1
|
Pavithran H, Kumavath R, Ghosh P. Transcriptome Profiling of Cardiac Glycoside Treatment Reveals EGR1 and Downstream Proteins of MAPK/ERK Signaling Pathway in Human Breast Cancer Cells. Int J Mol Sci 2023; 24:15922. [PMID: 37958905 PMCID: PMC10647710 DOI: 10.3390/ijms242115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiac glycosides (CGs) constitute a group of steroid-like compounds renowned for their effectiveness in treating cardiovascular ailments. In recent times, there has been growing recognition of their potential use as drug leads in cancer treatment. In our prior research, we identified three highly promising CG compounds, namely lanatoside C (LC), peruvoside (PS), and strophanthidin (STR), which exhibited significant antitumor effects in lung, liver, and breast cancer cell lines. In this study, we investigated the therapeutic response of these CGs, with a particular focus on the MCF-7 breast cancer cell line. We conducted transcriptomic profiling and further validated the gene and protein expression changes induced by treatment through qRT-PCR, immunoblotting, and immunocytochemical analysis. Additionally, we demonstrated the interactions between the ligands and target proteins using the molecular docking approach. The transcriptome analysis revealed a cluster of genes with potential therapeutic targets involved in cytotoxicity, immunomodulation, and tumor-suppressor pathways. Subsequently, we focused on cross-validating the ten most significantly expressed genes, EGR1, MAPK1, p53, CCNK, CASP9, BCL2L1, CDK7, CDK2, CDK2AP1, and CDKN1A, through qRT-PCR, and their by confirming the consistent expression pattern with RNA-Seq data. Notably, among the most variable genes, we identified EGR1, the downstream effector of the MAPK signaling pathway, which performs the regulatory function in cell proliferation, tumor invasion, and immune regulation. Furthermore, we substantiated the influence of CG compounds on translational processes, resulting in an alteration in protein expression upon treatment. An additional analysis of ligand-protein interactions provided further evidence of the robust binding affinity between LC, PS, and STR and their respective protein targets. These findings underscore the intense anticancer activity of the investigated CGs, shedding light on potential target genes and elucidating the probable mechanism of action of CGs in breast cancer.
Collapse
Affiliation(s)
- Honey Pavithran
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, India;
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, India;
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
2
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Xie Y, Li Y, Chen J, Ding H, Zhang X. Early growth response-1: Key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovasc Med 2023; 10:1162662. [PMID: 37057102 PMCID: PMC10086247 DOI: 10.3389/fcvm.2023.1162662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
SignificanceCardiovascular diseases are seen to be a primary cause of death, and their prevalence has significantly increased across the globe in the past few years. Several studies have shown that cell death is closely linked to the pathogenesis of cardiovascular diseases. Furthermore, many molecular and cellular mechanisms are involved in the pathogenesis of the cardiac cell death mechanism. One of the factors that played a vital role in the pathogenesis of cardiac cell death mechanisms included the early growth response-1 (Egr-1) factor.Recent AdvancesStudies have shown that abnormal Egr-1 expression is linked to different animal and human disorders like heart failure and myocardial infarction. The biosynthesis of Egr-1 regulates its activity. Egr-1 can be triggered by many factors such as serum, cytokines, hormones, growth factors, endotoxins, mechanical injury, hypoxia, and shear stress. It also displays a pro-apoptotic effect on cardiac cells, under varying stress conditions. EGR1 mediates a broad range of biological responses to oxidative stress and cell death by combining the acute changes occurring in the cellular environment with sustained changes in gene expression.Future DirectionsThe primary regulatory role played by the Egr-1-targeting DNAzymes, microRNAs, and oligonucleotide decoy strategies in cardiovascular diseases were identified to provide a reference to identify novel therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Correspondence: Xiaowei Zhang
