR: aOR, 19.14; 95% CI, 12.09-30.28). CONCLUSIONS AND RELEVANCE This study found that gestational hypercholanemia was associated with an increased risk of LBW and IUGR, especially in pregnant individuals with HDP. Therefore, it would be meaningful to monitor sTBA concentration during the follow-up of pregnancies with potential IUGR.
Collapse
Affiliation(s)
- Fuzhen Song
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuanyuan Chen
- Hongqiao Street Community Health Service Center, Changning District, Shanghai, China
| | - Lei Chen
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Li
- Department of Gynecology and Obstetrics, Songjiang Maternity and Child Health Hospital, Shanghai, China
| | - Xiajin Cheng
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weibin Wu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
10
|
Kohli S, Singh KK, Gupta A, Markmeyer P, Lochmann F, Gupta D, Rana R, Elwakiel A, Huebner H, Ruebner M, Isermann B. Placental thromboinflammation impairs embryonic survival by reducing placental thrombomodulin expression. Blood 2021; 137:977-982. [PMID: 32870264 DOI: 10.1182/blood.2020005225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Excess platelet activation by extracellular vesicles (EVs) results in trophoblast inflammasome activation, interleukin 1β (IL-1β) activation, preeclampsia (PE), and partial embryonic lethality. Embryonic thrombomodulin (TM) deficiency, which causes embryonic lethality hallmarked by impaired trophoblast proliferation, has been linked with maternal platelet activation. We hypothesized that placental TM loss, platelet activation, and embryonic lethality are mechanistically linked to trophoblast inflammasome activation. Here, we uncover unidirectional interaction of placental inflammasome activation and reduced placental TM expression: although inflammasome inhibition did not rescue TM-null embryos from lethality, the inflammasome-dependent cytokine IL-1β reduced trophoblast TM expression and impaired pregnancy outcome. EVs, known to induce placental inflammasome activation, reduced trophoblast TM expression and proliferation. Trophoblast TM expression correlated negatively with IL-1β expression and positively with platelet numbers and trophoblast proliferation in human PE placentae, implying translational relevance. Soluble TM treatment or placental TM restoration ameliorated the EV-induced PE-like phenotype in mice, preventing placental thromboinflammation and embryonic death. The lethality of TM-null embryos is not a consequence of placental NLRP3 inflammasome activation. Conversely, EV-induced placental inflammasome activation reduces placental TM expression, promoting placental and embryonic demise. These data identify a new function of placental TM in PE and suggest that soluble TM limits thromboinflammatory pregnancy complications.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Kunal Kumar Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Paulina Markmeyer
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Franziska Lochmann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| |
Collapse
|
11
|
Wang H, Xu P, Luo X, Hu M, Liu Y, Yang Y, Peng W, Bai Y, Chen X, Tan B, Wu Y, Wen L, Gao R, Tong C, Qi H, Kilby MD, Saffery R, Baker PN. Phosphorylation of Yes-associated protein impairs trophoblast invasion and migration: implications for the pathogenesis of fetal growth restriction†. Biol Reprod 2020; 103:866-879. [PMID: 32582940 DOI: 10.1093/biolre/ioaa112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a condition in which a newborn fails to achieve his or her prospective hereditary growth potential. This condition is associated with high newborn mortality, second only to that associated with premature birth. FGR is associated with maternal, fetal, and placental abnormalities. Although the placenta is considered to be an important organ for supplying nutrition for fetal growth, research on FGR is limited, and treatment through the placenta remains challenging, as neither proper uterine intervention nor its pathogenesis have been fully elucidated. Yes-associated protein (YAP), as the effector of the Hippo pathway, is widely known to regulate organ growth and cancer development. Therefore, the correlation of the placenta and YAP was investigated to elucidate the pathogenic mechanism of FGR. Placental samples from humans and mice were collected for histological and biomechanical analysis. After investigating the location and role of YAP in the placenta by immunohistochemistry, we observed that YAP and cytokeratin 7 have corresponding locations in human and mouse placentas. Moreover, phosphorylated YAP (p-YAP) was upregulated in FGR and gradually increased as gestational age increased during pregnancy. Cell function experiments and mRNA-Seq demonstrated impaired YAP activity mediated by extracellular signal-regulated kinase inhibition. Established FGR-like mice also recapitulated a number of the features of human FGR. The results of this study may help to elucidate the association of FGR development with YAP and provide an intrauterine target that may be helpful in alleviating placental dysfunction.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yamin Liu
- Department of Obstetrics, Health Center for Women and Children, Chongqing, China
| | - Yike Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- Centre for Women's and New Born Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, Australia
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Forstner D, Maninger S, Nonn O, Guettler J, Moser G, Leitinger G, Pritz E, Strunk D, Schallmoser K, Marsche G, Heinemann A, Huppertz B, Gauster M. Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. J Mol Med (Berl) 2019; 98:193-207. [PMID: 31863152 PMCID: PMC7007904 DOI: 10.1007/s00109-019-01866-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023]
Abstract
Abstract During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here, we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit (βhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired βhCG synthesis was not the consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3 and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-β type I receptor inhibitor SB431542 did not restore impaired βhCG production in response to platelet-derived factors, Smad3 inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit βhCG production, since CBP/p300 inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of maternal platelets at the early maternal-fetal interface can impair placental βhCG production, without substantially affecting morphological and biochemical differentiation of villous trophoblasts. Key messages Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns from gestational week 5 onwards. Platelet-derived factors impair hCG synthesis in human first trimester placenta. Platelet-derived factors activate Smad3 in trophoblasts. Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling. Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01866-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Department of Transfusion Medicine and Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria.
