1
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Chen P, Zhang X, Fang Q, Zhao Z, Lin C, Zhou Y, Liu F, Zhu C, Wu A. Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo. J Nat Med 2024; 78:677-692. [PMID: 38403724 DOI: 10.1007/s11418-024-01782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Betulinic acid (BA), a naturally occurring lupane-type triterpenoid, possesses a wide range of potential activities against different types of cancer. However, the molecular mechanisms involved in anti-cervical cancer about BA were rarely investigated. Herein, the role of BA in cervical cancer suppression by ROS-mediated endoplasmic reticulum stress (ERS) and autophagy was deeply discussed. The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production. Furthermore, BA increased the intracellular Ca2+ levels, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy. Besides, BA initiated the formation of autophagosomes and inhibited autophagic flux by the co-administration of BA with 3-methyladenine (3-MA) and chloroquine (CQ), respectively. The in vivo experiment manifested that hydroxychloroquine (HCQ) enhanced the apoptosis induced by BA. For the first time, we demonstrated that BA could initiate early autophagy, inhibit autophagy flux, and induce protective autophagy in HeLa cells. Thus, BA could be a potential chemotherapy drug for cervical cancer, and inhibition of autophagy could enhance the anti-tumor effect of BA. However, the interactions of signaling factors between ERS-mediated and autophagy-mediated apoptosis deserve further attention.
Collapse
Affiliation(s)
- Ping Chen
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xueer Zhang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiaomiao Fang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Fangle Liu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Aizhi Wu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Wang H, Du X, Liu W, Zhang C, Li Y, Hou J, Yu Y, Li G, Wang Q. Combination of betulinic acid and EGFR-TKIs exerts synergistic anti-tumor effects against wild-type EGFR NSCLC by inducing autophagy-related cell death via EGFR signaling pathway. Respir Res 2024; 25:215. [PMID: 38764025 PMCID: PMC11103851 DOI: 10.1186/s12931-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Han Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohui Du
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Congcong Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jingwen Hou
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yi Yu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guiru Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
4
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
5
|
Fan HH, Zhang HJ. EVA1A, a novel and promising prognostic biomarker in colorectal cancer. Front Oncol 2024; 14:1333702. [PMID: 38529374 PMCID: PMC10961441 DOI: 10.3389/fonc.2024.1333702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the potential of EVA1A as a prognostic biomarker for Colorectal cancer (CRC). Methods The study utilized public databases to analyze the difference in Evala mRNA expression between CRC tumor tissues and adjacent normal tissues. Additionallymunohistochemical staining was performed on 90 paired tissue samples to detect EVA1A expression. The relationship between EVA1A and clinicopathological features was examined, and a Kaplan-Meier survival analysis was conducted. Univariate and multivariate Cox analyses were employed to identify prognostic factors affecting the overall survival (OS) of CRC patients. Results The analysis revealed a significant increase in Evala mRNA expression in CRC tumor cells compared to normal controls from public databases (P< 0.05). Immunohistochemical staining further confirmed a significant upregulation of EVA1A expression in CRC tissues (P< 0.05). High EVA1A expression was associated with age, pathological M stage, total tumor stage, and Carbohydrate antigen CA19-9 (CA19-9). Kaplan-Meier analysis demonstrated a significant association between high EVA1A expression and poor OS. Univariate and multivariate analysis identified EVA1A as an independent risk factor for CRC prognosis. Conclusion The study suggests that EVA1A is increased in CRC tumor tissues and may serve as a potential biomarker for poor prognosis in CRC.
Collapse
Affiliation(s)
- Hai-hua Fan
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hai-jun Zhang
- Department of Oncology, The Affiliated Zhongda Hospital of Southeast University, Medical School of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Cheng CW, Liu YF, Liao WL, Chen PM, Hung YT, Lee HJ, Cheng YC, Wu PE, Lu YS, Shen CY. miR-622 Increases miR-30a Expression through Inhibition of Hypoxia-Inducible Factor 1α to Improve Metastasis and Chemoresistance in Human Invasive Breast Cancer Cells. Cancers (Basel) 2024; 16:657. [PMID: 38339408 PMCID: PMC10854867 DOI: 10.3390/cancers16030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a pivotal role in the survival, metastasis, and response to treatment of solid tumors. Autophagy serves as a mechanism for tumor cells to eliminate misfolded proteins and damaged organelles, thus promoting invasiveness, metastasis, and resistance to treatment under hypoxic conditions. MicroRNA (miRNA) research underscores the significance of these non-coding molecules in regulating cancer-related protein synthesis across diverse contexts. However, there is limited reporting on miRNA-mediated gene expression studies, especially with respect to epithelial-mesenchymal transition (EMT) and autophagy in the context of hypoxic breast cancer. Our study reveals decreased levels of miRNA-622 (miR-622) and miRNA-30a (miR-30a) in invasive breast cancer cells compared to their non-invasive counterparts. Inducing miR-622 suppresses HIF-1α protein expression, subsequently activating miR-30a transcription. This cascade results in reduced invasiveness and migration of breast cancer cells by inhibiting EMT markers, such as Snail, Slug, and vimentin. Furthermore, miR-30a negatively regulates beclin 1, ATG5, and LC3-II and inhibits Akt protein phosphorylation. Consequently, this improves the sensitivity of invasive MDA-MB-231 cells to docetaxel treatment. In conclusion, our study highlights the therapeutic potential of inducing miR-622 to promote miR-30a expression and thus disrupt HIF-1α-associated EMT and autophagy pathways. This innovative strategy presents a promising approach to the treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Wen-Ling Liao
- School of Medicine, China Medical University, Taichung 40604, Taiwan;
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40604, Taiwan
| | - Po-Ming Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Yueh-Tzu Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Yu-Chun Cheng
- Department of Internal Medicine, Cathay General Hospital, Taipei 10629, Taiwan;
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei 10022, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10022, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
- College of Public Health, China Medical University, Taichung 40604, Taiwan
| |
Collapse
|
7
|
Baldasso-Zanon A, Silva AO, Franco N, Picon RV, Lenz G, Lopez PLDC, Filippi-Chiela EC. The rational modulation of autophagy sensitizes colorectal cancer cells to 5-fluouracil and oxaliplatin. J Cell Biochem 2024; 125:e30517. [PMID: 38224178 DOI: 10.1002/jcb.30517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.