| |
Collapse
|
4
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
5
|
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG, Tseng CJ. Assessment of Early Growth Response 1 in Tumor Suppression of Esophageal Squamous Cell Carcinoma. J Clin Med 2022; 11:jcm11195792. [PMID: 36233659 PMCID: PMC9572560 DOI: 10.3390/jcm11195792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is associated with poor survival despite surgical resection, and its pathogenesis has been broadly investigated in the past decade. Early growth response 1 (EGR-1) could involve regulating tumor development in ESCC cells. Methods: An attempt was made to examine the molecular and cellular influence of EGR-1 in esophageal cancer cells by RNA extraction, real-time PCR (qRT-PCR), cell culture, small interfering RNA (siRNA) knockdown, western blot, migration assay, and cell viability assay. One hundred and forty-four samples of ESCC were collected from our hospital and analyzed. Significantly higher EGR-1 expression was noted in tumor-adjacent normal tissue compared with tumor lesions. Results: The univariate analysis showed no significant impacts of EGR-1 expression on patients’ survival. However, after adjusting for the pathological stage, patients with EGR-1 expression > 68th percentile had lower risks of cancer-related death. Moreover, knockdown of EGR-1 significantly enhanced cell migration, invasion, and resistance to chemotherapeutic agents in two ESCC cell lines. Conclusions: EGR-1 plays a key role in tumor suppression involving tumor viability suppression and reflects the treatment effect of current chemotherapy for ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Yi-Hsuan Lin
- Department of Family Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| |
Collapse
|
6
|
Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord 2022; 22:373. [PMID: 35971091 PMCID: PMC9377070 DOI: 10.1186/s12872-022-02814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myocardial infarction (MI) is characterized by coronary artery occlusion, ischemia and hypoxia of myocardial cells, leading to irreversible myocardial damage. Therefore, it is urgent to explore the potential mechanism of myocardial injury during the MI process to develop effective therapies for myocardial cell rescue. Methods We downloaded the GSE71906 dataset from GEO DataSets, and the R software was used to identify the differentially expressed genes (DEGs) in mouse heart tissues of MI and sham controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to understand the significantly activated signaling pathways in MI. Protein–protein interaction (PPI) network was constructed to highlight the hub genes in DEGs. The Western Blot, qRT-PCR and TUNEL staining were used to explore the function of hub gene in hypoxia-induced cardiomyocytes in vitro. Results A total of 235 DEGs were identified in GSE71906 dataset. Functional enrichment analysis revealed that the upregulated genes were primarily associated with the inflammatory response and apoptosis. 20 hub genes were identified in PPI network, and the early growth response 2 (EGR2) was highlighted. In vitro. We confirmed the EGR2 was upregulated induced by hypoxia and revealed the upregulated EGR2 aggravates pro-inflammation and pro-apoptotic genes expression. In addition, EGR2 knockout mitigates hypoxia-induced inflammation and apoptosis in cardiomyocytes. Conclusion The present study identified the EGR2 was a hub gene in myocardial damage during MI process, the excessive EGR2 aggravates hypoxia-induced myocardial damage by accelerating inflammation and apoptosis in vitro. Therefore, targeting EGR2 offers a potential pharmacological strategy for myocardial cell rescue in MI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02814-3.
