1
|
Guo J, Wang X, Li G, Wang Q, Wang F, Liu J, Feng X, Wang C. Reliability of Serum-Derived Connectome Indicators in Identifying Cirrhosis. J Proteome Res 2024; 23:4729-4741. [PMID: 39305261 DOI: 10.1021/acs.jproteome.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Patients with cirrhosis face a heightened risk of complications, underscoring the importance of identification. We have developed a Connectome strategy that combines metabolites with peptide spectral matching (PSM) in proteomics to integrate metabolomics and proteomics, identifying specific metabolites bound to blood proteins in cirrhosis using open search proteomics methods. Analysis methods including Partial Least Squares Discriminant Analysis (PLS-DA), Uniform Manifold Approximation and Projection (UMAP), and hierarchical clustering were used to distinguish significant differences among the Cirrhosis group, Chronic Hepatitis B (CHB) group, and Healthy group. In this study, we identified 81 cirrhosis-associated connectomes and established an effective model distinctly distinguishing cirrhosis from chronic hepatitis B and healthy samples, confirmed by PLS-DA, hierarchical clustering analysis, and UMAP analysis, and further validated using six new cirrhosis samples. We established a Unified Indicator for Identifying cirrhosis, including tyrosine, Unnamed_189.2, thiazolidine, etc., which not only enables accurate identification of cirrhosis groups but was also further validated using six new cirrhosis samples and extensively supported by other cirrhosis research data (PXD035024). Our study reveals that characteristic cirrhosis connectomes can reliably distinguish cirrhosis from CHB and healthy groups. The established unified cirrhotic indicator facilitates the identification of cirrhosis cases in both this study and additional research data.
Collapse
Affiliation(s)
- Jisheng Guo
- College of Basic Medicine, Yantai Campus of Binzhou Medical University, Yantai 264003, China
| | - Xiaona Wang
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Guangming Li
- Department of Hepatology, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Qiong Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Fengqin Wang
- College of Basic Medicine, Shandong University, Jinan 250012, China
| | - Jinjin Liu
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Xu Feng
- Medical Laboratory, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Chao Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| |
Collapse
|
2
|
Tenstad O, Christakou E, Hodneland Nilsson L, Gausdal G, Micklem D, Kursula P, Lorens JB, Reed RK. In vivo turnover and biodistribution of soluble AXL: implications for biomarker development. Sci Rep 2024; 14:16141. [PMID: 38997436 PMCID: PMC11245488 DOI: 10.1038/s41598-024-66665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Soluble biomarkers are paramount to personalized medicine. However, the in vivo turnover and biodistribution of soluble proteins is seldom characterized. The cleaved extracellular domain of the AXL receptor (sAXL) is a prognostic biomarker in several diseases and a predictive marker of AXL targeting agents. Plasma sAXL reflects a balance between production in tissues with lymphatic transport into the circulation and removal from blood by degradation or excretion. It is unclear how this transport cycle affects plasma sAXL levels that are the metric for biomarker development. Radiolabeled mouse sAxl was monitored after intravenous injection to measure degradation and urinary excretion of sAxl, and after intradermal injection to mimic tissue or tumor production. sAxl was rapidly taken-up and degraded by the liver and kidney cortex. Surprisingly, intact sAxl was detectable in urine, indicating passage through the glomerular filter and a unique sampling opportunity. The structure of sAxl showed an elongated, flexible molecule with a length of 18 nm and a thickness of only 3 nm, allowing passage through the glomerulus and excretion into the urine. Intradermally injected sAxl passed through local and distant lymph nodes, followed by uptake in liver and kidney cortex. Low levels of sAxl were seen in the plasma, consistent with an extended transit time from local tissue to circulation. The rapid plasma clearance of sAxl suggests that steady-state levels in blood will sensitively and dynamically reflect the rate of production of sAxl in the tissues but will be influenced by perturbations of liver and kidney function.
Collapse
Affiliation(s)
- Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| | - Eleni Christakou
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
- BerGenBio ASA, 5009, Bergen, Norway
| | | | | | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90014, Oulu, Finland
| | - James B Lorens
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway.
- Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, 5021, Bergen, Norway.
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| |
Collapse
|
3
|
Grøndal SM, Tutusaus A, Boix L, Reig M, Blø M, Hodneland L, Gausdal G, Jackson A, Garcia de Frutos P, Lorens JB, Morales A, Marí M. Dynamic changes in immune cell populations by AXL kinase targeting diminish liver inflammation and fibrosis in experimental MASH. Front Immunol 2024; 15:1400553. [PMID: 38817615 PMCID: PMC11137289 DOI: 10.3389/fimmu.2024.1400553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background and aims Metabolic dysfunction-associated steatohepatitis (MASH) is a significant health concern with limited treatment options. AXL, a receptor tyrosine kinase activated by the GAS6 ligand, promotes MASH through activation of hepatic stellate cells and inflammatory macrophages. This study identified cell subsets affected by MASH progression and the effect of AXL inhibition. Methods Mice were fed chow or different fat-enriched diets to induce MASH, and small molecule AXL kinase inhibition with bemcentinib was evaluated. Gene expression was measured by qPCR. Time-of-flight mass cytometry (CyTOF) used single cells from dissociated livers, acquired on the Fluidigm Helios, and cell populations were studied using machine learning. Results In mice fed different fat-enriched diets, liver steatosis alone was insufficient to elevate plasma soluble AXL (sAXL) levels. However, in conjunction with inflammation, sAXL increases, serving as an early indicator of steatohepatitis progression. Bemcentinib, an AXL inhibitor, effectively reduced proinflammatory responses in MASH models, even before fibrosis appearance. Utilizing CyTOF analysis, we detected a decreased population of Kupffer cells during MASH while promoting infiltration of monocytes/macrophages and CD8+ T cells. Bemcentinib partially restored Kupffer cells, reduced pDCs and GzmB- NK cells, and increased GzmB+CD8+ T cells and LSECs. Additionally, AXL inhibition enhanced a subtype of GzmB+CD8+ tissue-resident memory T cells characterized by CX3CR1 expression. Furthermore, bemcentinib altered the transcriptomic landscape associated with MASH progression, particularly in TLR signaling and inflammatory response, exhibiting differential cytokine expression in the plasma, consistent with liver repair and decreased inflammation. Conclusion Our findings highlight sAXL as a biomarker for monitoring MASH progression and demonstrate that AXL targeting shifted liver macrophages and CD8+ T-cell subsets away from an inflammatory phenotype toward fibrotic resolution and organ healing, presenting a promising strategy for MASH treatment.