Collapse
Affiliation(s)
- Andréa Baldasso-Zanon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Unidade Centro RS, Faculdade Estácio do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nayara Franco
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael V Picon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Medicina Interna, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Luciana da Costa Lopez
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Morfológicas, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Tsepaeva OV, Nemtarev AV, Pashirova TN, Khokhlachev MV, Lyubina AP, Amerkhanova SK, Voloshina AD, Mironov VF. Novel triphenylphosphonium amphiphilic conjugates of glycerolipid type: synthesis, cytotoxic and antibacterial activity, and targeted cancer cell delivery. RSC Med Chem 2023; 14:454-469. [PMID: 36970146 PMCID: PMC10034156 DOI: 10.1039/d2md00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This work deals with the creation of new cationic triphenylphosphonium amphiphilic conjugates of glycerolipid type (TPP-conjugates), bearing a pharmacophore terpenoid fragment (abietic acid and betulin) and a fatty acid residue in one hybrid molecule as a new generation of antitumor agents with high activity and selectivity. The TPP-conjugates showed high mitochondriotropy leading to the development of mitochondriotropic delivery systems such as TPP-pharmacosomes and TPP-solid lipid particles. Introducing the betulin fragment into the structure of a TPP-conjugate (compound 10) increases the cytotoxicity 3 times towards tumor cells of prostate adenocarcinoma DU-145 and 4 times towards breast carcinoma MCF-7 compared to TPP-conjugate 4a in the absence of betulin. TPP-hybrid conjugate 10 with two pharmacophore fragments, betulin and oleic acid, has significant cytotoxicity toward a wide range of tumor cells. The lowest IC50 of 10 is 0.3 μM toward HuTu-80. This is at the level of the reference drug doxorubicin. TPP-pharmacosomes (10/PC) increased the cytotoxic effect approximately 3 times toward HuTu-80 cells, providing high selectivity (SI = 480) compared to the normal liver cell line Chang liver.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Michail V Khokhlachev
- Kazan (Volga Region) Federal University Kremlevskaya Str. 18 420008 Kazan Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Syumbelya K Amerkhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| |
Collapse
|
9
|
SESN2 Knockdown Increases Betulinic Acid-Induced Radiosensitivity of Hypoxic Breast Cancer Cells. Cells 2022; 12:cells12010177. [PMID: 36611970 PMCID: PMC9818433 DOI: 10.3390/cells12010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Betulinic acid (BA) is a natural compound well known for its anti-inflammatory, anti-viral, anti-bacterial, anti-malarial effects and anti-tumor properties. Its enhanced cytotoxicity in tumor cells and induction of cell death in various cancer entities qualifies BA as an interesting candidate for novel treatment concepts. Our analyses showed enhanced cytotoxicity and radiosensitization under hypoxic conditions in human breast cancer cells. So far, the underlying mechanisms are unknown. Therefore, we investigated the BA-treated human breast cancer cell lines MDA-MB-231 and MCF-7 under normoxic and hypoxic conditions based on microarray technology. Hypoxia and BA regulated a variety of genes in both breast cancer cell lines. KEGG pathway analysis identified an enrichment of the p53 pathway in MCF-7 cells (wtp53) under hypoxia. In MDA-MB-231 cells (mtp53) an additional BA incubation was required to activate the p53 signaling pathway. Fourteen down-regulated and up-regulated genes of the p53 pathway were selected for further validation via qRT-PCR in a panel of five breast cancer cell lines. The stress-induced gene Sestrin-2 (SESN2) was identified as one of the most strongly up-regulated genes after BA treatment. Knockdown of SESN2 enhanced BA-induced ROS production, DNA damage, radiosensitivity and reduced autophagy in breast cancer cells. Our results identified SESN2 as an important target to enhance the radiobiological and anti-tumor effects of BA on breast cancer cells.
Collapse
|
10
|
Sriratanasak N, Wattanathana W, Chanvorachote P. 6,6′-((Methylazanedyl)bis(methylene))bis(2,4-dimethylphenol) Induces Autophagic Associated Cell Death through mTOR-Mediated Autophagy in Lung Cancer. Molecules 2022; 27:molecules27196230. [PMID: 36234769 PMCID: PMC9572635 DOI: 10.3390/molecules27196230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is the multistep mechanism for the elimination of damaged organelles and misfolded proteins. This mechanism is preceded and may induce other program cell deaths such as apoptosis. This study unraveled the potential pharmacological effect of 24MD in inducing the autophagy of lung cancer cells. Results showed that 24MD was concomitant with autophagy induction, indicating by autophagosome staining and the induction of ATG5, ATG7 and ubiquitinated protein, p62 expression after 12-h treatment. LC3-I was strongly conversed to LC3-II, and p62 was downregulated after 24-h treatment. The apoptosis-inducing activity was found after 48-h treatment as indicated by annexin V-FITC/propidium iodide staining and the activation of caspase-3. From a mechanistic perspective, 24-h treatment of 24MD at 60 μM substantially downregulated p-mTOR. Meanwhile, p-PI3K and p-Akt were also suppressed by 24MD at concentrations of 80 and 100 μM, respectively. We further confirmed m-TOR-mediated autophagic activity by comparing the effect of 24MD with rapamycin, a potent standard mTOR1 inhibitor through Western blot and immunofluorescence assays. Although 24MD could not suppress p-mTOR as much as rapamycin, the combination of rapamycin and 24MD could increase the mTOR suppressive activity and LC3 activation. Changing the substituent groups (R groups) from dimethylphenol to ethylphenol in EMD or changing methylazanedyl to cyclohexylazanedyl in 24CD could only induce apoptosis activity but not autophagic inducing activity. We identified 24MD as a novel compound targeting autophagic cell death by affecting mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Nicharat Sriratanasak
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
11
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
12
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
13
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
14
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
15
|
Bian S, Liu M, Yang S, Lu S, Wang S, Bai X, Zhao D, Wang J. 20(S)-Ginsenoside Rh2-induced apoptosis and protective autophagy in cervical cancer cells by inhibiting AMPK/mTOR pathway. Biosci Biotechnol Biochem 2021; 86:92-103. [PMID: 34718401 DOI: 10.1093/bbb/zbab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
