1
|
ZHANG YE, LIANG YANAN, WU YAN, SONG LIWEN, ZHANG ZUWANG. CircTIAM1 overexpression promotes the progression of papillary thyroid cancer by regulating the miR-338-3p/LASP1 axis. Oncol Res 2024; 32:1747-1763. [PMID: 39449799 PMCID: PMC11497179 DOI: 10.32604/or.2024.030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/01/2023] [Indexed: 10/26/2024] Open
Abstract
Background Papillary thyroid cancer (PTC) is the most prevalent histological type of differentiated thyroid malignancy. Circular RNAs (circRNAs) have been implicated in the pathogenesis and progression of various cancers. circTIAM1 (hsa_circ_0061406) is a novel circRNA with aberrant expression in PTC. However, its functional roles in PTC progression remain to be investigated. Methods The expression levels of circTIAM1 in the PTC and the matched para-cancerous tissues were detected by quantitative real-time reverse-transcription PCR (qRT-PCR). The subcellular localization of circTIAM1 was examined by fluorescence in-situ hybridization (FISH). Kaplan-Meier plot was used to analyze the association of clinicopathological features with circTIAM1 expression. Bioinformatics databases were utilized to predict the target miRNAs of circTIAM1 and the downstream target mRNAs. RNA pull-down, RIP assay, and dual-luciferase reporter assay were used to confirm the interactions. Functional experiments, such as CCK-8, EDU staining, and apoptosis assays, as well as in vivo xenograft model were employed to explore the impacts of circTIAM1, miR-338-3p, and LIM/SH3 protein 1 (LASP1) on the malignant phenotype of the PTC cells. Results CircTIAM1 was highly expressed in PTC cells. Moreover, circTIAM1 silencing suppressed the proliferation and invasion of PTC cells in vitro and impaired tumorigenesis in vivo. Furthermore, miR-338-3p was verified as a miRNA target of circTIAM1. LASP1 was also identified as a downstream target of miR-338-3p. The anti-tumorigenic effect of miR-338-3p overexpression and the pro-tumorigenic effect of LASP1 was further explored by functional assays, which demonstrated that circTIAM1 modulated the PTC progression through targeting miR-338-3p/LASP1 axis. Conclusion The overexpression of circTIAM1 is associated with the malignant progression of PTC. A high level of circTIAM1 promotes the malignancy of PTC cells via the miR-338-3p/LASP1 axis.
Collapse
Affiliation(s)
- YE ZHANG
- School of Medicine and Health, Jiuzhou Polytechnic, Xuzhou, 221113, China
| | - YANAN LIANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - YAN WU
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - LIWEN SONG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - ZUWANG ZHANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
2
|
Avasthi KK, Choi J, Glushko T, Manley BJ, Yu A, Pow-Sang J, Gatenby R, Wang L, Balagurunathan Y. Extracellular microvesicle microRNAs, along with imaging metrics, improve detection of aggressive prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.23.24312491. [PMID: 39228742 PMCID: PMC11370497 DOI: 10.1101/2024.08.23.24312491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide. Early diagnosis of the disease provides better treatment options for these patients. Magnetic resonance imaging (MRI) provides an overall assessment of prostate disease. Quantitative metrics (radiomics) from the MRI provide a better evaluation of the tumor and have been shown to improve disease detection. Recent studies have demonstrated that plasma extracellular vesicle microRNAs (miRNAs) are functionally linked to cancer progression, metastasis, and aggressiveness. In our study, we analyzed a matched cohort with baseline blood plasma and MRI to access tumor morphology using imaging-based radiomics and cellular characteristics using miRNAs-based transcriptomics. Our findings indicate that the univariate feature-based model with the highest Youden's index achieved average areas under the receiver operating characteristic curve (AUC) of 0.76, 0.82, and 0.84 for miRNA, MR-T2W, and MR-ADC features, respectively, in identifying clinically aggressive (Gleason grade) disease. The multivariable feature-based model demonstrated an average AUC of 0.88 and 0.95 using combinations of miRNA markers with imaging features in MR-ADC and MR-T2W, respectively. Our study demonstrates combining miRNA markers with MRI-based radiomics improves predictability of clinically aggressive prostate cancer.
Collapse
Affiliation(s)
- Kapil K Avasthi
- Tumor Microenvironment and Metastasis, H Lee Moffitt Cancer Center, Tampa, FL
| | - Jung Choi
- Diagnostic & Interventional Radiology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Tetiana Glushko
- Diagnostic & Interventional Radiology, H Lee Moffitt Cancer Center, Tampa, FL
| | | | - Alice Yu
- Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Julio Pow-Sang
- Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Robert Gatenby
- Diagnostic & Interventional Radiology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Liang Wang
- Tumor Microenvironment and Metastasis, H Lee Moffitt Cancer Center, Tampa, FL
| | | |
Collapse
|
3
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
4
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
5
|
Jiang L, Fang T, Hu T, Feng J, Yan P. Mir-338-3p targeting THBS1 attenuates glioma progression by inhibiting the PI3K/Akt pathway. Biol Direct 2024; 19:9. [PMID: 38267974 PMCID: PMC10807173 DOI: 10.1186/s13062-023-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Glioma is a brain tumor with high morbidity and mortality rates. Understanding its molecular pathogenesis can provide targets and therapeutic strategies for glioma treatment. miR-338-3p represses tumor growth in several cancers, including glioma. Thus, this study aimed to identify the regulatory effects of miR-338-3p/phosphoinositide 3-kinase (PI3K)/Akt/thrombospondins 1 (THBS1) on glioma progression. MATERIALS AND METHODS Quantitative reverse transcription polymerase chain reaction and western blotting were performed to evaluate the levels of miR-338-3p, THBS1, and PI3K/Akt phosphorylation-related proteins. TargetScan software predicted that miR-338-3p targeted THBS1. This was confirmed by performing the dual-luciferase assay. Wound-healing and cell-counting-kit-8 experiments were performed to analyze how THBS1 and miR-338-3p affect the ability of glioma cells to migrate and proliferate. The effect of miR-338-3p on tumorigenicity in mice was also analyzed. RESULTS miR-338-3p downregulation was observed in gliomas, whereas THBS1 showed the opposite trend. By suppressing the PI3K/Akt signaling pathway activation, miR-338-3p overregulated the ability of glioma cells to migrate and proliferate in vitro. Additionally, miR-338-3p inhibited the development of glioma tumors in vivo. Moreover, miR-338-3p directly targeted THBS1. THBS1 overexpression promoted glioma cell migration and proliferation by increasing PI3K/Akt phosphorylation. Nonetheless, miR-338-3p overregulation alleviated the effects of THBS1 overexpression. CONCLUSION The miR-338-3p/PI3K/Akt/THBS1 regulatory axis can modulate the progression of glioma cell proliferation and migration; thus, it can be considered a therapeutic biomarker.
Collapse
Affiliation(s)
- Lianglei Jiang
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Ting Fang
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Tingting Hu
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China
| | - Jun Feng
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China.
| | - Pengfei Yan
- Department of Neurosurgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , 430022, Wuhan, China.