Collapse
Affiliation(s)
- Zhixiang Bo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Shuwen Huang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lin Chen
- Department of Surgery, Wushan County Hospital of Traditional Chinese Medicine, Chongqing, 400010, China
| | - Ping Chen
- Department of Gastroenterology, The Fifth People's Hospital of Chongqing, Chongqing, 400010, China
| | - Xiaoyi Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Fang Shi
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lin Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
7
|
Zhao K, Wang X, Zhao D, Lin Q, Zhang Y, Hu Y. lncRNA HITT Inhibits Lactate Production by Repressing PKM2 Oligomerization to Reduce Tumor Growth and Macrophage Polarization. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9854904. [PMID: 35909936 PMCID: PMC9285634 DOI: 10.34133/2022/9854904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Lactic acid acidifies the tumor microenvironment and promotes multiple critical oncogenic processes, including immune evasion. Pyruvate kinase M2 (PKM2) is a dominant form of pyruvate kinase (PK) expressed in cancers that plays essential roles in metabolic reprograming and lactate production, rendering it as an attractive therapeutic target of cancer. However, the mechanism underlying PKM2 regulation remains unclear. Here, we show that long noncoding RNA (lncRNA) HIF-1α inhibitor at transcription level (HITT) inhibits lactate production in a PKM2-dependent manner. Mechanistically, it physically interacts with PKM2 mapped to a region that has been involved in both dimer (less-active) and tetramer (more-active) formation, inhibiting PKM2 oligomerization and leading to dramatic reduction of PK activity. Under glucose starvation, HITT was reduced as a result of miR-106 induction, which subsequently facilitates PKM2 oligomerization and increases vulnerability to apoptosis under glucose starvation stress. In addition, the interaction also reduces lactate secretion from cancer cells, which subsequently polarizes macrophages toward an M2-like anti-inflammatory phenotype and thus possibly contributes to immune escape in vivo. This study highlights an important role of an lncRNA in regulating PKM2 activity and also reveals a metabolic regulatory effect of PKM2 on macrophage polarization.
Collapse
Affiliation(s)
- Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001.,School of Public Health, Qingdao University, Qingdao, China 266071
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China 150001
| |
Collapse
|
8
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
9
|
Wang C, Nie G, Zhuang Y, Hu R, Wu H, Xing C, Li G, Hu G, Yang F, Zhang C. Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111188. [PMID: 32836151 DOI: 10.1016/j.ecoenv.2020.111188] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence indicates autophagy and apoptosis are involved in the toxicity mechanism of heavy metals. Our previous studies showed that cadmium (Cd) could induce autophagy and apoptosis in duck kidneys in vivo, nevertheless, the interaction between them has yet to be elucidated. Herein, the cells were either treated with 3CdSO4·8H2O (0, 1.25, 2.5, 5.0 μM Cd) or/and 3-methyladenine (3-MA) (2.5 μM) for 12 h and the indictors related autophagy and apoptosis were detected to assess the correlation between autophagy and apoptosis induced by Cd in duck renal tubular epithelial cells. The results demonstrated that Cd exposure notably elevated intracellular and extracellular Cd contents, the number of autophagosomes and LC3 puncta, up-regulated LC3A, LC3B, Beclin-1, Atg5 mRNA levels, and Beclin-1 and LC3II/LC3I protein levels, down-regulated mTOR, p62 and Dynein mRNA levels and p62 protein level. Additionally, autophagy inhibitor 3-MA decreased Beclin-1, LC3II/LC3I protein levels and increased p62 protein level. Moreover, co-treatment with Cd and 3-MA could notably elevate Caspase-3, Cyt C, Bax, and Bak-1 mRNA levels, Caspase-3 and cleaved Caspase-3 protein levels, and cell apoptotic rate as well as cell damage, decreased mitochondrial membrane potential (MMP), Bcl-2 mRNA level and the ratio of Bcl-2 to Bax compared to treatment with Cd alone. Overall, these results indicate Cd exposure can induce autophagy in duck renal tubular epithelial cells, and inhibition of autophagy might aggravate Cd-induced apoptosis through mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huansheng Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
10
|