20(S)-Ginsenoside Rh2 (GRh2) has various biological activities including anticancer effects. However, no reports have investigated the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRh2. In this study, we found that 20(S)-GRh2 suppressed proliferation and induced apoptosis in HeLa cells by activating the intrinsic apoptotic pathway and causing mitochondrial dysfunction. 20(S)-GRh2 enhanced cell autophagy through promoting the phosphorylation of AMPK, depressed the phosphorylation of AKT, and suppressed mTOR activity. Furthermore, treatment with the autophagy inhibitor 3-methyladenine (3-MA) enhanced 20(S)-GRh2-induced apoptosis, while the autophagy inducer rapamycin promoted cell survival. Moreover, the apoptosis inhibitor Z-VAD-FMK significantly restrained the apoptosis and autophagy induced by 20(S)-GRh2 in HeLa cells. We found that 20(S)-ginsenoside Rh2-induced protective autophagy promotes apoptosis of cervical cancer cells by inhibiting AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Song Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shuyan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
16
|
Wang G, Yang Y, Yi D, Yuan L, Yin PH, Ke X, Jun-Jie W, Tao MF. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J Liposome Res 2021; 32:250-264. [PMID: 34895013 DOI: 10.1080/08982104.2021.1999974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to develop polymer Eudragit S100 for preparing pH-responsive liposomes-loaded betulinic acid (pH-BA-LP) to improve the therapeutic index of chemotherapy for colorectal cancer. BA-loaded liposomes were coated with Eudragit S100 by a thin film dispersion and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and antitumor activity. In particular, pH-BA-LP showed advantages such as lower size (<100 nm), encapsulation efficiency of 90%, high stability, and stably cumulative release. By detecting the antitumor effects of pH-BA-LP in vivo, it showed that the tumor proliferation and cell migration were significantly inhibited in colorectal cancer. The pH-BA-LP also inhibited tumor growth via the regulation of Akt/TLR-mediated signalling and significantly down-regulated the expression of NFAT1 and NFAT4 proteins. It was found that pH-BA-LP can increase NK cells and CD3+ cells in tumor tissues, and the proportion of CD8+ cells in CD3+ cells was also increased, which proved that pH-BA-LP can play an antitumor effect by enhancing the autoimmunity level in tumor-bearing mice. The positive infiltration rates of CD8 and CD68 were increased and CD163 was relatively decreased by using pH-BA-LP, which proved that pH-BA-LP can regulate the immune infiltration levels in tumor-bearing mice. Therefore, the present work provides an effective method to prepare pH-responsive polymer-coated liposomes for colonic delivery with biologically active compounds.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yu Yang
- Jiangsu University School of Pharmacy, Zhenjiang City, China
| | - Du Yi
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Lu Yuan
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ke
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Jun-Jie
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Min-Fang Tao
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| |
Collapse
|
17
|
Zhang Y, He N, Zhou X, Wang F, Cai H, Huang SH, Chen X, Hu Z, Jin X. Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells. Aging (Albany NY) 2021; 13:21251-21267. [PMID: 34510030 PMCID: PMC8457576 DOI: 10.18632/aging.203441] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark, exhibits antitumor effects against solid malignancies and triggers autophagy and/or apoptosis in human cancer cells. Nonetheless, the relationship between autophagy and apoptosis and the potential modulatory actions of BA on autophagy-dependent bladder cancer cell death remain unclear. The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells. These effects reflected caspase 3-mediated apoptosis and could be attenuated or abolished by inhibiting ROS production with N-acetyl-L-cysteine, inhibiting autophagy with chloroquine, or silencing ATG7 with targeted siRNA. BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM. Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway. Accordingly, exposure to dorsomorphin (Compound C), an AMPK inhibitor, and AICAR, an AMPK activator, respectively inhibited and stimulated BA-induced autophagy in EJ and T24 cells. The effects of Bmi-1 overexpression in vitro and decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Hairong Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Shih Han Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| |
Collapse
|
18
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
19
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
20
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
21
|
Sun CY, Cao D, Ren QN, Zhang SS, Zhou NN, Mai SJ, Feng B, Wang HY. Combination Treatment With Inhibitors of ERK and Autophagy Enhances Antitumor Activity of Betulinic Acid in Non-small-Cell Lung Cancer In Vivo and In Vitro. Front Pharmacol 2021; 12:684243. [PMID: 34267658 PMCID: PMC8275840 DOI: 10.3389/fphar.2021.684243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Aberrant activation of the Ras-ERK signaling pathway drives many important cancer phenotypes, and several inhibitors targeting such pathways are under investigation and/or approved by the FDA as single- or multi-agent therapy for patients with melanoma and non-small-cell lung cancer (NSCLC). Here, we show that betulinic acid (BA), a natural pentacyclic triterpenoid, inhibits cell proliferation, and induces apoptosis and protective autophagy in NSCLC cells. Thus, the cancer cell killing activity of BA is enhanced by autophagy inhibition. Mitogen-activated protein kinases, and especially ERK that facilitates cancer cell survival, are also activated by BA treatment. As such, in the presence of ERK inhibitors (ERKi), lung cancer cells are much more sensitive to BA. However, the dual treatment of BA and ERKi results in increased protective autophagy and AKT phosphorylation. Accordingly, inhibition of AKT has a highly synergistic anticancer effect with co-treatment of BA and ERKi. Notably, autophagy inhibition by hydroxychloroquine (HCQ) increases the response of lung cancer cells to BA in combination with ERKi. In vivo, the three-drug combination (BA, ERKi, and HCQ), resulted in superior therapeutic efficacy than single or dual treatments in the xenograft mouse model. Thus, our study provides a combined therapy strategy that is a highly effective treatment for patients with NSCLC.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qian-Nan Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
22
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
23
|
Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential. Molecules 2021; 26:molecules26051381. [PMID: 33806566 PMCID: PMC7961550 DOI: 10.3390/molecules26051381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.