Collapse
Affiliation(s)
- Sturla Magnus Grøndal
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Anna Tutusaus
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Loreto Boix
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Maria Reig
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | | | | | | | - Pablo Garcia de Frutos
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Unidad Asociada (IMIM), Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - James Bradley Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Albert Morales
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Montserrat Marí
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
4
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
5
|
Staufer K, Huber H, Zessner-Spitzenberg J, Stauber R, Finkenstedt A, Bantel H, Weiss TS, Huber M, Starlinger P, Gruenberger T, Reiberger T, Sebens S, McIntyre G, Tabibiazar R, Giaccia A, Zoller H, Trauner M, Mikulits W. Gas6 in chronic liver disease-a novel blood-based biomarker for liver fibrosis. Cell Death Discov 2023; 9:282. [PMID: 37532736 PMCID: PMC10397215 DOI: 10.1038/s41420-023-01551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
The expression of the receptor tyrosine kinase Axl and its cleavage product soluble Axl (sAxl) is increased in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). In this multicenter study, we evaluated the diagnostic value of Gas6, the high-affinity ligand of Axl, in patients with chronic liver disease. Levels of sAxl and Gas6, and their albumin (alb) ratios were analyzed in serum samples of patients with biopsy-proven liver fibrosis, end-stage liver disease, HCC, and healthy controls, and were compared to Fibrosis-4 (FIB-4), enhanced liver fibrosis (ELF™) test, Child-Pugh score (CPS), model of end-stage liver disease (MELD) score, hepatic venous pressure gradient, and α-fetoprotein, respectively. A total of 1111 patients (median age 57.8 y, 67.3% male) was analyzed. Gas6/alb showed high diagnostic accuracy for the detection of significant (≥F2: AUC 0.805) to advanced fibrosis (≥F3: AUC 0.818), and was superior to Fib-4 for the detection of cirrhosis (F4: AUC 0.897 vs. 0.878). In addition, Gas6/alb was highly predictive of liver disease severity (Odds ratios for CPS B/C, MELD ≥ 15, and clinically significant portal hypertension (CSPH) were 16.534, 10.258, and 12.115), and was associated with transplant-free survival (Hazard ratio 1.031). Although Gas6 and Gas6/alb showed high diagnostic accuracy for the detection of HCC in comparison to chronic liver disease patients without cirrhosis (AUC 0.852, 0.868), they failed to discriminate between HCC in cirrhosis versus cirrhosis only. In conclusion, Gas6/alb shows a high accuracy to detect significant to advanced fibrosis and cirrhosis, and predicts severity of liver disease including CSPH.
Collapse
Affiliation(s)
- Katharina Staufer
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Jasmin Zessner-Spitzenberg
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Finkenstedt
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, Children's University Hospital (KUNO), University of Regensburg Hospital, Regensburg, Germany
| | - Markus Huber
- Department of Anesthesiology and Pain Therapy, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Patrick Starlinger
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Gruenberger
- Clinicum Favoriten, HPB Center, Vienna Health Network and Sigmund Freud Private University, Vienna, Austria
| | - Thomas Reiberger
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | | | | | | | - Heinz Zoller
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Vago JP, Valdrighi N, Blaney-Davidson EN, Hornikx DLAH, Neefjes M, Barba-Sarasua ME, Thielen NGM, van den Bosch MHJ, van der Kraan PM, Koenders MI, Amaral FA, van de Loo FAJ. Gas6/Axl Axis Activation Dampens the Inflammatory Response in Osteoarthritic Fibroblast-like Synoviocytes and Synovial Explants. Pharmaceuticals (Basel) 2023; 16:ph16050703. [PMID: 37242486 DOI: 10.3390/ph16050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1β, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1β in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Natália Valdrighi
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esmeralda N Blaney-Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - María E Barba-Sarasua
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nathalie G M Thielen
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Flávio A Amaral
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Rizzi M, Tonello S, D’Onghia D, Sainaghi PP. Gas6/TAM Axis Involvement in Modulating Inflammation and Fibrosis in COVID-19 Patients. Int J Mol Sci 2023; 24:ijms24020951. [PMID: 36674471 PMCID: PMC9861142 DOI: 10.3390/ijms24020951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Gas6 (growth arrest-specific gene 6) is a widely expressed vitamin K-dependent protein that is involved in many biological processes such as homeostatic regulation, inflammation and repair/fibrotic processes. It is known that it is the main ligand of TAMs, a tyrosine kinase receptor family of three members, namely MerTK, Tyro-3 and Axl, for which it displays the highest affinity. Gas6/TAM axis activation is known to be involved in modulating inflammatory responses as well as fibrotic evolution in many different pathological conditions. Due to the rapidly evolving COVID-19 pandemic, this review will focus on Gas6/TAM axis activation in SARS-CoV-2 infection, where de-regulated inflammatory responses and fibrosis represent a relevant feature of severe disease manifestation. Furthermore, this review will highlight the most recent scientific evidence supporting an unsuspected role of Axl as a SARS-CoV-2 infection driver, and the potential therapeutic advantages of the use of existing Axl inhibitors in COVID-19 management. From a physiological point of view, the Gas6/TAM axis plays a dual role, fostering the tissue repair processes or leading to organ damage and loss of function, depending on the prevalence of its anti-inflammatory or profibrotic properties. This review makes a strong case for further research focusing on the Gas6/TAM axis as a pharmacological target to manage different disease conditions, such as chronic fibrosis or COVID-19.
Collapse
|
8
|
Wang J, Qin T, Sun J, Li S, Cao L, Lu X. Non-invasive methods to evaluate liver fibrosis in patients with non-alcoholic fatty liver disease. Front Physiol 2022; 13:1046497. [PMID: 36589424 PMCID: PMC9794751 DOI: 10.3389/fphys.2022.1046497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is a chronic liver disease that is strongly related to insulin resistance and metabolic syndrome, and it has become the most common liver disorder in developed countries. NAFLD embraces the full pathological process of three conditions: steatosis, non-alcoholic steatohepatitis, and finally, cirrhosis. As NAFLD progresses, symptoms will become increasingly severe as fibrosis develops. Therefore, evaluating the fibrosis stage is crucial for patients with NAFLD. A liver biopsy is currently considered the gold standard for staging fibrosis. However, due to the limitations of liver biopsy, non-invasive alternatives were extensively studied and validated in patients with NAFLD. The advantages of non-invasive methods include their high safety and convenience compared with other invasive approaches. This review introduces the non-invasive methods, summarizes their benefits and limitations, and assesses their diagnostic performance for NAFLD-induced fibrosis.