| |
Collapse
|
6
|
Shi Y, Pan J, Hang C, Tan L, Hu L, Yan Z, Zhu J. The estrogen/miR-338-3p/ADAM17 axis enhances the viability of breast cancer cells via suppressing NK cell's function. ENVIRONMENTAL TOXICOLOGY 2023; 38:1618-1627. [PMID: 37052432 DOI: 10.1002/tox.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Natural killer (NK) cells are the critical elements of the innate immune response and implicated in rapidly recognizing and eliminating cancer cells. However, the tumor-suppressive ability of NK cells is often impaired in several cancer types. The critical roles of microRNAs have been elucidated by increasing evidences, while the regulation of miR-338-3p in anti-tumor activation of NK cells and its relationship with estrogen in breast cancer (BC) are still confusing. Here, miR-338-3p level was found to be significantly downregulated in BC tissues and estrogen receptor positive (ER+ ) cells, this difference was more obvious in ER+ patients or BC patients at advanced stage (TNM III and IV). MiR-338-3p level was shown to be downregulated by 17β-estradiol in BC cells (MDA-MB-231 cells and MCF-7) in vitro. MiR-338-3p overexpression decreased disintegrin and metalloprotease-17 (ADAM17) secretion in MDA-MB-231 (ER- ) and MCF-7 (ER+ ) cells. In addition, miR-338-3p overexpression or treatment with anti-ADAM17 antibody could down-regulate granzyme B, CD16, and NKG2D in NK cells, which was reversed by human recombinant ADAM17. Furthermore, these educated NK cells could promote the viability of MDA-MB-231 or MCF-7 cells. Taken together, our results demonstrate that miR-338-3p was negatively regulated by estrogen in BC cells, impairing NK cell's activity by the up-regulation of ADAM17, and conversely promoted the viability of BC cells. Therefore, the estrogen/miR-338-3p/ADAM17 axis is critically implicated in BC pathogenesis and may provide potential targets for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Yijiu Shi
- Department of general surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Jianhui Pan
- Department of colorectal surgery, The first affiliated hospital of Ningbo University (Waitan Campus), Ningbo, Zhejiang province, China
| | - Chen Hang
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Lin Tan
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Li Hu
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Zhilong Yan
- Department of general surgery, The first affiliated hospital of Ningbo University (Yuehu Campus), Ningbo, Zhejiang province, China
| | - Jiangfan Zhu
- Department of general surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu T, Nie J, Zhang X, Deng X, Fu B. The value of EYA1/3/4 in clear cell renal cell carcinoma: a study from multiple databases. Sci Rep 2023; 13:7442. [PMID: 37156847 PMCID: PMC10167363 DOI: 10.1038/s41598-023-34324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
There is evidence from multiple studies that dysregulation of the Eyes Absent (EYA) protein plays multiple roles in many cancers. Despite this, little is known about the prognostic significance of the EYAs family in clear cell renal cell carcinoma (ccRCC). We systematically analyzed the value of EYAs in Clear Cell Renal Cell Carcinoma. Our analysis included examining transcriptional levels, mutations, methylated modifications, co-expression, protein-protein interactions (PPIs), immune infiltration, single-cell sequencing, drug sensitivity, and prognostic values. We based our analysis on data from several databases, including the Cancer Genome Atlas database (TCGA), the Gene Expression Omnibus database (GEO), UALCAN, TIMER, Gene Expression Profiling Interactive Analysis (GEPIA), STRING, cBioPortal and GSCALite. In patients with ccRCC, the EYA1 gene was significantly highly expressed, while the expression of EYA2/3/4 genes showed the opposite trend. The level of expression of the EYA1/3/4 gene was significantly correlated with the prognosis and clinicopathological parameters of ccRCC patients. Univariate and multifactorial Cox regression analyses revealed EYA1/3 as an independent prognostic factor for ccRCC, establishing nomogram line plots with good predictive power. Meanwhile, the number of mutations in EYAs was also significantly correlated with poor overall survival (OS) and progression-free survival (PFS) of patients with ccRCC. Mechanistically, EYAs genes play an essential role in a wide range of biological processes such as DNA metabolism and double-strand break repair in ccRCC. The majority of EYAs members were related to the infiltration of immune cells, drug sensitivity, and methylation levels. Furthermore, our experiment confirmed that EYA1 gene expression was upregulated, and EYA2/3/4 showed low expression in ccRCC. The increased expression of EYA1 might play an important role in ccRCC oncogenesis, and the decreased expression of EYA3/4 could function as a tumor suppressor, suggesting EYA1/3/4 might serve as valuable prognostic markers and potential new therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Taobin Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jianqiang Nie
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoming Zhang
- Nanchang County People's Hospital, 199 Xiangyang Road, Liantang Town, Nanchang County, Nanchang City, 330200, Jiangxi Province, People's Republic of China.
| | - Xinxi Deng
- Department of Urology, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, Jiangxi Province, People's Republic of China.
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
8
|
The role of long non-coding RNA HCG18 in cancer. Clin Transl Oncol 2023; 25:611-619. [PMID: 36346572 DOI: 10.1007/s12094-022-02992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
The incidence of cancer is increasing worldwide and is becoming the most common cause of death. Identifying new biomarkers for cancer diagnosis and prognosis is important for developing cancer treatment strategies and reducing mortality. Long non-coding RNAs (lncRNAs) are non-coding, single-stranded RNAs that play an important role as oncogenes or tumor suppressors in the occurrence and development of human tumors. Abnormal expression of human leukocyte antigen complex group 18 (HCG18) is observed in many types of cancer, and its imbalance is closely related to cancer progression. HCG18 regulates cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, HCG18 is a potential tumor biomarker and therapeutic target. However, the therapeutic significance of HCG18 has not been well studied, and future research may develop new intervention strategies to combat cancer. In this study, we reviewed the biological function, mechanism, and potential clinical significance of HCG18 in various cancers to provide a reference for future research.
Collapse
|
9
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Zhu Q, Zhang Y, Li M, Zhang Y, Zhang H, Chen J, Liu Z, Yuan P, Yang Z, Wang X. MiR-124-3p impedes the metastasis of non-small cell lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res 2023; 11:1. [PMID: 36600320 PMCID: PMC9811783 DOI: 10.1186/s40364-022-00441-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metastasis is a significant factor that affects the survival of patients with non-small cell lung cancer (NSCLC). Nevertheless, the molecular regulatory mechanism underlying the metastasis is currently not fully understood. This study aims to identify the important role of miR-124-3p in metastasis of NSCLC, thereby providing a potential therapeutic intervention. METHODS Exosome secretion was determined by Nanoparticle Tracking Analysis (NTA) and the uptake was measured by fluorescence inverted microscope. The binding mechanism between miR-124-3p and its upstream or downstream target genes was validated experimentally by Luciferase reporter. Cells migration was evaluated by transwell assays. Transcriptome sequencing on A549 was carried out to verify the potential signaling pathway underlying miR-124-3p regulation. Western blotting analysis was used to assess the level of AKT, p-AKT, PI3K, and p-PI3K protein expression in NSCLC cell lines. The role of miR-124-3p to suppress the tumor metastasis was verified in NSCLC xenograft model. RESULTS Exosomes were more abundant in serum from patients with advanced lung cancer (n = 24 patients) than in these from patients with early-stage lung cancer (n = 30 patients), which suggested the potential correlation between amount of exosome secretion and the metastasis of NSCLC. Interestingly, the exosome release, uptake and the migration of NSCLC cells were notably inhibited by miR-124-3p. LINC00511 suppressed the expression of miR-124-3p to facilitate exosome transport due to its role as the competitive endogenous RNA for miR-124-3p. The miR-124-3p could directly target the 3'-UTR of Rab27a in NSCLC cells to inhibit exosome secretion and thereby prevent cell migration and invasion. Aside from the inhibition of exosome transport, miR-124-3p inhibited the activation of PI3K/AKT signaling in the intracellular environment. Finally, by measuring subcutaneous tumor weight and volume and lung metastasis, we also demonstrated that miR-124-3p inhibited tumor growth in vivo. CONCLUSION In NSCLC, miR-124-3p significantly suppressed metastasis through extracellular exosome transport and intracellular PI3K/AKT signaling. These findings provide new insights toward a better understanding of the NSCLC metastasis and suggest a potential treatment biomarker for NSCLC.
Collapse
Affiliation(s)
- Qing Zhu
- grid.24696.3f0000 0004 0369 153XDepartment of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yixuan Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Mo Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ying Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huan Zhang
- grid.64924.3d0000 0004 1760 5735School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, 130012 China
| | - Jiayi Chen
- grid.64924.3d0000 0004 1760 5735School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, 130012 China
| | - Zhaoyang Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Peng Yuan
- grid.506261.60000 0001 0706 7839Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Zhaogang Yang
- grid.64924.3d0000 0004 1760 5735School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, 130012 China
| | - Xiaobing Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
11
|
Yin L, Ding Y, Wang Y, Wang C, Sun K, Wang L. Identification of Serum miR-501-3p and miR-338-3p as Novel Diagnostic Biomarkers for Breast Cancer and Their Target Genes Associated with Immune Infiltration. Int J Gen Med 2023; 16:1279-1294. [PMID: 37077765 PMCID: PMC10108872 DOI: 10.2147/ijgm.s406802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background MicroRNAs influence the growth and metastasis of breast cancer (BC) by regulating their target genes. Our study aims to screen and identify miRNAs that are closely related to the development of breast cancer, and explore the role of these miRNAs and their target genes in breast cancer. Methods Bioinformatics tools were applied to screen breast cancer-associated miRNAs and predict their potential target genes. Serum miRNAs were measured using RT-PCR. The correlation between miRNA expression and different clinicopathological features of BC patients was analyzed. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value. GEPIA, Kaplan-Meier Plotter, TIMER, and TISIDB databases were used to validate the expression levels and their prognostic value, as well as their target gene associated with immune infiltrating cells and immune checkpoints. Results Breast cancer-associated serum miR-338-3p and miR-501-3p were screened and verified for the first time. Serum miR-501-3p was elevated in BC and was closely linked to the ki-67 index and histological grade. CDKN2C, as a potential target gene of miR-501-3p, was enriched in the cGMP-PKG signaling pathway. Serum miR-338-3p was reduced in BC and was strongly linked to lymph node metastasis and histological grading. ACTR2, CDH1, COL1A1, RBBP5, RRM1, and TPM3, as potential target genes of miR-338-3p, were enriched in MAPK, PI3K-Akt, and RAS signaling pathways. These target genes were found to be linked to breast cancer prognosis, immune infiltrating cells, and immune checkpoint inhibitors. Analysis of ROC curve showed that serum miR-501-3p combined with serum miR-338-3p had a high diagnostic value in breast cancer (AUC: 0.89, 95% CI: 0.821-0.958). Conclusion Serum miR-501-3p combined with serum miR-338-3p show obvious clinical significance in the diagnosis and prognosis of breast cancer, which suggests that they may act as novel diagnostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Liqian Yin
- College of Medical Laboratory Medicine, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Yansheng Ding
- Clinical Laboratory, Weifang People’s Hospital, Weifang, Shandong, People’s Republic of China
| | - Yang Wang
- Breast Surgery Center, Weifang People’s Hospital, Weifang, Shandong, People’s Republic of China
| | - Chengdong Wang
- Clinical Laboratory, Weifang People’s Hospital, Weifang, Shandong, People’s Republic of China
| | - Kuisheng Sun
- College of Medical Laboratory Medicine, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Liquan Wang
- Breast Surgery Center, Weifang People’s Hospital, Weifang, Shandong, People’s Republic of China
- Correspondence: Liquan Wang, Breast Surgery Center, Weifang People’s Hospital, NO. 151 Guangwen Road, Weifang, Shandong, 261000, People’s Republic of China, Email
| |
Collapse
|
12
|
Wang J, Li G, Lin M, Lin S, Wu L. microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells. BMC Mol Cell Biol 2022; 23:60. [PMID: 36564725 PMCID: PMC9789656 DOI: 10.1186/s12860-022-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is the most common cause of kidney damage, and inflammatory responses in a number of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells. METHODS LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investigated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay. RESULTS The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p mitigated these effects of LPS (all P < 0.05). CONCLUSION LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
Collapse
Affiliation(s)
- Jing Wang
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Guokai Li
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Min Lin
- Pediatric intensive care unit, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Sheng Lin
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| | - Ling Wu
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| |
Collapse
|
13
|
The EGFR Signaling Modulates in Mesenchymal Stem Cells the Expression of miRNAs Involved in the Interaction with Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14071851. [PMID: 35406622 PMCID: PMC8997927 DOI: 10.3390/cancers14071851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We previously demonstrated that the epidermal growth factor receptor (EGFR) modulates in mesenchymal stem cells (MSCs) the expression of a number of genes coding for secreted proteins that promote breast cancer progression. However, the role of the EGFR in modulating in MSCs the expression of miRNAs potentially involved in the progression of breast cancer remains largely unexplored. Following small RNA-sequencing, we identified 36 miRNAs differentially expressed between MSCs untreated or treated with the EGFR ligand transforming growth factor α (TGFα), with a fold change (FC) < 0.56 or FC ≥ 1.90 (CI, 95%). KEGG analysis revealed a significant enrichment in signaling pathways involved in cancer development and progression. EGFR activation in MSCs downregulated the expression of different miRNAs, including miR-23c. EGFR signaling also reduced the secretion of miR-23c in conditioned medium from MSCs. Functional assays demonstrated that miR-23c acts as tumor suppressor in basal/claudin-low MDA-MB-231 and MDA-MB-468 cells, through the repression of IL-6R. MiR-23c downregulation promoted cell proliferation, migration and invasion of these breast cancer cell lines. Collectively, our data suggested that the EGFR signaling regulates in MSCs the expression of miRNAs that might be involved in breast cancer progression, providing novel information on the mechanisms that regulate the MSC-tumor cell cross-talk.