Collapse
|
24
|
Tsepaeva OV, Nemtarev AV, Grigor’eva LR, Mironov VF. Synthesis of C(28)-linker derivatives of betulinic acid bearing phosphonate group. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3074-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
26
|
Triangular Relationship between p53, Autophagy, and Chemotherapy Resistance. Int J Mol Sci 2020; 21:ijms21238991. [PMID: 33256191 PMCID: PMC7730978 DOI: 10.3390/ijms21238991] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy and radiation often induce a number of cellular responses, such as apoptosis, autophagy, and senescence. One of the major regulators of these processes is p53, an essential tumor suppressor that is often mutated or lost in many cancer types and implicated in early tumorigenesis. Gain of function (GOF) p53 mutations have been implicated in increased susceptibility to drug resistance, by compromising wildtype anti-tumor functions of p53 or modulating key p53 processes that confer chemotherapy resistance, such as autophagy. Autophagy, a cellular survival mechanism, is initially induced in response to chemotherapy and radiotherapy, and its cytoprotective nature became the spearhead of a number of clinical trials aimed to sensitize patients to chemotherapy. However, increased pre-clinical studies have exemplified the multifunctional role of autophagy. Additionally, compartmental localization of p53 can modulate induction or inhibition of autophagy and may play a role in autophagic function. The duality in p53 function and its effects on autophagic function are generally not considered in clinical trial design or clinical therapeutics; however, ample pre-clinical studies suggest they play a role in tumor responses to therapy and drug resistance. Further inquiry into the interconnection between autophagy and p53, and its effects on chemotherapeutic responses may provide beneficial insights on multidrug resistance and novel treatment regimens for chemosensitization.
Collapse
|
27
|
Kutkowska J, Strzadala L, Rapak A. Hypoxia increases the apoptotic response to betulinic acid and betulin in human non-small cell lung cancer cells. Chem Biol Interact 2020; 333:109320. [PMID: 33181113 DOI: 10.1016/j.cbi.2020.109320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/11/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Betulinic acid and betulin show promising activity against cancers cells, but the mechanism of their action is still unclear. In this study, non-small cell lung cancer (NSCLC) cell lines: A549, H358 and NCI-H1703 were treated with betulinic acid and betulin under normoxic and hypoxic conditions as hypoxia is critically involved in the response of solid tumors to chemotherapy. The treatment inhibits viability and proliferation of NSCLC cells. The anti-proliferative effect was induced by G1 cell cycle arrest with increased p21 expression and decreased cyclin D1 and cyclin B1 expression. Additionally, downregulation of p-GSK3β activity and the Wnt/β-catenin pathway were also observed under hypoxia. We found that hypoxia increased apoptosis in NSCLC cells. Cell death was associated with changes in the expression of proteins involved in the mitochondrial apoptosis pathway and induction of apoptotic death by caspase activation. Additionally, hypoxia exposure deregulated HIF-1α and p53 expression levels. Importantly, treatment with betulinic acid and betulin reduced colony-forming ability under normoxia, however, only betulinic acid reduced clonogenic activity under hypoxia. Our findings that betulinic acid increases apoptotic cell death and clonogenic activity under hypoxic conditions reveal new attractive strategies for treating hypoxic cancer tumors, such as NSCLC.
Collapse
Affiliation(s)
- Justyna Kutkowska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, Wroclaw, Poland
| | - Leon Strzadala
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, Wroclaw, Poland
| | - Andrzej Rapak
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Science, Wroclaw, Poland.
| |
Collapse
|
28
|
Wang M, Yu H, Wu R, Chen ZY, Hu Q, Zhang YF, Gao SH, Zhou GB. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells. Int J Mol Med 2020; 46:1816-1826. [PMID: 32901853 PMCID: PMC7521584 DOI: 10.3892/ijmm.2020.4714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify natural compounds that bear significant anti‑tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non‑small cell lung cancer (NSCLC) and MCF‑7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA‑induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy‑related gene 5 (ATG5) enhanced the UA‑induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA‑induced autophagy is a pro‑survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450052
| | - Hong Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Ran Wu
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Zhen-Yin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - San-Hui Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
29
|
Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Cheng C, Wang N, Ren J, Feng Y. Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p. Clin Transl Med 2020; 10:e190. [PMID: 33135336 PMCID: PMC7586994 DOI: 10.1002/ctm2.190] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Betulinic acid (BA) is a natural product extracted from a broad range of medicinal and edible herbal plants. Previous studies showed that BA induces cell death in tumors derived from multiple tissues; however, the underlying mechanism remains obscure. The present study aimed to study the effects of BA on autophagy and apoptosis of hepatocellular carcinoma (HCC). Human HCC cell lines and orthotopic HCC implanted mice were employed to examine the BA-induced tumor suppression; RT2 long noncoding RNA (lncRNA) PCR array and database analysis were used to explore the possible mechanisms; validation of pathways was performed using siRNA and miRNA inhibitors. The results indicated that BA regulated autophagy and induced apoptosis in HCC. The degradation of inhibitor of apoptosis proteins (IAPs), the conversion of LC3-I to LC3-II, and p62 accumulation were enhanced by BA, thereby suggesting that the downregulation of IAPs and autophagic cell death are induced by BA. The addition of autophagy and lysosomal inhibitors indicated that BA induced autophagy-independent apoptosis via degradation of IAPs. Moreover, RT2 lncRNA PCR array and database analysis suggested that BA downregulated the levels of lncRNA MALAT1, which is considered to be an oncogene. Further investigations demonstrated that lncRNA MALAT1 functioned as a ceRNA (competing endogenous RNA) to contribute to BA-mediated degradation of IAPs by sponging miR-22-3p. Therefore, BA could be developed as a potential anticancer agent for HCC.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Chien‐Shan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Junguo Ren