| |
Collapse
|
13
|
Liu L, Sun L, Zheng J, Wang Y. Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit 2018; 24:7451-7458. [PMID: 30337515 PMCID: PMC6284355 DOI: 10.12659/msm.910229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The improper invasion of trophoblast cells (TC) can cause various diseases. BRCT-repeat inhibitor of hTERT expression (BRIT1) is involved in the invasion of tumors. Here, we analyzed the effects of BRIT1 on the invasion of TC. Material/Methods The expression of BRIT1 in JEG-3, B6Tert, and HTR8/SVneo cells was evaluated by transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting. The viability, invasion, and migration of HTR8/SVneo cells were measured using cell counting kit-8 (CCK-8) and Transwell assays. The activities of pro-matrix metalloproteinase-2 (pro-MMP-2) and pro-MMP-9 were tested by gelatin zymography assay. The levels of invasion- and Wnt/β-catenin pathway-related factors were assessed by RT-qPCR and Western blotting. Results Levels of BRIT1 in HTR8/SVneo cells were higher than that of JEG-3 and B6Tert cells. The transfection efficiency of BRIT1 siRNA-2 was better than BRIT1 siRNA-1 in HTR8/SVneo cells. BRIT1 siRNA-2 did not change cell viability, whereas it promoted cell invasion and migration. BRIT1 siRNA-2 enhanced the activities of pro-MMP-2 and pro-MMP-9, as well MMP-2 and MMP-9 levels, and reduced tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-2 expression. Moreover, BRIT1 siRNA-2 significantly increased the levels of Wnt2, Wnt3, and β-catenin. Conclusions BRIT1 silencing accelerated the invasion and migration of TC and activated the Wnt/β-catenin pathway. Our results may provide new insights for finding new molecular targets to cure disease caused by insufficient invasion of TC.
Collapse
Affiliation(s)
- Luping Liu
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| | - Li Sun
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| | - Jing Zheng
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| | - Yanchun Wang
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| |
Collapse
|
14
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|
15
|
Wu WB, Xu YY, Cheng WW, Yuan B, Zhao JR, Wang YL, Zhang HJ. Decreased PGF may contribute to trophoblast dysfunction in fetal growth restriction. Reproduction 2017; 154:319-329. [PMID: 28676532 DOI: 10.1530/rep-17-0253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/16/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) threatens perinatal health and is correlated with increased incidence of fetal original adult diseases. Most cases of FGR were idiopathic, which were supposed to be associated with placental abnormality. Decreased circulating placental growth factor (PGF) was recognized as an indication of placental deficiency in FGR. In this study, the epigenetic regulation of PGF in FGR placentas and the involvement of PGF in modulation of trophoblast activity were investigated. The expression level of PGF in placental tissues was determined by RT-qPCR, immunohistochemistry and ELISA. DNA methylation profile of PGF gene was analyzed by bisulfite sequencing. Trophoblastic cell lines were treated with ZM-306416, an inhibitor of PGF receptor FLT1, to observe the effect of PGF/FLT1 signaling on cell proliferation and migration. We demonstrated that PGF was downregulated in placentas from FGR pregnancies compared with normal controls. The villous expression of PGF was positively correlated with placental and fetal weight. The CpG island inside PGF promoter was hypomethylated without obvious difference in both normal and FGR placentas. However, the higher DNA methylation at another CpG island downstream exon 7 of PGF was demonstrated in FGR placentas. Additionally, we found FLT1 was expressed in trophoblast cells. Inhibition of PGF/FLT1 signaling by a selective inhibitor impaired trophoblast proliferation and migration. In conclusion, our data suggested that the PGF expression was dysregulated, and disrupted PGF/FLT1 signaling in trophoblast might contribute to placenta dysfunction in FGR. Thus, our results support the significant role of PGF in the pathogenesis of FGR.
Collapse
Affiliation(s)
- Wei-Bin Wu
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Ying Xu
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Cheng
- Department of Obstetrics, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yuan
- Department of Computer Science and Engineer, Shanghai Jiao Tong University, Shanghai, China
| | - Jiu-Ru Zhao
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Lin Wang
- Prenatal Diagnosis Center & Fetal Medicine Unit, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhang
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|