Collapse
|
14
|
Anantharajan J, Baburajendran N, Lin G, Loh YY, Xu W, Ahmad NHB, Liu S, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Hung AW, Joy J, Hill J, Ford HL, Zhao R, Keller TH, Kang C. Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase. Protein Sci 2022; 31:422-431. [PMID: 34761455 PMCID: PMC8819961 DOI: 10.1002/pro.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nithya Baburajendran
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Grace Lin
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yong Yao Loh
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Weijun Xu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Shuang Liu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
- Chemical Biology and Therapeutics ScienceBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anna E. Jansson
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - John Wee Liang Kuan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yee Khoon Yeo
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Alvin W. Hung
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Joma Joy
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Jeffrey Hill
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Heide L. Ford
- Department of Obstetrics and GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas H. Keller
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - CongBao Kang
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| |
Collapse
|
15
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
16
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
17
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol 2021; 74:250-258. [PMID: 34618022 DOI: 10.1093/jpp/rgab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our research was aimed at investigating the biological character of human leukocyte antigen complex group 18 (HCG18) on gastric cancer (GC) progression and its potential mechanisms. METHODS The expression characteristics and prognostic values of HCG18 in GC were evaluated through the GEPIA database and Kaplan-Meier plotter database. Quantitative real-time PCR and Western blot were used for quantification of messenger RNA expression, microRNA (miRNA) expression and protein expression. Cell proliferation, migration and invasion were detected by cell counting kit-8 assay, 5'-bromo-2'-deoxyuridine assay and Transwell assay, respectively. Dual-luciferase reporter gene assay and RNA immunoprecipitation assay were used for examination of the interactions among HCG18, miR-370-3p and epidermal growth factor receptor (EGFR) 3'UTR. KEY FINDINGS HCG18 expression was up-regulated in GC tissues, and its high expression was closely associated with increased tumour size, advanced TNM stage, poor differentiation of tumour tissues and unfavourable prognosis of patients with GC. Additionally, HCG18 overexpression promoted the proliferation, migration and invasion of GC cells, and its knockdown suppressed the malignant phenotypes of GC cells. Furthermore, HCG18 served as a miRNA sponge to repress miR-370-3p and indirectly up-regulated EGFR expression in GC cells. CONCLUSIONS HCG18 served as a tumour-promoting factor in GC progression by modulating the miR-370-3p/EGFR axis.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuan Zhang
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peng Chen
- Department of Emergency, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuhong Liu
- Department of Radiotherapy, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Li Xin
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Chengxia Liu
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
19
|
Sun L, Gai Y, Li Z, Zhang X, Li J, Ma Y, Li H, Barajas RJ, Zeng D. Development of Dual Receptor Enhanced Pre-Targeting Strategy-A Novel Promising Technology for Immuno-Positron Emission Tomography Imaging. ADVANCED THERAPEUTICS 2021; 4:2100110. [PMID: 35309962 PMCID: PMC8932640 DOI: 10.1002/adtp.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/06/2022]
Abstract
PET imaging has become an important diagnostic tool in the era of precise medicine. Various pre-targeting systems have been reported to address limitations associated with traditional immuno-PET. However, the application of these mono-receptor based pre-targeting (MRPT) strategies is limited to non-internalizable antibodies, and the tumor uptake is usually much lower than that in the corresponding immuno-PET. To circumvent these limitations, we develop the first Dual-Receptor Pre-Targeting (DRPT) system through entrapping the tumor-receptor-specific radioligand by the pre-administered antibody. Besides the similar ligation pathway happens in MRPT, incorporation of a tumor-receptor-specific peptide into the radioligand in DRPT enhances both concentration and retention of the radioligand on tumor, promoting its ligation with pre-administered mAb on cell-surface and/or internalized into tumor-cells. In this study, 64Cu based DRPT shows superior performance over corresponding MRPT and immuno-PET using internalizable antibodies. Besides, the compatibility of DRPT with short-lived and generator-produced 68Ga is demonstrated, leveraging its advantage in reducing radio-dose exposure. Furthermore, the feasibility of reducing the amount of the pre-administered antibody is confirmed, indicating the cost saving potential of DRPT. In summary, synergizing advantages of dual-receptor targeting and pre-targeting, we expect that this DRPT strategy can become a breakthrough technology in the field of antibody-based molecular imaging.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Zhonghan Li
- Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Xiaohui Zhang
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Jianchun Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Yongyong Ma
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Huiqiang Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Ramon J Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland 97239, USA; Translational Oncology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA; Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA
| |
Collapse
|
20
|
Tang X, Zhou T, Shen J, Luo M, Yuan H, Pan D, Li F. The expression and potential mechanism of EGFR and EZH2 in breast cancer. Gland Surg 2021; 10:2535-2545. [PMID: 34527565 DOI: 10.21037/gs-21-505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Background The purpose of our research was to investigate the expression of epidermal growth factor receptor (EGFR) and zeste gene enhancer homolog 2 (EZH2) in breast cancer, and to explore their potential common pathways. Methods Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the protein and corresponding mRNA expression of EGFR and EZH2 in breast cancer tissues and benign tissues. Then, the relationship between EGFR and EZH2 along with the corresponding clinicopathological parameters were also analyzed. Bioinformatics tools were applied to explore the possible common pathways. Results The results showed that both EGFR and EZH2 protein and mRNA were highly expressed in breast cancer tissues, and there was a positive correlation between EGFR and EZH2. Moreover, we found that increased mRNA expression was correlated with lymph node metastasis and clinical stage (P<0.05). Furthermore, the enrichment results of co-expressed genes indicated that EGFR and EZH2 may work together in the FOXO signaling pathway, affecting the growth and metastasis of breast cancer cells. Conclusions The high expression of both EGFR and EZH2 mRNA in breast cancer was related to lymph node metastasis and clinical staging. The FOXO signaling pathway may be their common signaling pathway that affects tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Taosheng Zhou
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiayue Shen
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Luo
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiming Yuan
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Denghua Pan
- Department of Ultrasonography, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu Li
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Zou XZ, Zhou XH, Feng YQ, Hao JF, Liang B, Jia MW. Novel inhibitor of OCT1 enhances the sensitivity of human esophageal squamous cell carcinoma cells to antitumor agents. Eur J Pharmacol 2021; 907:174222. [PMID: 34087221 DOI: 10.1016/j.ejphar.2021.174222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies of the digestive system, and shows an especially high incidence in some regions of China. Octamer transcription factors are a family of transcription factors whose DNA-binding domain is a POU domain. OCT transcription factors (OCT-TFs) mediate maintenance of the pluripotency of embryonic stem cells. We measured expression of OCT-TFs in ESCC clinical specimens. Among the OCTs tested, OCT1 showed the highest expression in ESCC tissues. Using molecular docking, we discovered a small-molecule inhibitor, which we named "novel inhibitor of OCT1" (NIO-1), for OCT1. Treatment with NIO-1 inhibited recruitment of OCT1 to the promoter region of its downstream genes and, consequently, repressed OCT1 activation. Treatment with NIO-1 enhanced the susceptibility of ESCC cells to chemotherapeutic agents. Therefore, OCT1 may be a valuable target for ESCC treatment, and NIO-1 could be a promising therapeutic agent.