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| |
Collapse
|
30
|
Wang Z, Jin J. LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY) 2020; 11:4876-4889. [PMID: 31308265 PMCID: PMC6682525 DOI: 10.18632/aging.102081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
Aberrant expressions of various long non-coding RNAs (lncRNAs) have been involved in the progression and pathogenesis of various carcinomas. However, the expression and biological function of SLCO4A1-AS1 in colorectal cancer (CRC) remain poorly understood. Gain- and loss-of-function assays were applied to determine the roles of SLCO4A1-AS1 in autophagy and CRC progression. qRT-PCR and in situ hybridization (ISH) results showed that SLCO4A1-AS1 was positively associated with PARD3 expression in CRC tissues. In vitro and in vivo studies revealed that SLCO4A1-AS1 knockdown repressed cytoprotective autophagy as assayed by transmission electron microscopy (TEM), and inhibited cell proliferation by directly targeting partition-defective 3 (PARD3). Mechanistically, SLCO4A1-AS1 acted as a sponge of miR-508-3p, leading to upregulation of PARD3 and promotion of CRC cell proliferation. The current study demonstrates that the SLCO4A1-AS1/miR-508-3p/PARD3/autophagy pathway play a critical role in CRC cell proliferation, and might provide novel targets for developing therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Zhaozhi Wang
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jianjun Jin
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
31
|
Sánchez-Valdeolívar CA, Alvarez-Fitz P, Zacapala-Gómez AE, Acevedo-Quiroz M, Cayetano-Salazar L, Olea-Flores M, Castillo-Reyes JU, Navarro-Tito N, Ortuño-Pineda C, Leyva-Vázquez MA, Ortíz-Ortíz J, Castro-Coronel Y, Mendoza-Catalán MA. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complement Med Ther 2020; 20:191. [PMID: 32571387 PMCID: PMC7309984 DOI: 10.1186/s12906-020-02993-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Some species of the Ficus genus show pharmacological activity, including antiproliferative activity, in cell lines of several cancer Types. ficus crocata is distributed in Mexico and used in traditional medicine, as it is believed to possess anti-inflammatory, analgesic, and antioxidant properties. However, as of yet, there are no scientific reports on its biological activity. This study aims to evaluate the phytochemical profile of F. crocata leaf extracts and their effects on breast cancer MDA-MB-231 cells proliferation. Moreover, the study aims to unearth possible mechanisms involved in the decrease of cell proliferation. Methods The extracts were obtained by the maceration of leaves with the solvents hexane, dichloromethane, and acetone. The phytochemical profile of the extracts was determined using gas chromatography coupled with mass analysis. Cell proliferation, apoptosis, and cell cycle analysis in MDA-MB-231 cells were determined using a Crystal violet assay, MTT assay, and Annexin-V/PI assay using flow cytometry. The data were analyzed using ANOVA and Dunnett’s test. Results The hexane (Hex-EFc), dichloromethane (Dic-EFc), and acetone (Ace-EFc) extracts of F. crocata decreased the proliferation of MDA-MB-231 cells, with Dic-EFc having the strongest effect. Dic-EFc was fractioned and its antiproliferative activity was potentiated, which enhanced its ability to induce apoptosis in MDA-MB-231 cells, as well as increased p53, procaspase-8, and procaspase-3 expression. Conclusions This study provides information on the biological activity of F. crocata extracts and suggests their potential use against triple-negative breast cancer.
Collapse
Affiliation(s)
- Carlos A Sánchez-Valdeolívar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | | | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Macdiel Acevedo-Quiroz
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, Centro, 62780, Zacatepec, Morelos, Mexico
| | - Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Jhonathan U Castillo-Reyes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Julio Ortíz-Ortíz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Yaneth Castro-Coronel
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
32
|
Garcês de Couto NM, Willig JB, Ruaro TC, de Oliveira DL, Buffon A, Pilger DA, Arruda MS, Miron D, Zimmer AR, Gnoatto SC. Betulinic Acid and Brosimine B Hybrid Derivatives as Potential Agents against Female Cancers. Anticancer Agents Med Chem 2020; 20:622-633. [DOI: 10.2174/1871520620666200124111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Background:
Cancer is a multifactorial disease, representing one of the leading causes of death
worldwide. On a global estimate, breast cancer is the most frequently occurring cancer in women and cervical
cancer, the fourth most common. Both types of cancer remain the major cause of cancer-related mortality in
developing countries. A strategy for rational drug design is hybridization, which aims to bring together in one
molecule, two or more pharmacophores in order to reach several biological targets.
Objective:
The objective of this work was to develop new hybrids based on natural pharmacophores: Betulinic
acid (1) and brosimine b (2), active in female cancer cell lines.
Methods:
The coupling reactions were carried out by Steglich esterification. Different compounds were designed
for the complete and simplified structural hybridization of molecules. The anticancer activities of the
compounds were evaluated in human cervical adenocarcinoma (HeLa), human cervical metastatic epidermoid
carcinoma (ME-180), and human breast adenocarcinoma (MCF-7) cell lines.
Results:
Hybrid 3 presented higher potency (IC50 = 9.2 ± 0.5μM) and SI (43.5) selectively in MCF-7 cells (in
relation to Vero cells) with its cytotoxic effect occurring via apoptosis. In addition, compound 6 showed activity
in MCF-7 and HeLa cells with intermediate potency, but with high efficacy, acting via apoptosis as well.
Conclusion:
In this context, we showed that the combination of two complex structures generated the development
of hybrids with differing inhibitory profiles and apoptotic modes of action, thus representing potential
alternatives in female cancer treatment.