Cheng Y, Luo W, Li Z, Cao M, Zhu Z, Han C, Dai X, Zhang W, Wang J, Yao H, Chao J. CircRNA-012091/PPP1R13B-mediated Lung Fibrotic Response in Silicosis via Endoplasmic Reticulum Stress and Autophagy. Am J Respir Cell Mol Biol 2020; 61:380-391. [PMID: 30908929 DOI: 10.1165/rcmb.2019-0017oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Silicosis is a progressive fibrotic disease of lung tissue caused by long-term inhalation of SiO2. However, relatively few studies of the direct effects of SiO2 on lung fibroblasts have been performed. PPP1R13B is a major member of the apoptosis-stimulating proteins of the p53 family, but its role in pulmonary fibrosis is unclear. To elucidate the role of PPP1R13B in the pathological process of silicosis, we explored the molecular mechanisms related to PPP1R13B and the functional effects of proliferation and migration of fibroblasts. Through lentivirus transfection, Western blotting, and fluorescent in situ hybridization experiments, we found that SiO2 downregulated circRNA-012091 (circ-012091) expression in lung fibroblasts and induced upregulation of downstream PPP1R13B. Transfection of L929 cells with PPP1R13B CRISPR NIC plasmid inhibited the upregulation of endoplasmic reticulum stress (ERS) and autophagy-related protein expression in lung fibroblasts treated with SiO2, and induced decreases in cell proliferation, migration, and viability. Transfection of L929 cells with the PPP1R13B CRISPR ACT plasmid induced increases in cell proliferation, migration, and viability. In addition, the ERS inhibitor salubrinal and the autophagy inhibitor 3-methyladenine inhibited the increased migration of L929 cells transfected with the PPP1R13B CRISPR ACT plasmid. These results suggest that PPP1R13B regulated by circ-012091 promotes the proliferation and migration of lung fibroblasts through ERS and autophagy, and plays a crucial role in the development of pulmonary fibrosis in silicosis.
Collapse
Affiliation(s)
- Yusi Cheng
- Department of Physiology.,Department of Respiration, Zhongda Hospital, and.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | | - Honghong Yao
- Department of Pharmacology, School of Medicine, and
| | - Jie Chao
- Department of Physiology.,Department of Respiration, Zhongda Hospital, and.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Peeters JGC, Picavet LW, Coenen SGJM, Mauthe M, Vervoort SJ, Mocholi E, de Heus C, Klumperman J, Vastert SJ, Reggiori F, Coffer PJ, Mokry M, van Loosdregt J. Transcriptional and epigenetic profiling of nutrient-deprived cells to identify novel regulators of autophagy. Autophagy 2018; 15:98-112. [PMID: 30153076 PMCID: PMC6287694 DOI: 10.1080/15548627.2018.1509608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a lysosomal degradation pathway critical for maintaining cellular homeostasis and viability, and is predominantly regarded as a rapid and dynamic cytoplasmic process. To increase our understanding of the transcriptional and epigenetic events associated with autophagy, we performed extensive genome-wide transcriptomic and epigenomic profiling after nutrient deprivation in human autophagy-proficient and autophagy-deficient cells. We observed that nutrient deprivation leads to the transcriptional induction of numerous autophagy-associated genes. These transcriptional changes are reflected at the epigenetic level (H3K4me3, H3K27ac, and H3K56ac) and are independent of autophagic flux. As a proof of principle that this resource can be used to identify novel autophagy regulators, we followed up on one identified target: EGR1 (early growth response 1), which indeed appears to be a central transcriptional regulator of autophagy by affecting autophagy-associated gene expression and autophagic flux. Taken together, these data stress the relevance of transcriptional and epigenetic regulation of autophagy and can be used as a resource to identify (novel) factors involved in autophagy regulation.
Collapse
Affiliation(s)
- J G C Peeters
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - L W Picavet
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - S G J M Coenen
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - M Mauthe
- d Department of Cell Biology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - S J Vervoort
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - E Mocholi
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - C de Heus
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,f Department of Cell Biology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - J Klumperman
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,f Department of Cell Biology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - S J Vastert
- b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - F Reggiori
- d Department of Cell Biology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - P J Coffer
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| | - M Mokry
- c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,g Epigenomics facility , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J van Loosdregt
- a Center for Molecular Medicine , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,c Division of Pediatrics , Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands.,e Regenerative Medicine Center , University Medical Center Utrecht, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|