Collapse
Affiliation(s)
- Xiao-Zheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Xiu-Hua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Ying-Qi Feng
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Jun-Feng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province / Geriatric Hospital of Liaoning Province, Shenyang, 110016, Liaoning Province, PR China.
| | - Bing Liang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Meng-Wei Jia
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| |
Collapse
|
22
|
Li M, Feng J, Gao C, Sun W, Chen Y. Expression and clinical significance of miR-338 and miR-20a in serum of patients with gastric carcinoma. Am J Transl Res 2021; 13:6620-6628. [PMID: 34306405 PMCID: PMC8290677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This research intended to explore the content and the role of miR-338 and miR-20a in the serum of patients with gastric carcinoma (GC). METHODS Sixty-seven patients with GC, diagnosed and treated for the first time in our hospital from February 2014 to October 2016 were selected as the observation group (OG), and 45 healthy people were selected as the control group (CG). miR-338 and miR-20a of the CG and the OG were tested using qRT-PCR, and the correlation between the two indexes was analyzed by Pearson test. The diagnostic value of miR-338 and miR-20a in GC was analyzed by receiver operating characteristic curve (ROC). The correlation of miR-338 and miR-20a with clinical data was compared, and the correlation of the two with the survival of patients was observed. The independent prognostic factors in patients with GC were analyzed by Cox regression. RESULTS miR-338 expression was low in GC patients' serum, while miR-20a was high in GC patients. The expression of the two indexes was negatively correlated (r=-0.609, P<0.001). The areas under the curve of miR-338 and miR-20a were 0.849 and 0.865 respectively. Low expression of miR-338 and high expression of miR-20a were correlated to large tumors, low differentiation degree, high possibility of lymph node metastasis, and late TNM stage of GC patients. Multivariate Cox results revealed that tumor size, lymph node metastasis, differentiation degree, TNM stage, miR-338 and miR-20a were independent prognostic factors. CONCLUSION miR-338 and miR-20a are expected to be serological indicators for GC diagnosis and prognosis.
Collapse
|
23
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
24
|
Yi Q, Cui H, Liao Y, Xiong J, Ye X, Sun W. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomed Pharmacother 2021; 139:111720. [PMID: 34243620 DOI: 10.1016/j.biopha.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/β-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hanwei Cui
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Yi Liao
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Xiufeng Ye
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Weichao Sun
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| |
Collapse
|
25
|
Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nat Commun 2021; 12:2536. [PMID: 33953198 PMCID: PMC8100127 DOI: 10.1038/s41467-021-22913-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular profiling of circulating extracellular vesicles (EVs) provides a promising noninvasive means to diagnose, monitor, and predict the course of metastatic breast cancer (MBC). However, the analysis of EV protein markers has been confounded by the presence of soluble protein counterparts in peripheral blood. Here we use a rapid, sensitive, and low-cost thermophoretic aptasensor (TAS) to profile cancer-associated protein profiles of plasma EVs without the interference of soluble proteins. We show that the EV signature (a weighted sum of eight EV protein markers) has a high accuracy (91.1 %) for discrimination of MBC, non-metastatic breast cancer (NMBC), and healthy donors (HD). For MBC patients undergoing therapies, the EV signature can accurately monitor the treatment response across the training, validation, and prospective cohorts, and serve as an independent prognostic factor for progression free survival in MBC patients. Together, this work highlights the potential clinical utility of EVs in management of MBC. A thermophoretic aptasensor can be used to profile cancer-associated proteins of extracellular vesicles (EVs) in patients’ plasma. Here, the authors use this technique to develop an EV-signature able to discriminate metastatic breast cancer, monitor treatment response, and predict patients’ progression-free survival.
Collapse
|
26
|
Pu J, Wu X, Wu Y, Shao Z, Luo C, Tang Q, Wang J, Wei H, Lu Y. Anti-oncogenic effects of SOX2 silencing on hepatocellular carcinoma achieved by upregulating miR-222-5p-dependent CYLD via the long noncoding RNA CCAT1. Aging (Albany NY) 2021; 13:12207-12223. [PMID: 33952719 PMCID: PMC8109057 DOI: 10.18632/aging.103797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023]
Abstract
In this study, we determined the involvement of SOX2 and its downstream signaling molecules in hepatocellular carcinoma (HCC) progression. We carried out lentiviral transfection in HepG2 cells to determine the roles of SOX2, CCAT1, EGFR, miR-222-5p, and CYLD in HepG2 cells. We first determined the interaction between SOX2 and CCAT1 and that between miR-222-5p and CYLD and their effect on tumor growth in vivo was analyzed in HCC-xenograft bearing nude mice xenografts. SOX2 and CCAT1 were highly expressed in HCC tissues and HepG2 cells. SOX2 bound to the regulatory site of CCAT1. Silencing of SOX2 or CCAT1 inhibited HepG2 cell proliferation, migration, and invasion as well as decreased the expression of CCAT1 and EGFR. CCAT1 silencing reduced EGFR expression, but EGFR expression was increased in HCC tissues and HepG2 cells, which promoted proliferation, migration, and invasion in vitro. EGFR upregulated miR-222-5p, leading to downregulation of CYLD. miR-222-5p inhibition or CYLD overexpression repressed cell functions in HepG2 cells. SOX2 silencing decreased CCAT1, EGFR, and miR-222-5p expression but increased CYLD expression. Loss of SOX2 also reduced the growth rate of tumor xenografts. In summary, SOX2-mediated HCC progression through an axis involving CCAT1, EGFR, and miR-222-5p upregulation and CYLD downregulation.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yi Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Zesheng Shao
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China.,Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| |
Collapse
|
27
|
Yuan H, Liu F, Ma T, Zeng Z, Zhang N. miR-338-3p inhibits cell growth, invasion, and EMT process in neuroblastoma through targeting MMP-2. Open Life Sci 2021; 16:198-209. [PMID: 33817311 PMCID: PMC7968531 DOI: 10.1515/biol-2021-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore the regulatory mechanisms of miR-338-3p and matrix metalloproteinase-2 (MMP-2) in neuroblastoma. Putative target interaction regions of miR-338-3p on MMP-2 were predicted by miRcode and miRbase bioinformatics tools. Relative expression of miRNA-338-3p and MMP-2 in neuroblastoma tissues and GI-LI-N and SK-N-SH cells was determined by reverse transcription polymerase chain reaction experiment. Furthermore, the cell proliferation was determined by Cell Counting Kit-8 assay, the cell apoptosis rate was analyzed by flow cytometry assay, and the cell invasion was evaluated by transwell assay. miR-338-3p expression was downregulated, whereas MMP-2 expression was upregulated in metastasis tissue site compared to that in primary tissue site in total. Furthermore, miR-338-3p overexpression suppressed proliferation, invasion, and epithelial-mesenchymal transition (EMT) of neuroblastoma cells but promoted apoptosis, and the knockdown of MMP-2 triggered similar effects. Furthermore, MMP-2 was directly targeted by miR-338-3p, and overexpression of MMP-2 rescued the inhibitory effects of miR-338-3p on human neuroblastoma cell progression. Collectively, these data demonstrated that miR-338-3p could suppress cell growth, invasion, and EMT pathway and induce apoptosis in neuroblastoma cells by targeting MMP-2. MiR-338-3p sponged MMP-2 to regulate the PI3K/AKT pathway in human neuroblastoma cells.
Collapse
Affiliation(s)
- Haibin Yuan
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Fengli Liu
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Tongsheng Ma
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Zhandong Zeng
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Ning Zhang
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| |
Collapse
|
28
|
Yu DS, Song XL, Yan C. Oncogenic miRNA-1908 targets HDAC10 and promotes the aggressive phenotype of cervical cancer cell. Kaohsiung J Med Sci 2021; 37:402-410. [PMID: 33493381 DOI: 10.1002/kjm2.12348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) have vital functions in tumorigenesis and cancer progression. The significance of miR-1908 in cervical cancer has not been determined. We revealed that miR-1908 was notably upregulated in cervical cancer. Upregulation of miR-1908 increased cervical carcinoma cell growth and invasion. Downregulation of miR-1908 caused the opposite effects. We confirmed that histone deacetylase 10 (HDAC10) was a potential target of miR-1908 using bioinformatics analysis and luciferase reporter gene assays. Western blot analysis showed that miR-1908 regulated the expression of HDAC10 by binding its 3'-UTR. In addition, ectopic expression of HDAC10 partially reversed the promoting effects of miR-1908. In conclusion, our findings indicated that miR-1908 targets HDAC10 in cervical cancer and regulates aggressive cervical cancer cell phenotypes.