Collapse
Affiliation(s)
- Nádia M. Garcês de Couto
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia B. Willig
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís C. Ruaro
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Andréia Buffon
- Laboratory of Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo A. Pilger
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara S.P. Arruda
- Institute of Exact and Natural Sciences, Federal University of Para, Belem, Brazil
| | - Diogo Miron
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline R. Zimmer
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone C.B. Gnoatto
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Chen Y, Wu X, Liu C, Zhou Y. Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochem Funct 2020; 38:702-709. [PMID: 32283563 PMCID: PMC7496801 DOI: 10.1002/cbf.3537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent types of malignancies. Betulinic acid (BA) is a natural pentacyclic triterpene with a lupine structure. However, to the best of our knowledge, there is no research study on the anti‐tumour and anti‐metastasis effect of BA on GC. In this study, we assessed the anti‐cancer effect of BA on human GC cells in vitro and in vivo. We first investigated the cytotoxicity and anti‐proliferation effect of BA on GC cells of SNU‐16 and NCI‐N87. The results indicated that BA had significant cytotoxic and inhibitory effects on GC cells in a dose‐ and time‐dependent manner. To further study the cytotoxic action of BA on GC cells, we assessed the apoptotic induction effect of BA on SNU‐16 cells and found that BA distinctly induced apoptosis in SNU‐16 cells. In addition, BA inhibited the migratory and invasive abilities of SNU‐16 cells. Western‐blot analysis revealed that BA suppressed the migration and invasion of GC cells by impairing epithelial‐mesenchymal transition progression. Furthermore, in vivo experiments showed that BA could delay tumour growth and inhibit pulmonary metastasis, which is consistent with the results of in vitro studies. Overall, we evaluated the anti‐cancer effect of BA on human GC cells in vivo and in vitro, and the present study provides new evidence on the use of BA as a potential anti‐cancer drug for GC treatment. Significance of the study BA significantly suppressed proliferation and triggered apoptosis in GC cells. Additionally, BA remarkably inhibited migration and invasion of GC cells by impairing the epithelial‐mesenchymal transition signalling pathway. It is worth noting that BA drastically retarded tumour growth in the xenograft mouse model of GC. Our results indicated that BA can be considered a candidate drug for GC therapy.
Collapse
Affiliation(s)
- Yun Chen
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Xiongjian Wu
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Chi Liu
- School of Medical & Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yun Zhou
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
34
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
35
|
Liu W, Li S, Qu Z, Luo Y, Chen R, Wei S, Yang X, Wang Q. Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma. Am J Transl Res 2019; 11:6952-6964. [PMID: 31814899 PMCID: PMC6895530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoid compound that widely exists in Chinese herbal medicine, and it has remarkable biological activity. However, the involved molecular targets and mechanisms of BA are still ambiguous. Here, we aim to validate the preventive effects and molecular mechanisms of BA against hepatocellular carcinoma via related experiments. We extracted the 2D and 3D structure of BA from the PubChem database. MTT assay and colony formation assay were used to determine the anti-proliferation and cytotoxicity of BA using in vitro cell models. Hoechst 33258 staining was used to investigate the extent of apoptosis after BA treatment. Western blot and immunofluorescence experiments were used to evaluate apoptosis-related and autophagy-related proteins and molecular mechanisms. We demonstrated that BA significantly inhibited cell proliferation in HepG2 and SMMC-7721 hepatocellular carcinoma cells, but with little cytotoxicity effects on l-02 normal liver cells. We further determined that the hepatocellular carcinoma prevention effects of BA were closely correlated with apoptosis and autophagy. Furthermore, our data indicated that BA-induced autophagy has a protective effect against cancer cell proliferation and promotes cell apoptosis. Additionally, apoptosis and autophagy were induced by BA through suppression of the PI3K/AKT/mTOR signaling pathway. Collectively, our study provides experimental evidence that BA inhibits cell proliferation and induces cell apoptosis and autophagy via suppressing the PI3K/AKT/mTOR pathway. Additionally, BA is a safe and effective herbal medicine compound that can be used for the prevention of hepatocellular carcinoma growth, and may be a potential therapeutic strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weiping Liu
- The First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Shaoling Li
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Ziling Qu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Yi Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Ruifeng Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Sufen Wei
- Institute of Clinical Pharmacology, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| | - Xin Yang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510700, Guangdong, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, PR China
| |
Collapse
|
36
|
Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y, Zhang X. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine 2019; 48:277-288. [PMID: 31631038 PMCID: PMC6838436 DOI: 10.1016/j.ebiom.2019.09.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resistance to oxaliplatin-based chemotherapy is a major cause of recurrence in colorectal cancer (CRC) patients. There is increasing evidence indicating that circHIPK3 is involved in the development and progression of tumours. However, little is known about the potential role of circHIPK3 in CRC chemotherapy and its molecular mechanisms in chemoresistance also remain unclear. METHODS Quantitative real-time PCR was performed to detect circHIPK3 expression in tissues of 2 cohorts of CRC patients who received oxaliplatin-based chemotherapy. The chemoresistant effects of circHIPK3 were assessed by cell viability, apoptosis, and autophagy assays. The relationship between circHIPK3, miR-637, and STAT3 mRNA was confirmed by biotinylated RNA pull-down, luciferase reporter, and western blot assays. FINDINGS In the pilot study, increased circHIPK3 expression was observed in chemoresistant CRC patients. Functional assays showed that circHIPK3 promoted oxaliplatin resistance, which was dependent on inhibition of autophagy. Mechanistically, circHIPK3 sponged miR-637 to promote STAT3 expression, thereby activating the downstream Bcl-2/beclin1 signalling pathway. A clinical cohort study showed that circHIPK3 was upregulated in tissues from recurrent CRC patients and correlated with tumour size, regional lymph node metastasis, distant metastasis, and survival. INTERPRETATION circHIPK3 functions as a chemoresistant gene in CRC cells by targeting the miR-637/STAT3/Bcl-2/beclin1 axis and might be a prognostic predictor for CRC patients who receive oxaliplatin-based chemotherapy. FUNDING National Natural Science Foundation of China (81301506), Shandong Medical and Health Technology Development Project(2018WSB20002), Shandong Key Research and Development Program (2016GSF201122), Natural Science Foundation of Shandong Province (ZR2017MH044), and Jinan Science and Technology Development Plan(201805084, 201805003).