Collapse
Affiliation(s)
- Jincheng Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Qin
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiwu Li
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, China
| | - Lihua Cao
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, China,*Correspondence: Xiaojie Lu, ; Lihua Cao,
| | - Xiaojie Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Xiaojie Lu, ; Lihua Cao,
| |
Collapse
|
9
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
10
|
Wang Z, Liu D, Yan Q, Liu F, Zhan M, Qi S, Fang Q, Yao L, Wang W, Zhang R, Du J, Chen L. Activated AXL Protects Against Hepatic Ischemia-reperfusion Injury by Upregulating SOCS-1 Expression. Transplantation 2022; 106:1351-1364. [PMID: 35546091 PMCID: PMC9213082 DOI: 10.1097/tp.0000000000004156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is the main factor affecting the morbidity and mortality associated with perioperative complications of liver transplantation and major hepatectomy. AXL is a member of the TYRO3, AXL, MERTK family and is involved in immune and apoptosis processes in multiple organs. However, the role of AXL in hepatic I/R injury remains to be elucidated. METHODS Mice pretreated with rmGas6 or R428 and mice tail vein injected with adeno-associated virus knockdown suppressor of cytokine signaling protein-1 (SOCS-1) underwent liver I/R surgery to detect the function of activated AXL in vivo. Primary hepatocytes undergo hypoxic reoxygenation injury in vitro. RESULTS AXL expression was significantly upregulated, and phosphorylated-AXL was substantially downregulated in liver transplantation patients and hepatic I/R surgery mice. A mouse model of hepatic I/R injury showed that AXL activation reduced liver inflammation and liver cells apoptosis. The inhibition of AXL activation (AXL-specific inhibitor R428) aggravated hepatic I/R injury, resulted in larger areas of liver injury, aggravated inflammatory response, and increased apoptosis of liver cells. In addition, activated AXL promotes the expression level of SOCS-1 and inhibits toll-like receptor 4 and its downstream signaling pathways. Finally, SOCS-1 was knocked down with an adeno-associated virus, and activated AXL failed to protect against hepatic I/R injury. CONCLUSIONS AXL activation protects the liver from I/R injury by upregulating SOCS-1 and inhibiting the toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa-B signaling axis. Targeting AXL may be a new therapeutic option for ameliorating hepatic I/R injury.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shunli Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weizhi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Infectious Disease Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
van Aalen EA, Wouters SFA, Verzijl D, Merkx M. Bioluminescent RAPPID Sensors for the Single-Step Detection of Soluble Axl and Multiplex Analysis of Cell Surface Cancer Biomarkers. Anal Chem 2022; 94:6548-6556. [PMID: 35438976 PMCID: PMC9069438 DOI: 10.1021/acs.analchem.2c00297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Early diagnosis of
cancer is essential for the efficacy of treatment.
Our group recently developed RAPPID, a bioluminescent immunoassay
platform capable of measuring a wide panel of biomarkers directly
in solution. Here, we developed and systematically screened different
RAPPID sensors for sensitive detection of the soluble fraction of
Axl (sAxl), a cell surface receptor that is overexpressed in several
types of cancer. The best-performing RAPPID sensor, with a limit of
detection of 8 pM and a >9-fold maximal change in
emission
ratio, was applied to measure Axl in three different contexts: clinically
relevant sAxl levels (∼0.5 and ∼1 nM) in diluted blood
plasma, proteolytically cleaved Axl in the cell culture medium of
A431 and HeLa cancer cells, and Axl on the membrane of A431 cells.
We further extended the sensor toolbox by developing dual-color RAPPID
for simultaneous detection of Axl and EGFR on A431 and HeLa cells,
as well as an AND-gate RAPPID that measures the concurrent presence
of these two cell surface receptors on the same cell. These new RAPPID
sensors provide attractive alternatives for more laborious protein
detection and quantification methods such as FACS and immunostainings,
due to their simple practical implantation and low intrinsic background
signal.
Collapse
Affiliation(s)
- Eva A van Aalen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F A Wouters
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Ortmayr G, Brunnthaler L, Pereyra D, Huber H, Santol J, Rumpf B, Najarnia S, Smoot R, Ammon D, Sorz T, Fritsch F, Schodl M, Voill-Glaninger A, Weitmayr B, Födinger M, Klimpfinger M, Gruenberger T, Assinger A, Mikulits W, Starlinger P. Immunological Aspects of AXL/GAS-6 in the Context of Human Liver Regeneration. Hepatol Commun 2022; 6:576-592. [PMID: 34951136 PMCID: PMC8870037 DOI: 10.1002/hep4.1832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.
Collapse
Affiliation(s)
- Gregor Ortmayr
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Laura Brunnthaler
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - David Pereyra
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Heidemarie Huber
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Jonas Santol
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Benedikt Rumpf
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Sina Najarnia
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Rory Smoot
- Department of SurgeryMayo ClinicRochesterMNUSA
| | - Daphni Ammon
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Thomas Sorz
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Fabian Fritsch
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Michael Schodl
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Astrid Voill-Glaninger
- Department of Laboratory MedicineViennese Health Network, Clinic LandstraßeViennaAustria
| | - Barbara Weitmayr
- Department of PathologyViennese Health Network, Clinic LandstraßeViennaAustria
| | - Manuela Födinger
- Department of Laboratory MedicineViennese Health NetworkClinic FavoritenViennaAustria
| | - Martin Klimpfinger
- Department of PathologyViennese Health NetworkClinic FavoritenViennaAustria
| | - Thomas Gruenberger
- Department of SurgeryHPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private UniversityViennaAustria
| | - Alice Assinger
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Wolfgang Mikulits
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Patrick Starlinger
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Department of SurgeryMayo ClinicRochesterMNUSA
| |
Collapse
|
13
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
14
|
Abstract
TAM receptors (Tyro3, Axl and MerTK) are a family of tyrosine kinase receptors that are expressed in a variety of cell populations, including liver parenchymal and non-parenchymal cells. These receptors are vital for immune homeostasis, as they regulate the innate immune response by suppressing inflammation via toll-like receptor inhibition and by promoting tissue resolution through efferocytosis. However, there is increasing evidence indicating that aberrant TAM receptor signaling may play a role in pathophysiological processes in the context of liver disease. This review will explore the roles of TAM receptors and their ligands in liver homeostasis as well as a variety of disease settings, including acute liver injury, steatosis, fibrosis, cirrhosis-associated immune dysfunction and hepatocellular carcinoma. A better understanding of our current knowledge of TAM receptors in liver disease may identify new opportunities for disease monitoring as well as novel therapeutic targets. Nonetheless, this review also aims to highlight areas where further research on TAM receptor biology in liver disease is required.