Collapse
Affiliation(s)
- Dong-Sheng Yu
- Department of Intervention, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Xiao-Lei Song
- Department of Intervention, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Ren L, Guo D, Wan X, Qu R. EYA2 upregulates miR-93 to promote tumorigenesis of breast cancer by targeting and inhibiting the STING signaling pathway. Carcinogenesis 2021; 43:bgab001. [PMID: 33449106 DOI: 10.1093/carcin/bgab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Herein, we used DIANA TOOLS, GEPIA and other bioinformatics databases to predict regulatory pathways in breast cancer. Accordingly, we clarified the regulatory mechanism of EYA2 on miR-93 expression to aggravate breast cancer, which was involved with the STING signaling pathway. CCK-8 assay, scratch test, Transwell assay, and flow cytometry were applied to detect cell viability, migration, invasion, and apoptosis. The experimental data found that EYA2 was highly expressed in breast cancer tissues and cells and associated with poor prognosis. Overexpression of miR-93 in breast cancer was positively correlated with EYA2. EYA2 promoted miR-93 expression, advanced breast cancer cell proliferation and inhibited their apoptosis. Results of luciferase assay showed that miR-93 was enriched in the STING 3'UTR. Furthermore, knockdown of EYA2 inhibited the expression of miR-93, promoted the expression of STING, and inhibited the tumor growth. In response to EYA2 knockdown, the expression of IFN-β and ISG was increased, and PD-L1 was decreased. In addition, the phosphorylation level of TBK1 and IRF3 was enhanced, the percentage of myeloid-derived suppressor cells in blood was reduced, and secretion of IFN-β and IL-12 was enhanced. In conclusion, EYA2 upregulates miR-93 expression and promotes malignancy of breast cancer by targeting and inhibiting the STING signaling pathway.
Collapse
Affiliation(s)
- Lishen Ren
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaohui Wan
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
30
|
He W, Gong S, Wang X, Dong X, Cheng H. DNA methylation integratedly modulates the expression of Pit-Oct-Unt transcription factors in esophageal squamous cell carcinoma. J Cancer 2021; 12:1634-1643. [PMID: 33613750 PMCID: PMC7890322 DOI: 10.7150/jca.49231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dysregulation of Pit-Oct-Unc family transcription factors has been implicated in esophageal squamous cell carcinoma (ESCC). In this study, we evaluated the expression and promoter methylation status of Octamer (OCT) transcription factor genes in human ESCC clinical specimens to investigate the mechanism underlying this observation along with the clinical significance. Methods: Total DNA or RNA was extracted from ESCC tissue specimens and the mRNA level of genes encoding the transcription factors OCT1, OCT2, OCT3/OCT4, OCT5, OCT7, OCT9, and OCT11 were evaluated by quantitative PCR. The DNA methylation status of gene promoters was assessed by bisulfite pyrosequencing and next-generation sequencing. The relationship between the expression of these transcription factors and ESCC proliferation was investigated in vitro and in vivo with the colony formation assay and a mouse xenograft tumor model, respectively. We also examined the correlation between OCT gene expression and promoter methylation and clinicopathologic characteristics of ESCC. Results:OCT1 was upregulated whereas OCT4, OCT6, and OCT11 were downregulated in ESCC compared to non-tumor tissue. OCT2, OCT7, and OCT9 were undetected in all samples. OCT1, OCT6, and OCT11 levels were negatively correlated with the methylation of their respective promoters, but there was no relationship between OCT4 expression and promoter methylation status. Conclusion: Changes in promoter methylation rate underlie the observed alterations in OCT1, OCT6, and OCT11 expression in ESCC, whereas another mechanism is likely responsible for the dysregulation of OCT4.
Collapse
Affiliation(s)
- Wei He
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Xin Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Xinhua Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Hua Cheng
- Department of Oncology, Xiayi Hospital of Traditional Chinese Medicine. Shangqiu 476400, Henan province, China
| |
Collapse
|
31
|
Jang EJ, Sung JY, Yoo HE, Jang H, Shim J, Oh ES, Goh SH, Kim YN. FAM188B Downregulation Sensitizes Lung Cancer Cells to Anoikis via EGFR Downregulation and Inhibits Tumor Metastasis In Vivo. Cancers (Basel) 2021; 13:cancers13020247. [PMID: 33440835 PMCID: PMC7826942 DOI: 10.3390/cancers13020247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer cells should acquire anoikis resistance for successful metastasis. Family with sequence similarity 188 member B (FAM188B) has been identified as a new deubiquitinase (DUB) member. Here, we demonstrate that FAM188B knockdown makes lung cancer cells sensitive to anoikis and inhibits lung metastasis. FAM188B knockdown reduced the levels of tumor proteins such as EGFR and FOXM1, suggesting that FAM188B may be a potential target controlling tumor malignancies. Abstract Anoikis is a type of apoptosis induced by cell detachment from the extracellular matrix (ECM), which removes mislocalized cells. Acquisition of anoikis resistance is critical for cancer cells to survive during circulation and, thus, metastasize at a secondary site. Although the sensitization of cancer cells to anoikis is a potential strategy to prevent metastasis, the mechanism underlying anoikis resistance is not well defined. Although family with sequence similarity 188 member B (FAM188B) is predicted as a new deubiquitinase (DUB) member, its biological function has not been fully studied. In this study, we demonstrated that FAM188B knockdown sensitized anoikis of lung cancer cell lines expressing WT-EGFR (A549 and H1299) or TKI-resistant EGFR mutant T790M/L858R (H1975). FAM188B knockdown using si-FAM188B inhibited the growth of all three human lung cancer cell lines cultured in both attachment and suspension conditions. FAM188B knockdown resulted in EGFR downregulation and thus decreased its activity. FAM188B knockdown decreased the activities of several oncogenic proteins downstream of EGFR that are involved in anoikis resistance, including pAkt, pSrc, and pSTAT3, with little changes to their protein levels. Intriguingly, si-FAM188B treatment increased EGFR mRNA levels but decreased its protein levels, which was reversed by treatment with the proteasomal inhibitor MG132, indicating that FAM188B regulates EGFR levels via the proteasomal pathway. In addition, cells transfected with si-FAM188B had decreased expression of FOXM1, an oncogenic transcription factor involved in cell growth and survival. Moreover, FAM188B downregulation reduced metastatic characteristics, such as cell adhesion, invasion, and migration, as well as growth in 3D culture conditions. Finally, tail vein injection of si-FAM188B-treated A549 cells resulted in a decrease in lung metastasis and an increase in mice survival in vivo. Taken together, these findings indicate that FAM188B plays an important role in anoikis resistance and metastatic characteristics by maintaining the levels of various oncogenic proteins and/or their activity, leading to tumor malignancy. Our study suggests FAM188B as a potential target for controlling tumor malignancy.
Collapse
Affiliation(s)
- Eun-Ju Jang
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Jee Young Sung
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Ha-Eun Yoo
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
- Department of Life Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea;
| | - Hyonchol Jang
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea;
| | - Jaegal Shim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea;
| | - Sung-Ho Goh
- Division of Precision Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea
- Correspondence: (S.-H.G.); (Y.-N.K.); Tel.: +82-31-920-2477 (S.-H.G.); +82-31-920-2415 (Y.-N.K.); Fax: +82-31-920-2468 (S.-H.G.)
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
- Correspondence: (S.-H.G.); (Y.-N.K.); Tel.: +82-31-920-2477 (S.-H.G.); +82-31-920-2415 (Y.-N.K.); Fax: +82-31-920-2468 (S.-H.G.)
| |
Collapse
|
32
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
33
|
Zhou M, Guo X, Wang M, Qin R. The patterns of antisense long non-coding RNAs regulating corresponding sense genes in human cancers. J Cancer 2021; 12:1499-1506. [PMID: 33531995 PMCID: PMC7847652 DOI: 10.7150/jca.49067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
For decades researches of genomic transcription of all kinds of species have demonstrated that the important role of Long non-coding RNAs (LncRNAs) in whole process of life entity has been more and more attached. Owing to constant developing of advanced technology, especially the emerge of next generation sequencing, researchers could explore further in the depth and breadth of LncRNAs. Given that the unique RNA loci location with its corresponding sense gene, antisense long noncoding RNAs (AS-lncRNAs), which are one of the main categories of LncRNAs classification, would have existed an identified close connection between them in a natural physiological state. This review characterizes the patterns of regulation between AS-lncRNAs and corresponding sense genes during the process of cancer progression in human, with emphases on the regular modulation ways of the potential molecular mechanism of AS-lncRNAs and the summary of underlying treatment targets in human cancers.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. J Oral Biol Craniofac Res 2020; 11:132-137. [PMID: 33398242 PMCID: PMC7772998 DOI: 10.1016/j.jobcr.2020.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) emerges as current outbreak cause by Novel Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2). This infection affects respiratory system and provides uncontrolled systemic inflammatory response as cytokine storm. The main concern about SARS-CoV-2 pandemic is high viral pathogenicity with no specific drugs. MicroRNAs (miRs) as small non-coding RNAs (21–25 nt) regulate gene expression. The SARS-CoV-2 encoded-miRs affect human genes that involved in transcription, translation, apoptosis, immune response and inflammation. Also, they alter self-gene regulation and hijacked host miRs that provide protective environment to maintain its latency. On the other hand, Host miRs play critical role in viral gene expression to restrict infection. Over expression/inhibition of miRs might result in cell cycle irregularity, impaired immune response or cancer. In this manner, exact role of each miR should be specified. Mimic encoded-miRs like antagomirs showed successful result in phases of clinical trial prevent from negative effects of viral encoded-miRs. Products of mimic miRs are inexpensive corresponds to synthesis of primer; they are short and nanoscale in size. Although SARS-CoV-2 genome is undergoing evaluation, detection of exact molecular pathogenesis open up opportunities to for vaccine development. Salivaomics can evaluate SARS-CoV-2 genome, transcriptome, proteome and biomarkers like miRs in oral related and cancer disease. In this review, we studied the challenge and opportunities of miRs in therapeutic approach for SARS-CoV-2 infection, then overviewed the role of miRs in saliva droplet during SARS-CoV-2 infection and related cancer.