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Chen Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xinfeng Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China.
| |
Collapse
|
37
|
Gao L, Liu H, Yin N, Zuo S, Jin G, Hu Y, Hu D, Li Y, Song Q, Fei X. BNIPL‑2 expression is correlated with the prognosis and regulates the proliferation of colorectal cancer through CD44. Mol Med Rep 2019; 20:4073-4080. [PMID: 31485655 PMCID: PMC6797997 DOI: 10.3892/mmr.2019.10633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) currently leads to many deaths worldwide. The regulatory mechanism, however, remains largely unclear. In the present study, bioinformatics methods were used to identify genes associated with CRC prognosis and to detect the molecular signals regulating the cell cycle in two CRC cell lines. It was revealed that BNIPL-2 expression was higher in CRC tissues than in adjacent tissue samples. Upregulation of BNIPL-2 was correlated with poor prognosis and the adverse malignant stages T and M. BNIPL-2 was also associated with signaling pathways involved in cancer cell growth. BNIPL-2 overexpression promoted cell proliferation and increased the proportion of cells in the G2/M phase. Knockdown of BNIPL-2 inhibited cell proliferation. CD44 was regulated by BNIPL-2 and promoted cell proliferation. Downregulation of CD44 suppressed cell proliferation and rescued the cell proliferation promoted by BNIPL-2. Overexpression of CD44 restored the cell proliferation suppressed by BNIPL-2 knockdown. The present study not only suggested that BNIPL-2 may be a potential biomarker of CRC but also indicated that BNIPL-2 regulates CRC cancer proliferation via CD44, which could be a diagnostic and clinical treatment target.
Collapse
Affiliation(s)
- Lei Gao
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Hansong Liu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ningwei Yin
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Shanshan Zuo
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Guangli Jin
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yangxi Hu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Desheng Hu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ying Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Xuejie Fei
- Department of Hospital Infections, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| |
Collapse
|
38
|
Yan J, Dou X, Zhou J, Xiong Y, Mo L, Li L, Lei Y. Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:353. [PMID: 31412953 PMCID: PMC6694658 DOI: 10.1186/s13046-019-1355-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
Background Tubeimoside-I (TBM), a plant-derived bioactive compound, shows antitumor activity in different tumors and can enhance the efficacy of chemotherapeutic agents. However, the detail mechanism underlying remains to be elucidated. Methods The cytotoxic potential of TBM towards CRC cells was examined by CCK8 assay, colony formation, LDH release assay, flow cytometry method and Western blots. The ROS levels, autophagy, apoptosis, chemosensitivity to 5-FU or DOX, etc. were determined between control and TBM-treated CRC cells. Results In this study, we found that TBM could inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. Intriguingly, TBM treatment could either promote autophagy initiation by ROS-induced AMPK activation, or block autophagy flux through inhibiting lysosomal hydrolytic enzymes, which leaded to massive impaired autophagylysosomes accumulation. Administration of autophagy initiation inhibitor (3-MA or selective ablation of autophagy related proteins) relieves TBM-induced CRC suppression, while combination use of autophagy flux inhibitor chloroquine (CQ) slightly augments TBM-induced cell death, suggesting that impaired autophagylysosomes accumulation contributes to TBM-induced growth inhibition in CRC cells. Notably, as an autophagy flux inhibitor, TBM works synergistically with 5-fluorouracil (5-FU) or doxorubicin (DOX) in CRC suppression. Conclusion Together, our study provides new insights regarding the anti-tumor activity of TBM against CRC, and established potential applications of TBM for CRC combination therapies in clinic. Electronic supplementary material The online version of this article (10.1186/s13046-019-1355-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianghong Yan
- Institute of Life Science,Chongqing Medical University, Chongqing, 400016, China.,Department of Medical Laboratory Technology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyun Dou
- Institute of Life Science,Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuanfeng Xiong
- Department of Medical Laboratory Technology, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Mo
- Department of Medical Laboratory Technology, Chongqing Medical University, Chongqing, 400016, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
39
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
40
|
Wang S, Ran L, Zhang W, Leng X, Wang K, Liu G, Song J, Wang Y, Zhang X, Wang Y, Zhang L, Ma Y, Liu K, Li H, Zhang W, Qin G, Song F. FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer. Sci Rep 2019; 9:5281. [PMID: 30918291 PMCID: PMC6437149 DOI: 10.1038/s41598-019-41717-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides −660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3′ untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, China
| | - Geli Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yujing Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Lian Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- Information Technology Office of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guijun Qin
- Department of Endocrinology of the Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China. .,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
41
|
Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis 2019; 10:232. [PMID: 30850585 PMCID: PMC6408511 DOI: 10.1038/s41419-019-1470-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Betulinic acid (BA) and its derivatives are a class of high-profile drug candidates, but their anticancer effects on resistant cancer have rarely been reported. Although a few studies indicated mitophagy is related with drug resistance, its role in different cancer types and anticancer agents treatment remains largely unclear. Here, we find that B5G1, a new derivative of BA, induces cell death in multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR through mitochondrial-apoptosis pathway. B5G1 also triggers mitophagy independent on Atg5/Beclin 1. Further mechanistic study indicates that B5G1 upregulates PTEN-induced putative kinase 1 (PINK1) to recruit Parkin to mitochondria followed by ubiquitination of Mfn2 to initiate mitophagy. Inhibition of mitophagy by PINK1 siRNA, mdivi-1, or bafilomycin A1 (Baf A1) promotes B5G1-induced cell death. In addition, ROS production and mitochondrial damage in B5G1-treated HepG2/ADM cells cause mitochondrial apoptosis and mitophagy. In vivo study shown that B5G1 dramatically inhibits HepG2/ADM xenograft growth accompanied by apoptosis and mitophagy induction. Together, our results provide the first demonstration that B5G1, as a novel mitophagy inducer, has the potential to be developed into a drug candidate for treating multidrug resistant cancer.