Collapse
|
15
|
Martínez-Bosch N, Cristóbal H, Iglesias M, Gironella M, Barranco L, Visa L, Calafato D, Jiménez-Parrado S, Earl J, Carrato A, Manero-Rupérez N, Moreno M, Morales A, Guerra C, Navarro P, García de Frutos P. Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine 2022; 75:103797. [PMID: 34973624 PMCID: PMC8724936 DOI: 10.1016/j.ebiom.2021.103797] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. Methods AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. Findings AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. Interpretation sAXL appears as a biomarker for early detection of PDAC and PDAC–CP discrimination that could accelerate treatment and improve its dismal prognosis. Funding This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.
Collapse
Affiliation(s)
- Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Autonomous University of Barcelona, Hospital del Mar, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Barcelona, Spain
| | - Meritxell Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Hospital Clínic of Barcelona and IDIBAPS; Barcelona, Spain
| | - Luis Barranco
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
| | - Laura Visa
- Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
| | - Domenico Calafato
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Jiménez-Parrado
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumour Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain. CIBERONC
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumour Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain. CIBERONC
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, CIBEREHD and IDIBAPS, Barcelona, Spain
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain.
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Unidad Asociada IMIM/IIBB-CSIC; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), and IDIBAPS, Barcelona, Spain.
| |
Collapse
|
16
|
AXL Knock-Out in SNU475 Hepatocellular Carcinoma Cells Provides Evidence for Lethal Effect Associated with G2 Arrest and Polyploidization. Int J Mol Sci 2021; 22:ijms222413247. [PMID: 34948046 PMCID: PMC8708332 DOI: 10.3390/ijms222413247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.
Collapse
|
17
|
Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers (Basel) 2021; 13:cancers13215448. [PMID: 34771611 PMCID: PMC8582520 DOI: 10.3390/cancers13215448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tyro3, Axl, and MerTK are receptor tyrosine kinases of the TAM family, which are activated by their ligands Gas6 and Protein S. TAM receptors have large physiological implications, including the removal of dead cells, activation of immune cells, and prevention of bleeding. In the last decade, TAM receptors have been suggested to play a relevant role in liver fibrogenesis and the development of hepatocellular carcinoma. The understanding of TAM receptor functions in tumor cells and their cellular microenvironment is of utmost importance to advances in novel therapeutic strategies that conquer chronic liver disease including hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, showing high mortality of patients due to limited therapeutic options at advanced stages of disease. The receptor tyrosine kinases Tyro3, Axl and MerTK—belonging to the TAM family—exert a large impact on various aspects of cancer biology. Binding of the ligands Gas6 or Protein S activates TAM receptors causing homophilic dimerization and heterophilic interactions with other receptors to modulate effector functions. In this context, TAM receptors are major regulators of anti-inflammatory responses and vessel integrity, including platelet aggregation as well as resistance to chemotherapy. In this review, we discuss the relevance of TAM receptors in the intrinsic control of HCC progression by modulating epithelial cell plasticity and by promoting metastatic traits of neoplastic hepatocytes. Depending on different etiologies of HCC, we further describe the overt role of TAM receptors in the extrinsic control of HCC progression by focusing on immune cell infiltration and fibrogenesis. Additionally, we assess TAM receptor functions in the chemoresistance against clinically used tyrosine kinase inhibitors and immune checkpoint blockade in HCC progression. We finally address the question of whether inhibition of TAM receptors can be envisaged for novel therapeutic strategies in HCC.
Collapse
|
18
|
Zhang Y, Zhang Y, Liang H, Zhuo Z, Fan P, Chen Y, Zhang Z, Zhang W. Serum N-terminal DDR1: A Novel Diagnostic Marker of Liver Fibrosis Severity. J Clin Transl Hepatol 2021; 9:702-710. [PMID: 34722185 PMCID: PMC8516844 DOI: 10.14218/jcth.2021.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS The expression of discoidin domain receptor 1 (DDR1) is commonly up-regulated and undergoes collagen-induced ectodomain (N-terminal) shedding during the progression of liver fibrosis. This study aimed to evaluate the clinical utility of N-terminal DDR1 as a diagnostic biomarker for liver fibrosis. METHODS N-terminal DDR1 shedding was evaluated using cell lines, liver fibrosis mouse models, clinical data of 298 patients collected from February 2019 to June 2020. The clinical data were divided into test and validation cohorts to evaluate the diagnostic performance of serum N-terminal DDR1. RESULTS Time- and dosage-dependent N-terminal DDR1 shedding stimulated by collagen I was observed in a hepatocyte cell line model. The type I collagen deposition and serum N-terminal DDR1 levels concurrently increased in the development of liver fibrosis in mouse models. Clinical data demonstrated a significant diagnostic power of serum N-terminal DDR1 levels as an accurate biomarker of liver fibrosis and cirrhosis. The diagnostic performance was further increased when applying N-DDR1/albumin ratio, achieving area under the curve of 0.790, 0.802, 0.879, and 0.865 for detecting histological fibrosis stages F ≥2, F ≥3, F 4 with liver biopsy as a reference method, and cirrhosis according to imaging techniques, respectively. With a cut-off of 55.6, a sensitivity, specificity, positive predictive value, and negative predictive value of 82.7%,76.6%, 67.4%, and 88.3% were achieved for the detection of cirrhosis. CONCLUSIONS Serum N-terminal DDR1 appears to be a novel diagnostic marker for liver fibrosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeng Zhuo
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pan Fan
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yifa Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Zhanguo Zhang and Wanguang Zhang, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China. Tel: +86-2783665213, Fax: +86-27-83662640, E-mail: (ZZ) and (WZ)
| |
Collapse
|
19
|
Soliman SA, Haque A, Mason S, Greenbaum LA, Hicks MJ, Mohan C, Wenderfer SE. Cross-sectional study of plasma Axl, ferritin, IGFBP4 and sTNFR2 as biomarkers of disease activity in childhood-onset SLE: A study of the Pediatric Nephrology Research Consortium. Lupus 2021; 30:1394-1404. [PMID: 33990158 PMCID: PMC8282643 DOI: 10.1177/09612033211016100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the performance of 4 plasma protein markers for detecting disease activity in childhood-onset systemic lupus erythematosus (SLE) patients. METHODS Eighty-three consecutive pediatric patients fulfilling ≥4 ACR criteria for SLE and twenty-five healthy controls were prospectively recruited for serological testing of 4 protein markers identified by antibody-coated microarray screen, namely Axl, ferritin, IGFBP4 and sTNFR2. SLE disease activity was assessed using SLEDAI-2000 score. Fifty-seven patients had clinically active SLE (SLEDAI score ≥4, or having a flare). RESULTS The plasma concentrations of Axl and ferritin were significantly higher in patients with active SLE than inactive SLE. Plasma Axl levels were significantly higher in active renal versus active non-renal SLE patients. Levels of Axl, ferritin and IGFBP4 correlated significantly with SLEDAI scores. Levels of Axl, IFGBP4 and sTNFR2 inversely correlated with plasma complement C3 levels. Only plasma Axl and ferritin levels correlated with degree of proteinuria. These markers were more specific, but less sensitive, in detecting concurrent SLE activity than elevated anti-dsDNA antibody titer or decreased C3. Ferritin and IGFBP4 levels were more specific for concurrent active lupus nephritis than anti-dsDNA or C3. Plasma ferritin was the best monitor of global SLE activity, followed by C3 then Axl, while both Axl and C3 were best monitors of clinical lupus nephritis activity. CONCLUSION In childhood-onset SLE patients, plasma ferritin and Axl perform better than traditional yardsticks in identifying disease activity, either global or renal. The performance of these plasma markers should be explored further in longitudinal cohorts of SLE patients.