Collapse
|
35
|
Zamarian V, Ferrari R, Stefanello D, Ceciliani F, Grieco V, Minozzi G, Chiti LE, Arigoni M, Calogero R, Lecchi C. miRNA profiles of canine cutaneous mast cell tumours with early nodal metastasis and evaluation as potential biomarkers. Sci Rep 2020; 10:18918. [PMID: 33144602 PMCID: PMC7609711 DOI: 10.1038/s41598-020-75877-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Abstract
Cutaneous mast cell tumours (MCTs) are common skin neoplasms in dogs. MicroRNAs (miRNAs) are post-transcriptional regulators involved in several cellular processes, and they can function as tumour promoters or suppressors. However, the role of miRNAs in canine MCTs has not yet been elucidated. Thus, the current study aimed to characterize miRNA profiles and to assess their value as biomarkers for MCTs. miRNA expression profiles were assessed in formalin-fixed, paraffin-embedded samples by next-generation sequencing. Ten samples were MCT tissues, and 7 were healthy adjacent tissues. Nine dysregulated miRNAs (DE-miRNAs) were then validated using RT-qPCR in a larger group of MCT samples, allowing the calculation of ROC curves and performance of multiple factor analysis (MFA). Pathway enrichment analysis was performed to investigate miRNA biological functions. The results showed that the expression of 63 miRNAs (18 up- and 45 downregulated) was significantly affected in MCTs. Five DE-miRNAs, namely, miR-21-5p, miR-92a-3p, miR-338, miR-379 and miR-885, were validated by RT-qPCR. The diagnostic accuracy of a panel of 3 DE-miRNAs—miR-21, miR-379 and miR-885—exhibited increased efficiency in discriminating animals with MCTs (AUC = 0.9854) and animals with lymph node metastasis (AUC = 0.8923). Multiple factor analysis revealed clusters based on nodal metastasis. Gene Ontology and KEGG analyses confirmed that the DE-miRNAs were involved in cell proliferation, survival and metastasis pathways. In conclusion, the present study demonstrated that the miRNA expression profile is changed in the MCT microenvironment, suggesting the involvement of the altered miRNAs in the epigenetic regulation of MCTs and identifying miR-21, miR-379 and miR-885 as promising biomarkers.
Collapse
Affiliation(s)
- Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Roberta Ferrari
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Damiano Stefanello
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valeria Grieco
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Lavinia Elena Chiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, Università di Torino, 10126, Turin, Italy
| | - Raffaele Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, Università di Torino, 10126, Turin, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
36
|
McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 2020; 185:129-146. [PMID: 32682827 DOI: 10.1016/j.toxicon.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.
Collapse
Affiliation(s)
- Danielle McCullough
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cristina Atofanei
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Emily Knight
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; Life Sciences Industry Liaison laboratory, Canterbury Christ Church University, Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Steven A Trim
- Venomtech Ltd., Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Carol M Trim
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
37
|
He J, Wang J, Li S, Li T, Chen K, Zhang S. Hypoxia-inhibited miR-338-3p suppresses breast cancer progression by directly targeting ZEB2. Cancer Sci 2020; 111:3550-3563. [PMID: 32726486 PMCID: PMC7540984 DOI: 10.1111/cas.14589] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an essential role in the development of various cancers. The biological function and underlying mechanism of microRNA-338-3p (miR-338-3p) under hypoxia remain unclarified in breast cancer (BC). Herein, we performed bioinformatics, gain and loss of function of miR-338-3p, a luciferase reporter assay, and chromatin immunoprecipitation (ChIP) in vitro and in a tumor xenograft model. We also explored the potential signaling pathways of miR-338-3p in BC. We detected the expression levels and prognostic significance of miR-338-3p in BC by qRT-PCR and in situ hybridization. MiR-338-3p was lowly expressed in BC tissues and cell lines, and BC patients with underexpression of miR-338-3p tend to have a dismal overall survival. Functional experiments showed that miR-338-3p overexpression inhibited BC cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process, whereas miR-338-3p silencing abolished these biological behaviors. Zinc finger E-box-binding homeobox 2 (ZEB2) was validated as a direct target of miR-338-3p. ZEB2 overexpression promoted while ZEB2 knockdown abolished the promoted effects of miR-338-3p knockdown on cell biological behaviors through the NF-ĸB and PI3K/Akt signal pathways. HIF1A can transcriptionally downregulate miR-338-3p under hypoxia. In total, miR-338-3p counteracts hypoxia-induced BC cells growth, migration, invasion, and EMT via the ZEB2 and NF-ĸB/PI3K signal pathways, implicating miR-338-3p may be a promising target to treat patients with BC.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Jing Wang
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Songchao Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Teng Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Shaojin Zhang
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| |
Collapse
|
38
|
Wang C, Ding S, Sun B, Shen L, Xiao L, Han Z, Huang H. Hsa-miR-4271 downregulates the expression of constitutive androstane receptor and enhances in vivo the sensitivity of non-small cell lung cancer to gefitinib. Pharmacol Res 2020; 161:105110. [PMID: 32755614 DOI: 10.1016/j.phrs.2020.105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The efficacy of molecular targeting agents is dependent on the metabolism or nuclear receptor-mediated clearance of chemotherapy resistance-related factors such as cytochrome P450 (CYP) or ATP binding cassette subfamily B member 1 (ABCB1). In this study, we revealed the roles of the microRNA-4271/CAR (constitutive androstane receptor) axis in the regulation of the resistance to molecular anticancer targeting agents in non-small cell lung cancer (NSCLC) cells including two main categories of NSCLC: lung adenocarcinoma (AC) and large cell lung cancer (LCC). The expression of miR-4271 was negatively correlated with CAR expression in NSCLC tissues. MiR-4271 targeted CAR and inhibited the activation of the CAR signaling pathway. Overexpression of CAR in NSCLC enhanced the resistance of NSCLC cells to molecular targeting agents and miR-4271-infected NSCLC cells enhanced their sensitivity to molecular targeting agents such as Gefitinib. The mechanism-data showed that overexpression of miR-4271 decelerated the mechanism or the clearance of molecular targeting agents by targeting the 3'UTR (3' un-translation region). These results suggest that miR-4271 may contribute to the development of more effective strategies for the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Chunzhan Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China; Pulmonary and Crical Care Medecine Department, The 6thMedical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| | - Baisheng Sun
- Emergency Department, The Fifth Medical Center of the General Hospital of the Chinese People's Liberation Army, Beijing 100071, PR China.
| | - Liang Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| | - Ling Xiao
- Department of Internal Medicine, Minhai Hospital, Xiamen City 361100, Fujian Province, PR China.
| | - Zhihai Han
- Pulmonary and Crical Care Medecine Department, The 6thMedical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| |
Collapse
|
39
|
Shao QP, Wei C, Yang J, Zhang WZ. miR-3609 Decelerates the Clearance of Sorafenib in Hepatocellular Carcinoma Cells by Targeting EPAS-1 and Reducing the Activation of the Pregnane X Receptor Pathway. Onco Targets Ther 2020; 13:7213-7227. [PMID: 32801751 PMCID: PMC7394586 DOI: 10.2147/ott.s246471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background The pregnane X receptor (PXR) not only plays an important role in cellular metabolism processes but also induces the resistance of hepatocellular carcinoma (HCC) cells to molecularly targeted drugs by mediating their metabolism and clearance by these cells. Endothelial PAS domain-containing protein 1 (EPAS-1) acts as a coactivator to regulate the transcription factor activity of PXR. In the present study, a microRNA that potentially targets EPAS-1, namely miR-3609, was identified using the miRDB tool. Methods The expression of miR-3609 and EPAS-1 was examined by qPCR. Lentiviral particles containing the full-length sequences of miR-3609 (pri-miR-3609) were prepared. The antitumor effect of antitumor agents was examined by the in vitro and in vivo assays. Results The expression of miR-3609 was negatively correlated with that of EPAS-1 in both HCC clinical specimens and paired non-tumor specimens, and the effect of miR-3609 on the expression of EPAS-1 was confirmed by Western blot experiments. Overexpression of miR-3609 decreased the expression of EPAS-1 and, in turn, repressed the activation of the PXR pathway. miR-3609 decreased the transcription factor activation of PXR, repressed its recruitment to its target gene promoter regions, and decreased the expression of its target genes CYP3A4 and P-GP. In addition, miR-3609 decelerated the metabolism and clearance of sorafenib in HCC cells and enhanced the antitumor effect of sorafenib in HCC cells. Conclusion Therefore, the results indicate that miR-3609 decreases the expression of EPAS-1 and enhances the sensitivity of HCC cells to sorafenib.