Collapse
|
42
|
Wu Y, Hu Y, Zhou H, Zhu J, Tong Z, Qin S, Liu D. Organosulfur compounds induce cytoprotective autophagy against apoptosis by inhibiting mTOR phosphorylation activity in macrophages. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1085-1093. [PMID: 30260385 DOI: 10.1093/abbs/gmy114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Organosulfur compounds (OSCs) are the bioactive components of garlic. Some OSCs have apoptotic or autophagy-inducing effects. Autophagy plays roles in both cytoprotection and apoptosis-related cell death, and the interaction between autophagy and apoptosis is important in the modulation of immune responses. The mechanism of an OSC-mediated effect via the interaction of autophagy and apoptosis is unknown. In this study, the effects of five OSC compounds on autophagy in the macrophage cell line RAW264.7 and primary macrophages were investigated. We found that S-allylcysteine (SAC), diallyl disulde (DADS) and diallyl tetrasulfide (DTS) treatment increased the number of autophagosomes of RAW264.7 cells, inhibited the phosphorylation of ribosomal protein S6 kinase beta-1 (p70S6K/S6K1) which is a substrate of mammalian target of rapamycin (mTOR), and significantly enhanced autophagy flux. The induction of autophagy by SAC, DADS and DTS was inhibited by stably knocking down the expression of autophagy-related gene 5 (ATG5) with short hairpin RNA (shRNA). Further experiments confirmed that SAC, DADS and DTS also induced apoptosis in RAW264.7 cells. The induction of apoptosis and Caspase 3 activity by SAC, DADS and DTS were increased by stably knocking down of ATG5 expression with shRNA in RAW264.7 cells or treating with 5 mM 3-MA in primary macrophages. Our results suggest that SAC, DADS and DTS induce both autophagy and apoptosis. The autophagy induction protects macrophages from apoptosis by inhibiting mTOR phosphorylation activity to maintain the mass of immune cells.
Collapse
Affiliation(s)
- Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yongquan Hu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Haiyan Zhou
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Jiayu Zhu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Zhongyi Tong
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| |
Collapse
|
43
|
Qian K, Huang H, Jiang J, Xu D, Guo S, Cui Y, Wang H, Wang L, Li K. Identifying autophagy gene-associated module biomarkers through construction and analysis of an autophagy-mediated ceRNA‑ceRNA interaction network in colorectal cancer. Int J Oncol 2018; 53:1083-1093. [PMID: 29916526 PMCID: PMC6065403 DOI: 10.3892/ijo.2018.4443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is crucial in cellular homeostasis and has been implicated in the development of malignant tumors. However, the regulatory function of autophagy in cancer remains to be fully elucidated. In the present study, the autophagy-mediated competing endogenous RNA (ceRNA)-ceRNA interaction networks in colorectal cancer (CRC) were constructed by integrating systematically expression profiles of long non-coding RNAs and mRNAs. It was found that a large proportion of autophagy genes were inclined to target hub nodes, including a fraction of autophagy genes, by comparing with other genes within ceRNA networks, and showed preferential interaction with themselves. The present study also revealed that autophagy genes may be used as prognostic markers for cancer therapy. A risk score model based on multivariable Cox regression analysis was then used to capture novel biomarkers in connection with lncRNA for the prognosis of CRC. These biomarkers were confirmed in the test dataset and an additional independent dataset. Furthermore, the prognostic value of biomarkers is independent of conventional clinical factors. These results provide improved understanding of autophagy-mediated ceRNA regulatory mechanisms in CRC and provide novel potential molecular therapeutic targets for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Kun Qian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Huiying Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Jiang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dahua Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shengnan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao Wang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
44
|
Sun T, Zhu T, Liang X, Yang S, Zhao R. Effects of Recombinant Circularly Permuted Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) (Recombinant Mutant Human TRAIL) in Combination with 5-Fluorouracil in Human Colorectal Cancer Cell Lines HCT116 and SW480. Med Sci Monit 2018; 24:2550-2561. [PMID: 29695684 PMCID: PMC5939707 DOI: 10.12659/msm.909390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, a mutant form of tumor necrosis factor-related apoptosis-inducing ligand, is an effective antitumor cytokine. However, its antitumor effect in colorectal cancer is unclear. This study assessed the antitumor effect of circularly permuted tumor necrosis factor-related apoptosis-inducing ligand alone or with 5-fluorouracil in colorectal cancer cells in vitro and explored the underlying mechanisms. Material/Methods We used the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay to analyze cell proliferation inhibition. The apoptotic effects of circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, 5-fluorouracil, or both in human colorectal cancer cells were evaluated using flow cytometry. Furthermore, the levels of apoptosis-related proteins were examined by Western blotting. Results Compared to either agent alone, cotreatment with 5-fluorouracil and circularly permuted tumor necrosis factor-related apoptosis-inducing ligand showed obvious antitumor effects and induced significant apoptosis of colorectal cancer cells. 5-Fluorouracil enhanced circularly permuted tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by increasing death receptor 4 and 5 levels in HCT116 cells, but only of death receptor 4 in SW480 cells. Moreover, 5-fluorouracil plus circularly permuted tumor necrosis factor-related apoptosis-inducing ligand increased apoptosis-related protein levels such as cleaved caspase-3, caspase-8, and poly-ADP-ribose polymerase and downregulated that of the survival protein B-cell lymphoma-extra-large. Pretreatment with the pan-caspase inhibitor, z-VAD-FMK, attenuated the caspase-dependent apoptosis induced by circularly permuted tumor necrosis factor-related apoptosis-inducing ligand alone or combined with 5-fluorouracil. Conclusions Cotreatment with 5-fluorouracil and circularly permuted tumor necrosis factor-related apoptosis-inducing ligand showed enhanced antitumor effects on colorectal cancer cells.
Collapse
Affiliation(s)
- Tongyou Sun
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Tienian Zhu
- Key Laboratory of Immune Mechanism and Intervention of Serious Diseases in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiujun Liang
- Basic Medical Institute, Chengde Medical University, Chengde, Hebei, China (mainland)
| | - Shifang Yang
- Beijing Sunbio Biotech Co., Ltd., Beijing, China (mainland)
| | - Ruijing Zhao
- Key Laboratory of Immune Mechanism and Intervention of Serious Diseases in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|