Collapse
Affiliation(s)
- Samar A Soliman
- Department of Biomedical Engineering, University of Houston, Houston TX, USA
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Anam Haque
- Department of Biomedical Engineering, University of Houston, Houston TX, USA
| | - Sherene Mason
- Connecticut Children's Medical Center, Hartford CT, USA
| | | | - M John Hicks
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston TX, USA
| | - Scott E Wenderfer
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Amero P, Lokesh GLR, Chaudhari RR, Cardenas-Zuniga R, Schubert T, Attia YM, Montalvo-Gonzalez E, Elsayed AM, Ivan C, Wang Z, Cristini V, Franciscis VD, Zhang S, Volk DE, Mitra R, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G. Conversion of RNA Aptamer into Modified DNA Aptamers Provides for Prolonged Stability and Enhanced Antitumor Activity. J Am Chem Soc 2021; 143:7655-7670. [PMID: 33988982 DOI: 10.1021/jacs.9b10460] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Rajan R Chaudhari
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Roberto Cardenas-Zuniga
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | - Yasmin M Attia
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt
| | - Efigenia Montalvo-Gonzalez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Integral Laboratory of Food Research, Technological Institute of Tepic, Avenue Tecnologico 2595, 63175 Tepic, Nayarit Mexico
| | - Abdelrahman M Elsayed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11675, Egypt
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Zhihui Wang
- Mathematics in Medicine Program, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas 77030, United States
| | - Vittorio Cristini
- Mathematics in Medicine Program, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas 77030, United States
| | - Vittorio de Franciscis
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy.,National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB)-UOS Milan via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy.,Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Rahul Mitra
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Role of the Gas6/TAM System as a Disease Marker and Potential Drug Target. DISEASE MARKERS 2021; 2021:2854925. [PMID: 33532004 PMCID: PMC7834835 DOI: 10.1155/2021/2854925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
|
22
|
Hayashi M, Abe K, Fujita M, Takahashi A, Hashimoto Y, Ohira H. Serum Gas6 and Axl as non-invasive biomarkers of advanced histological stage in primary biliary cholangitis. Hepatol Res 2020; 50:1337-1346. [PMID: 32885557 DOI: 10.1111/hepr.13568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
AIM Advanced histological stage is an important factor in individual risk stratification in patients with primary biliary cholangitis (PBC). Non-invasive biomarkers for advanced histological stage are needed. We assessed the utility of Gas6 and Axl as biomarkers for advanced histological stage in patients with PBC. METHODS A total of 113 biopsy-proven PBC patients and 20 healthy controls were included in this study. Serum Axl and Gas6 were measured using enzyme-linked immunosorbent assay. The Gas6 / albumin ratio and Axl / albumin ratio were also evaluated as biomarkers of histological stage. RESULTS Serum Axl (42.6 ng/mL vs. 30.6 ng/mL, P < 0.001) and Gas6 (21.1 ng/mL vs. 18.8 ng/mL, P = 0.007) levels in PBC patients were significantly higher than those in healthy controls. The Axl / albumin ratio was 10.4, and the Gas6 / albumin ratio was 7.6 in patients with PBC. Gas6 and Axl were significantly correlated with aspartate aminotransferase, bilirubin, albumin, and platelets. Gas6 and Axl levels in patients with an advanced Scheuer stage and an advanced Nakanuma stage were significantly higher than those in other patients. The area under the receiver operating characteristic curve (AUROC) of Axl, Gas6, Axl / albumin, and Gas6 / albumin for diagnosing Scheuer stage 4 was 0.733, 0.837, 0.845, and 0.893, respectively. The AUROC of Axl, Gas6, Axl / albumin, and Gas6 / albumin for diagnosing Nakanuma stage 4 was 0.794, 0.834, 0.869, and 0.898, respectively. CONCLUSION High levels of Gas6 and Axl were associated with advanced histological stage in PBC patients. Furthermore, the Gas6 / albumin ratio and the Axl / albumin ratio showed a high AUROC for diagnosing advanced histological stage.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
23
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
24
|
Song X, Wu A, Ding Z, Liang S, Zhang C. Soluble Axl Is a Novel Diagnostic Biomarker of Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection. Cancer Res Treat 2020; 52:789-797. [PMID: 32138467 PMCID: PMC7373855 DOI: 10.4143/crt.2019.749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the diagnostic value of soluble Axl (sAxl) in hepatocellular carcinoma (HCC) in comparison with serum α-fetoprotein (AFP). MATERIALS AND METHODS Eighty HCC patients, 80 liver cirrhosis patients (LC), 80 patients with hepatitis B virus (HBV) infection, and 80 healthy controls (HC) were enrolled. sAxl levels were measured by an enzyme-linked immunosorbent assay, serum AFP levelswere measured by an electrochemiluminescence immunoassay. Receiver operating characteristic (ROC) curves were used to evaluate diagnostic performances. RESULTS The results show that levels of sAxl were high expression in patients with HCC (p < 0.05), varied with disease state as follows: HCC > LC > HC > HBV. Logistic regression and ROC curve analysis identified the optimal cut-off for sAxl in differentiating all HCC and non-HCC patients was 1,202 pg/mL (area under the receiver operating characteristic [AUC], 0.888; 95% confidence interval [CI], 0.852 to 0.924) with sensitivity 95.0%, specificity 73.3%. Furthermore, differential diagnosis of early HCC with non-HCC patients for sAxl showed the optimal cut-off was 1,202 pg/mL (AUC, 0.881; 95% CI, 0.831 to 0.931; sensitivity, 94.1%; specificity, 73.3%). Among AFP-negative HCC patients with non-HCC patients, the cut-off was 1,301 pg/mL (AUC, 0.898; 95% CI, 0.854 to 0.942) with a sensitivity of 84.6%, a specificity of 76.3%. The optimal cut-off for sAxl in differentiating all HCC and chronic liver disease patients was 1,243 pg/mL (AUC, 0.840; 95% CI, 0.791 to 0.888) with sensitivity 93.8%, specificity 61.9%. The combination of AFP and sAxl increased diagnostic value for HCC. CONCLUSION sAxl outperforms AFP in detecting HCC, especially in early HCC and in AFP-negative HCC. Combination sAxl with AFP improved the specificity for early HCC diagnosis. In summary, sAxl is a candidate serum marker for diagnosing HCC.