Collapse
Affiliation(s)
- Qing-Ping Shao
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| | - Chen Wei
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Jie Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Wen-Zhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| |
Collapse
|
40
|
DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol Res 2020; 160:105071. [PMID: 32659427 DOI: 10.1016/j.phrs.2020.105071] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
DNA methyltransferase (DNMT) participates in the transformation or progression of human cancers by mediating the hypermethylation of cancer suppressors. However, the regulatory role of DNMT in pancreatic cancer cells remains poorly understood. In the present study, we demonstrated that DNMT1 repressed the expression of microRNA 34a (miR-34a) and enhanced the activation of the Notch pathway by mediating the hypermethylation of the miR-34a promoter. In patients with pancreatic cancer, the expression levels of DNMT1 were negatively related with those of miR-34a. Mechanistically, knockdown of DNMT1 decreased the methylation of the miR-34a promoter and enhanced the expression of miR-34a to inhibit the activation of the Notch pathway. Downregulation of the Notch pathway via the DNMT1/miR-34a axis significantly enhanced the sensitivity of pancreatic cells to molecular targeting agents. Therefore, the results of our study suggest that downregulation of DNMT enhances the expression of miR-34a and may be a potential therapeutic target for pancreatic cancer.
Collapse
|
41
|
Hosseini Rad SM A, McLellan AD. Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting. Int J Mol Sci 2020; 21:E4807. [PMID: 32645951 PMCID: PMC7370282 DOI: 10.3390/ijms21134807] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to transmission and replication in humans. Although the mutation rate is limited, recently introduced mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes, mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from around the globe and show that several mutations introduce changes in Watson-Crick pairing, with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2 replication within the human host is constrained by host miRNA defences. The impact of these and further mutations on secondary structures, miRNA targets or potential splice sites offers a new context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering conditional attenuation to vaccine development, as well as providing a better understanding of viral tropism and pathogenesis.
Collapse
Affiliation(s)
- Ali Hosseini Rad SM
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| |
Collapse
|
42
|
Dong B, Yi M, Luo S, Li A, Wu K. RDGN-based predictive model for the prognosis of breast cancer. Exp Hematol Oncol 2020; 9:13. [PMID: 32550045 PMCID: PMC7294607 DOI: 10.1186/s40164-020-00169-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Background Breast cancer is the most diagnosed malignancy in females in the United States. The members of retinal determination gene network (RDGN) including DACH, EYA, as well as SIX families participate in the proliferation, apoptosis, and metastasis of multiple tumors including breast cancer. A comprehensive predictive model of RDGN might be helpful to herald the prognosis of breast cancer patients. Methods In this study, the Gene Expression Ominibus (GEO) and Gene Set Expression Analysis (GSEA) algorithm were used to investigate the effect of RDGN members on downstream signaling pathways. Besides, based on The Cancer Genome Atlas (TCGA) database, we explored the expression patterns of RDGN members in tumors, normal tissues, and different breast cancer subtypes. Moreover, we estimated the relationship between RDGN members and the outcomes of breast cancer patients. Lastly, we constructed a RDGN-based predictive model by Cox proportional hazard regression and verified the model in two separate GEO datasets. Results The results of GSEA showed that the expression of DACH1 was negatively correlated with cell cycle and DNA replication pathways. On the contrary, the levels of EYA2 and SIX1 were significantly positively correlated with DNA replication, mTOR, and Wnt pathways. Further investigation in TCGA database indicated that DACH1 expression was lower in breast cancers especially basal-like subtype. In the meanwhile, SIX1 was remarkably upregulated in breast cancers while EYA2 level was increased in Basal-like and Her-2 enriched subtypes. Survival analyses demonstrated that DACH1 was a favorable factor while EYA2 and SIX1 were risk factors for breast cancer patients. Given the results of Cox proportional hazard regression analysis, two members of RDGN were involved in the present predictive model and patients with high model index had poorer outcomes. Conclusion This study showed that aberrant RDGN expression was an unfavorable factor for breast cancer. This RDGN-based comprehensively framework was meaningful for predicting the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
43
|
Liu F, Fan Y, Ou L, Li T, Fan J, Duan L, Yang J, Luo C, Wu X. CircHIPK3 Facilitates the G2/M Transition in Prostate Cancer Cells by Sponging miR-338-3p. Onco Targets Ther 2020; 13:4545-4558. [PMID: 32547085 PMCID: PMC7251229 DOI: 10.2147/ott.s242482] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/01/2020] [Indexed: 01/13/2023] Open
Abstract
Background Circular RNAs (circRNAs) play a crucial role in gene expression regulation. CircHIPK3 is a circRNA derived from Exon 2 of HIPK3 gene and its role in prostate cancer (PCa) is still unclear. Methods CCK8 assays, flow cytometry and colony formation assays were performed to assess the effects of circHIPK3 in PCa cells. Bioinformatics analysis, RNA pull-down assay, RNA immunoprecipitation assay (RIP), and luciferase activity assay were performed to dissect the mechanism underlying circHIPK3-mediated G2/M transition in PCa cells. Results CircHIPK3 expression was upregulated in PCa cells and prostate cancer tissues. Overexpression of circHIPK3 or circHIPK3 silencing altered PCa viability, proliferation and apoptosis in vitro. CircHIPK3 could sponge miR-338-3p and inhibit its activity, resulting in increased expression of Cdc25B and Cdc2 in vitro. Conclusion CircHIPK3 promotes G2/M transition and induces PCa cell proliferation by sponging miR-338-3p and increasing the expression of Cdc25B and Cdc2. CircHIPK3 may play an oncogenic role in PCa.
Collapse
Affiliation(s)
- Fengchun Liu
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Liping Ou
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Limei Duan
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Jinxiao Yang
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 408000, People's Republic of China
| |
Collapse
|
44
|
Yu C, Wang Y, Liu T, Sha K, Song Z, Zhao M, Wang X. The microRNA miR-3174 Suppresses the Expression of ADAM15 and Inhibits the Proliferation of Patient-Derived Bladder Cancer Cells. Onco Targets Ther 2020; 13:4157-4168. [PMID: 32547057 PMCID: PMC7244357 DOI: 10.2147/ott.s246710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bladder cancer is a major urinary system cancer, and its mechanism of action regarding its progression is unclear. The goal of this study was to examine the expression of ADAM panel in the clinical specimens of bladder cancer and to investigate the role of miR-3174/ADAM15 (a disintegrin and metalloprotease 15) axis in the regulation of bladder cancer cell proliferation. Methods The expression of an ADAM gene panel (including ADAM8, 9, 10, 11, 12, 15, 17, 19, 22, 23, 28, and 33), including 30 pairs of bladder tumor and non-tumor specimens, was examined by Ion AmpliSeq Targeted Sequencing. A microRNA (miRNA) that could potentially target the ADAM with the highest expression level in the tumor tissue was identified using the online tool miRDB. Next, the interaction between the miRNA and ADAM15 was identified by Western blot. Finally, the proliferation of bladder cancer cells was examined using MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) experiments (cell proliferation examining) and subcutaneous tumor models by using nude mice. Results The expression of ADAM15 in tumor tissue was found statistically significant when compared to its expression in non-tumor tissue. Additionally, ADAM15's expression in tumor tissue was found the highest of all other tested ADAMs. Next, by using the online tool miRDB, a microRNA termed miR-3174 was identified that targets ADAM15 and inhibits its expression by binding to its 3'-untranslated region. Finally, we found that overexpression of miR-3174 in bladder cancer cells inhibited the proliferation of cells due to the inhibition of ADAM15. Conclusion In the present work, the data highlight that miR-3174 inhibits the proliferation of bladder cancer cells by targeting ADAM15.
Collapse
Affiliation(s)
- Chunhu Yu
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Ying Wang
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Tiejun Liu
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Kefu Sha
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Zhaoxia Song
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Mingjun Zhao
- Department of Urinary Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, People's Republic of China
| | - Xiaolin Wang
- The Third District of Airforce Special Service Sanatorium, Chinese People's Liberation Army Air Force, Hangzhou 310021, Zhejiang Province, People's Republic of China
| |
Collapse
|
45
|
Kang C, Keller TH. Probing biological mechanisms with chemical tools. Pharmacol Res 2020; 153:104656. [PMID: 31962154 DOI: 10.1016/j.phrs.2020.104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Traditionally small molecules have mainly been used to inhibit biochemical activities of proteins, however such compounds can also be used to change the conformational energy landscape of proteins. Tool compounds that modulate protein conformations often reveal unexpected biological mechanisms, which have therapeutic potential. We discuss two examples where screening hits were found to bind to unexpected binding pockets on well known proteins, establishing new routes for the inhibition of proteins that were thought to be undruggable.