Collapse
Affiliation(s)
- Xiaoting Song
- Guangxi Medical University Cancer Hospital, Nanning, China
- People’s Hospital of Wudi County, Binzhou, China
| | - Ailu Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University Institution, Yantai, China
| | - Zhixiao Ding
- People’s Hospital of Wudi County, Binzhou, China
| | - Shixiong Liang
- Guangxi Medical University Cancer Hospital, Nanning, China
- Co-correspondence: Shixiong Liang, PhD Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China Tel: 86-0771-5335671 Fax: 86-0771-5312000 E-mail:
| | - Chunyan Zhang
- Guangxi Medical University Cancer Hospital, Nanning, China
- Correspondence: Chunyan Zhang, PhD Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China Tel: 86-0771-5776046 Fax: 86-0771-5312000 E-mail:
| |
Collapse
|
25
|
Pham TTT, Ho DT, Nguyen T. Usefulness of Mac-2 binding protein glycosylation isomer in non-invasive probing liver disease in the Vietnamese population. World J Hepatol 2020; 12:220-229. [PMID: 32547689 PMCID: PMC7280857 DOI: 10.4254/wjh.v12.i5.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early diagnosis is critical for successful intervention before liver disease progresses to cirrhosis and hepatocellular carcinoma.
AIM To examine a novel biomarker for probing early liver disease quickly using an automated immunology system.
METHODS This was a cross-sectional study. 140 patients at various stages of liver disease were randomly selected. The cohort consisted of patients who were treatment naïve and currently undergoing therapy. We included patients with diverse liver disease etiologies. Mac-2 binding protein glycosylation isomer (M2BPGi) levels in addition to different clinical parameters, co-morbidities and transient elastography results were collected and compared.
RESULTS M2BPGi levels were significantly correlated with transient elastography for liver fibrosis staging across all disease etiologies. Statistically significant differences were observed in patients with F0-1; F2 and > F3 liver fibrosis. Further examination showed that M2BPGi levels were two-fold higher in F4 than F3 hepatitis C (HCV) patients. M2BPGi was observed to be etiology-specific and HCV patients had higher mean M2BPGi levels. We also observed significant correlations with aspartate aminotransferase to platelet ratio index and fibrosis-4 index as well as HBV DNA levels. Mean M2BPGi levels for HBV patients with a viral load lower than 2000 IU/mL was 1.75-fold lower than those with a viral load greater than 2000 IU/mL.
CONCLUSION M2BPGi was observed to be a good indicator of early liver disease in patients with different etiologies. Our results provide reference cut-offs for different causes of liver disease and demonstrated the utility of this marker for early disease monitoring. This is useful for remote regions in developing countries.
Collapse
Affiliation(s)
| | - Dat Tan Ho
- MEDIC Medical Center, Ho Chi Minh 72517, Vietnam
| | - Toan Nguyen
- MEDIC Medical Center, Ho Chi Minh 72517, Vietnam
| |
Collapse
|
26
|
Usefulness of Mac-2 binding protein glycosylation isomer in non-invasive probing liver disease in the Vietnamese population. World J Hepatol 2020. [DOI: 10.4254/wjh.v12.i5.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Brenig R, Pop OT, Triantafyllou E, Geng A, Singanayagam A, Perez-Shibayama C, Besse L, Cupovic J, Künzler P, Boldanova T, Brand S, Semela D, Duong FHT, Weston CJ, Ludewig B, Heim MH, Wendon J, Antoniades CG, Bernsmeier C. Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis. Life Sci Alliance 2019; 3:3/1/e201900465. [PMID: 31822557 PMCID: PMC6907389 DOI: 10.26508/lsa.201900465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/07/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Infectious complications in patients with cirrhosis frequently initiate episodes of decompensation and substantially contribute to the high mortality. Mechanisms of the underlying immuneparesis remain underexplored. TAM receptors (TYRO3/AXL/MERTK) are important inhibitors of innate immune responses. To understand the pathophysiology of immuneparesis in cirrhosis, we detailed TAM receptor expression in relation to monocyte function and disease severity prior to the onset of acute decompensation. TNF-α/IL-6 responses to lipopolysaccharide were attenuated in monocytes from patients with cirrhosis (n = 96) compared with controls (n = 27) and decreased in parallel with disease severity. Concurrently, an AXL-expressing (AXL+) monocyte population expanded. AXL+ cells (CD14+CD16highHLA-DRhigh) were characterised by attenuated TNF-α/IL-6 responses and T cell activation but enhanced efferocytosis and preserved phagocytosis of Escherichia coli Their expansion correlated with disease severity, complications, infection, and 1-yr mortality. AXL+ monocytes were generated in response to microbial products and efferocytosis in vitro. AXL kinase inhibition and down-regulation reversed attenuated monocyte inflammatory responses in cirrhosis ex vivo. AXL may thus serve as prognostic marker and deserves evaluation as immunotherapeutic target in cirrhosis.
Collapse
Affiliation(s)
- Robert Brenig
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland,Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Oltin T Pop
- Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland,Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Evangelos Triantafyllou
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Hepatology Department, St. Mary’s Hospital, Imperial College London, London, UK
| | - Anne Geng
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Arjuna Singanayagam
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Hepatology Department, St. Mary’s Hospital, Imperial College London, London, UK
| | - Christian Perez-Shibayama
- Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland,Institute of Immunobiology, Medical Research Centre, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Haematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Medical Research Centre, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Patrizia Künzler
- Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tuyana Boldanova
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Stephan Brand
- Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - David Semela
- Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - François HT Duong
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christopher J Weston
- Centre for Liver Research and National Institute for Health Research, Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Centre, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Julia Wendon
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Charalambos G Antoniades
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Hepatology Department, St. Mary’s Hospital, Imperial College London, London, UK
| | - Christine Bernsmeier
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland,Medical Research Centre and Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland,Correspondence:
| |
Collapse
|
28
|
Horst AK, Tiegs G, Diehl L. Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Front Immunol 2019; 10:2670. [PMID: 31798592 PMCID: PMC6868070 DOI: 10.3389/fimmu.2019.02670] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
The clearance of apoptotic cells is pivotal for both maintaining tissue homeostasis and returning to homeostasis after tissue injury as part of the regenerative resolution response. The liver is known for its capacity to remove aged and damaged cells from the circulation and can serve as a graveyard for effector T cells. In particular Kupffer cells are active phagocytic cells, but during hepatic inflammatory responses incoming neutrophils and monocytes may contribute to pro-inflammatory damage. To stimulate resolution of such inflammation, myeloid cell function can change, via sensing of environmental changes in the inflammatory milieu. Also, the removal of apoptotic cells via efferocytosis and the signaling pathways that are activated in macrophages/phagocytes upon their engulfment of apoptotic cells are important for a return to tissue homeostasis. Here, we will discuss, how efferocytosis mechanisms in hepatic macrophages/phagocytes may regulate tissue homeostasis and be involved in tissue regeneration in liver disease.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Diehl
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Tutusaus A, de Gregorio E, Cucarull B, Cristóbal H, Aresté C, Graupera I, Coll M, Colell A, Gausdal G, Lorens JB, García de Frutos P, Morales A, Marí M. A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cell Mol Gastroenterol Hepatol 2019; 9:349-368. [PMID: 31689560 PMCID: PMC7013198 DOI: 10.1016/j.jcmgh.2019.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS GAS6 signaling, through the TAM receptor tyrosine kinases AXL and MERTK, participates in chronic liver pathologies. Here, we addressed GAS6/TAM involvement in Non-Alcoholic SteatoHepatitis (NASH) development. METHODS GAS6/TAM signaling was analyzed in cultured primary hepatocytes, hepatic stellate cells (HSC) and Kupffer cells (KCs). Axl-/-, Mertk-/- and wild-type C57BL/6 mice were fed with Chow, High Fat Choline-Deficient Methionine-Restricted (HFD) or methionine-choline-deficient (MCD) diet. HSC activation, liver inflammation and cytokine/chemokine production were measured by qPCR, mRNA Array analysis, western blotting and ELISA. GAS6, soluble AXL (sAXL) and MERTK (sMERTK) levels were analyzed in control individuals, steatotic and NASH patients. RESULTS In primary mouse cultures, GAS6 or MERTK activation protected primary hepatocytes against lipid toxicity via AKT/STAT-3 signaling, while bemcentinib (small molecule AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in primary HSCs and cytokine production in LPS-treated KCs. Accordingly; bemcentinib diminished liver inflammation and fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and ADAM10/ADAM17 metalloproteinases increased sAXL in HFD-fed mice. Transcriptome profiling revealed major reduction in fibrotic- and inflammatory-related genes in HFD-fed mice after bemcentinib administration. HFD-fed Mertk-/- mice exhibited enhanced NASH, while Axl-/- mice were partially protected. In human serum, sAXL levels augmented even at initial stages, whereas GAS6 and sMERTK increased only in cirrhotic NASH patients. In agreement, sAXL increased in HFD-fed mice before fibrosis establishment, while bemcentinib prevented liver fibrosis/inflammation in early NASH. CONCLUSION AXL signaling, increased in NASH patients, promotes fibrosis in HSCs and inflammation in KCs, while GAS6 protects cultured hepatocytes against lipotoxicity via MERTK. Bemcentinib, by blocking AXL signaling and increasing GAS6 levels, reduces experimental NASH, revealing AXL as an effective therapeutic target for clinical practice.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Cristina Aresté
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Mar Coll
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | | | - James B. Lorens
- BerGenBio AS, Bergen, Norway,Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| |
Collapse
|
30
|
Gas6/TAM System: A Key Modulator of the Interplay between Inflammation and Fibrosis. Int J Mol Sci 2019; 20:ijms20205070. [PMID: 31614787 PMCID: PMC6834320 DOI: 10.3390/ijms20205070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the result of an overly abundant deposition of extracellular matrix (ECM) due to the fact of repetitive tissue injuries and/or dysregulation of the repair process. Fibrogenesis is a pathogenetic phenomenon which is involved in different chronic human diseases, accounting for a high burden of morbidity and mortality. Despite being triggered by different causative factors, fibrogenesis follows common pathways, the knowledge of which is, however, still unsatisfactory. This represents a significant limit for the development of effective antifibrotic drugs. In the present paper, we aimed to review the current evidence regarding the potential role played in fibrogenesis by growth arrest-specific 6 (Gas6) and its receptors Tyro3 protein tyrosine kinase (Tyro3), Axl receptor tyrosine kinase (Axl), and Mer tyrosine kinase protooncogene (MerTK) (TAM). Moreover, we aimed to review data about the pathogenetic role of this system in the development of different human diseases characterized by fibrosis. Finally, we aimed to explore the potential implications of these findings in diagnosis and treatment.
Collapse
|
31
|
Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis. DISEASE MARKERS 2019; 2019:2304931. [PMID: 31583026 PMCID: PMC6754881 DOI: 10.1155/2019/2304931] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Liver fibrosis consists in the accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells. This is commonly the result of chronic liver injury repair and represents an important health concern. As liver biopsy is burdened with many drawbacks, not surprisingly there is great interest to find new reliable noninvasive methods. Among the many are new potential fibrosis biomarkers under study, some of the most promising represented by the growth arrest-specific gene 6 (Gas6) serum protein and its family of tyrosine kinase receptors, namely, Tyro3, Axl, and MERTK (TAM). Gas6/TAM system (mainly, Axl and MERTK) has in fact recently emerged as an important player in the progression of liver fibrosis. This review is aimed at giving an overall perspective of the roles played by these molecules in major chronic liver diseases. The most promising findings up to date acknowledge that both Gas6 and its receptor serum levels (such as sAxl and, probably, sMERTK) have been shown to potentially allow for easy and accurate measurement of hepatic fibrosis progression, also providing indicative parameters of hepatic dysfunction. Although most of the current scientific evidence is still preliminary and there are no in vivo validation studies on large patient series, it still looks very promising to imagine a possible future prognostic role for these biomarkers in the multidimensional assessment of a liver patient. One may also speculate on a potential role for this system targeting (e.g., with small molecule inhibitors against Axl) as a therapeutic strategy for liver fibrosis management, always bearing in mind that any such therapeutic approach might face toxicity.