Collapse
Affiliation(s)
- Congbao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, 138670, Singapore
| | - Thomas H Keller
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, 138670, Singapore.
| |
Collapse
|
46
|
Urooj T, Wasim B, Mushtaq S, Shah SNN, Shah M. Cancer Cell-derived Secretory Factors in Breast Cancer-associated Lung Metastasis: Their Mechanism and Future Prospects. Curr Cancer Drug Targets 2020; 20:168-186. [PMID: 31858911 PMCID: PMC7516334 DOI: 10.2174/1568009620666191220151856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
In Breast cancer, Lung is the second most common site of metastasis after the bone. Various factors are responsible for Lung metastasis occurring secondary to Breast cancer. Cancer cellderived secretory factors are commonly known as 'Cancer Secretomes'. They exhibit a prompt role in the mechanism of Breast cancer lung metastasis. They are also major constituents of hostassociated tumor microenvironment. Through cross-talk between cancer cells and the extracellular matrix components, cancer cell-derived extracellular matrix components (CCECs) such as hyaluronan, collagens, laminin and fibronectin cause ECM remodeling at the primary site (breast) of cancer. However, at the secondary site (lung), tenascin C, periostin and lysyl oxidase, along with pro-metastatic molecules Coco and GALNT14, contribute to the formation of pre-metastatic niche (PMN) by promoting ECM remodeling and lung metastatic cells colonization. Cancer cell-derived secretory factors by inducing cancer cell proliferation at the primary site, their invasion through the tissues and vessels and early colonization of metastatic cells in the PMN, potentiate the mechanism of Lung metastasis in Breast cancer. On the basis of biochemical structure, these secretory factors are broadly classified into proteins and non-proteins. This is the first review that has highlighted the role of cancer cell-derived secretory factors in Breast cancer Lung metastasis (BCLM). It also enumerates various researches that have been conducted to date in breast cancer cell lines and animal models that depict the prompt role of various types of cancer cell-derived secretory factors involved in the process of Breast cancer lung metastasis. In the future, by therapeutically targeting these cancer driven molecules, this specific type of organ-tropic metastasis in breast cancer can be successfully treated.
Collapse
Affiliation(s)
- Tabinda Urooj
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Bushra Wasim
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Shamim Mushtaq
- Biochemistry Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | | | - Muzna Shah
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| |
Collapse
|
47
|
Duan X, Guo G, Pei X, Wang X, Li L, Xiong Y, Qiu X. Baicalin Inhibits Cell Viability, Migration and Invasion in Breast Cancer by Regulating miR-338-3p and MORC4. Onco Targets Ther 2019; 12:11183-11193. [PMID: 31908485 PMCID: PMC6930519 DOI: 10.2147/ott.s217101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Baicalin is a natural compound from the roots of Scutellaria lateriflora Georgi, which plays anti-cancer role in multiple cancers. However, the exact role and potential underlying mechanism of baicalin in breast cancer (BC) remain poorly understood. Methods Thirty BC patients were recruited in this study. MCF-10A, MCF-7 and MDA-MB-231 cells were used to investigate the anti-cancer role of baicalin in vitro. Cell viability, migration, invasion and apoptosis were measured by MTT, trans-well and flow cytometry, respectively. The expression levels of microRNA-338-3p (miR-338-3p) and microrchidia family CW-type zinc-finger 4 (MORC4) were measured by quantitative real-time polymerase chain reaction or Western blot. The interaction between miR-338-3p and MORC4 was explored by luciferase reporter assay and RNA immunoprecipitation. Results We found that Baicalin treatment inhibited cell viability, migration and invasion but promoted apoptosis of BC cells. The expression of miR-338-3p was decreased in BC tissues and cells and miR-338-3p overexpression suppressed cell viability, migration and invasion but induced apoptosis. MiR-338-3p expression was reversed by baicalin exposure and inhibition of miR-338-3p attenuated the role of baicalin in viability, apoptosis, migration and invasion. MORC4 mRNA level was increased in BC tissues and cells, which was decreased by baicalin exposure. MORC4 was a target of miR-338-3p and its overexpression alleviated the effect of miR-338-3p on cell viability, apoptosis, migration and invasion. Conclusion In conclusion, baicalin suppressed cell viability, migration and invasion but promoted apoptosis in BC cells by regulating miR-338-3p and MORC4, indicating the promising pharmacological value of baicalin in BC treatment.
Collapse
Affiliation(s)
- Xin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guangcheng Guo
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinguang Qiu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
48
|
Sun H, Feng F, Xie H, Li X, Jiang Q, Chai Y, Wang Z, Yang R, Li R, Hou J. Quantitative examination of the inhibitory activation of molecular targeting agents in hepatocellular carcinoma patient-derived cell invasion via a novel in vivo tumor model. Animal Model Exp Med 2019; 2:259-268. [PMID: 31942558 PMCID: PMC6930997 DOI: 10.1002/ame2.12085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The outcomes for patients with advanced hepatocellular carcinoma (HCC) receiving sorafenib are far from satisfactory because of treatment resistance to sorafenib. However, the exact mechanism of resistance to sorafenib remains unclear and it is valuable to establish a novel mouse model to quantitatively analyze the inhibition rates of sorafenib on the invasive growth of HCC cells in the liver. METHODS HCC tissue microblocks derived from patients were cultured and mixed with hydrogel drops. Then, hydrogel drops containing microblocks of HCC tissue were attached onto the surface of the livers of nude mice to form lesions or nodules of HCC. The mice received molecular targeting agents through oral administration. Livers with tumor nodules were harvested for H&E staining (hematoxylin-eosin staining) analysis and H&E staining images were quantitatively analyzed using image J software. The invasive growth of HCC cells into the liver was calculated using the depth of the lesions compared with the total thickness of the liver. RESULTS Microblocks containing cells derived from HCC patients can form lesions in the liver of nude mice. Oral administration of molecular targeting agents inhibited the invasive growth of HCC cells in the liver of nude mice. CONCLUSIONS The model established in this study involves the invasive growth of HCC cells in the liver of nude mice, and the model allows for the quantitative analysis of the inhibitory effect of molecular targeting agents on the invasion of HCC cells in vivo.
Collapse
Affiliation(s)
- Huiwei Sun
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Fan Feng
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
- Center for Clinical LaboratoryThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Hui Xie
- Department of Interventional TherapyThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Xiaojuan Li
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
- Medical School of Chinese PLABeijingChina
| | - Qiyu Jiang
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Yantao Chai
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Zhijie Wang
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Ruichuang Yang
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Ruisheng Li
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| | - Jun Hou
- Research Center for Clinical and Translational MedicineThe Fifth Medical CenterGeneral Hospital of Chinese PLABeijingChina
| |
Collapse
|
49
|
Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, Ye Z, Chen G, Piao X, Guo F, Wang J, Bai Y, Yu D. Novel lncRNA PSMG3‑AS1 functions as a miR‑143‑3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep 2019; 43:229-239. [PMID: 31661146 PMCID: PMC6908943 DOI: 10.3892/or.2019.7390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are considered to be important regulators in breast cancer. In the present study, the potential mechanisms and functional roles of lncRNA PSMG3-antisense (AS)1 were investigated in vivo and in vitro. The relative expression levels of lncRNA PSMG3-AS1 and microRNA (miR)-143-3p were determined using reverse-transcription quantitative PCR. The protein expression levels of collagen type 1 alpha 1 (COL1A1) and proliferating cell nuclear antigen (PCNA) were obtained using western blot analysis. Bioinformatics analysis was used to identify the relationship between PSMG3-AS1, miR-143-3p and COL1A1. Colony forming and Cell Counting Kit-8 assays were used to detect cell proliferation. Transwell and wound-healing assays were used to determine cell migration. The results of the present study demonstrated that PSMG3-AS1 expression was increased in breast cancer tumor tissues and cell lines, and that of miR-143-3p was decreased. Knockdown of PSMG3-AS1 increased the level of miR-143-3p expression, which led to the mitigation of proliferation and migration capacity in breast carcinoma cells. Additionally, PSMG3-AS1 knockdown was demonstrated to reduce the mRNA and protein expression levels of COL1A1. miR-143-3p mimic transfection reduced proliferation and migration in MDA-MB-231 and MCF-7 cell lines. Furthermore, miR-143-3p inhibition significantly increased the proliferation and migration of breast cancer cells compared with the negative control group. The mRNA and protein expression levels of PCNA were reduced in the MCF-7 cell line when transfected with miR-143-3p mimics and si-PSMG3-AS1. However, PCNA expression was increased in cells transfected with a miR-143-3p inhibitor. In conclusion, the results of the present study identified a novel lncRNA PSMG3-AS1, which serves as a sponge for miR-143-3p in the pathogenesis of breast cancer. PSMG3-AS1 may be used as a potential therapeutic target gene in breast cancer treatment.
Collapse
Affiliation(s)
- Yue Cui
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Yuhua Fan
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Guangcai Zhao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Qibing Zhang
- Department of Breast Surgery of Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Ying Bao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Yuanri Cui
- Department of Breast Surgery of Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Zengjie Ye
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Guoyou Chen
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Xianji Piao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Fang Guo
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510006, P.R. China
| | - Yuhua Bai
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Dejun Yu
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| |
Collapse
|
50
|
Yang B, Wang C, Xie H, Wang Y, Huang J, Rong Y, Zhang H, Kong H, Yang Y, Lu Y. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis 2019; 10:784. [PMID: 31611551 PMCID: PMC6791891 DOI: 10.1038/s41419-019-2023-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163 sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective strategies for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Bin Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Chunping Wang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Hui Xie
- Department of Interventional Therapy, The Fifth Medical Center, Chinese PLA General Hospital, Chinese PLA, Beijing, 100039, China
| | - Yiwu Wang
- Department of Disease Control and Prevention, Chinese PLA The 532nd Hospital, Huangshan, 242700, Anhui Province, China
| | - Jiagan Huang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yihui Rong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huixin Zhang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huifang Kong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yinying Lu
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|