Collapse
|
32
|
Nonagase Y, Takeda M, Azuma K, Hayashi H, Haratani K, Tanaka K, Yonesaka K, Ishii H, Hoshino T, Nakagawa K. Tumor tissue and plasma levels of AXL and GAS6 before and after tyrosine kinase inhibitor treatment in EGFR-mutated non-small cell lung cancer. Thorac Cancer 2019; 10:1928-1935. [PMID: 31419057 PMCID: PMC6775020 DOI: 10.1111/1759-7714.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) positive for activating mutations of the epidermal growth factor receptor (EGFR) gene is initially sensitive to EGFR‐tyrosine kinase inhibitors (TKIs) but eventually develops resistance to these drugs. Upregulation of the receptor tyrosine kinase AXL in tumor tissue has been detected in about one‐fifth of NSCLC patients with acquired resistance to EGFR‐TKIs. However, the clinical relevance of the levels of AXL and its ligand GAS6 in plasma remains unknown. Methods Tumor tissue and plasma specimens were collected from 25 EGFR‐mutated NSCLC patients before EGFR‐TKI treatment or after treatment failure. The levels of AXL and of GAS6 mRNA in tumor tissue were evaluated by immunohistochemistry and chromogenic in situ hybridization, respectively. The plasma concentrations of AXL and GAS6 were measured with enzyme‐linked immunosorbent assays. Results AXL expression was detected in three of 12 (25%) and nine of 19 (47%) tumor specimens obtained before and after EGFR‐TKI treatment, respectively. All tumor specimens assayed were positive for GAS6 mRNA. The median values for the plasma AXL concentration before and after EGFR TKI treatment were 1 635 and 1 460 pg/mL, respectively, and those for the plasma GAS6 concentration were 4 615 and 6 390 pg./mL, respectively. There was no significant correlation between the plasma levels of AXL or GAS6 and the corresponding expression levels in tumor tissue. Conclusion Plasma concentrations of AXL and GAS6 do not reflect tumor expression levels, and their measurement is thus not a viable alternative to direct analysis of tumor tissue in EGFR‐mutated NSCLC.
Collapse
Affiliation(s)
- Yoshikane Nonagase
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidenobu Ishii
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
33
|
Gas6/TAM Axis in Sepsis: Time to Consider Its Potential Role as a Therapeutic Target. DISEASE MARKERS 2019; 2019:6156493. [PMID: 31485279 PMCID: PMC6710761 DOI: 10.1155/2019/6156493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase receptors are transmembrane proteins involved in cell signaling and interaction. Among them, the TAM family (composed by Tyro 3, Axl, and Mer) represents a peculiar subgroup with an important role in many physiological and pathological conditions. Despite different mechanisms of activation (e.g., protein S and Galactin-3), TAM action is tightly related to their common ligand, a protein named growth arrest-specific 6 (Gas6). Since the expression of both TAM and Gas6 is widely distributed among tissues, any alteration of one of these components can lead to different pathological conditions. Moreover, as they are indispensable for homeostasis maintenance, in recent years a growing interest has emerged regarding their role in the regulation of the inflammatory process. Due to this involvement, many authors have demonstrated the pivotal role of the Gas6/TAM axis in both sepsis and the sepsis-related inflammatory responses. In this narrative review, we highlight the current knowledge as well as the last discoveries on TAM and Gas6 implication in different clinical conditions, notably in sepsis and septic shock. Lastly, we underline not only the feasible use of Gas6 as a diagnostic and prognostic biomarker in certain systemic acute conditions but also its potential therapeutic role in these life-threatening diseases.
Collapse
|
34
|
Staufer K, Halilbasic E, Spindelboeck W, Eilenberg M, Prager G, Stadlbauer V, Posch A, Munda P, Marculescu R, Obermayer-Pietsch B, Stift J, Lackner C, Trauner M, Stauber RE. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United European Gastroenterol J 2019; 7:1113-1123. [PMID: 31662868 DOI: 10.1177/2050640619865133] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background In nonalcoholic fatty liver disease (NAFLD), advanced fibrosis has been identified as an important prognostic factor with increased liver-related mortality and treatment need. Due to the high prevalence of NAFLD, noninvasive risk stratification is needed to select patients for liver biopsy and treatment. Objective To compare the diagnostic accuracy of several widely available noninvasive tests for assessment of fibrosis among patients with NAFLD with or without nonalcoholic steatohepatitis (NASH). Methods We enrolled consecutive patients with NAFLD admitted to two Austrian referral centers who underwent liver biopsy. Liver stiffness measurement (LSM) was obtained by vibration-controlled transient elastography (VCTE, FibroScan) and blood samples were collected for determination of enhanced liver fibrosis (ELF) test, FibroMeterV2G, FibroMeterV3G, NAFLD fibrosis score (NFS), and fibrosis-4 index (FIB-4). Results Our study cohort contained 186 patients with histologically confirmed NAFLD. On liver histology, NASH was present in 92 patients (50%), significant fibrosis (F ≥ 2) in 71 patients (38%), advanced fibrosis (F ≥ 3) in 49 patients (26%), and F ≥ 3 plus NASH in 35 patients (19%). For diagnosis of F ≥ 2, F ≥ 3, and F ≥ 3 plus NASH, respectively, receiver operating characteristic (ROC) analysis revealed superior diagnostic accuracy of ELF score (area under ROC curve (AUROC) 0.85, 0.90, 0.90), FibroMeterV2G (AUROC 0.86, 0.88, 0.89), FibroMeterV3G (AUROC 0.84, 0.88, 0.88), and LSM per protocol (AUROC 0.87, 0.95, 0.91) versus FIB-4 (AUROC 0.80, 0.82, 0.81) or NFS (AUROC 0.78, 0.80, 0.79). Conclusion Proprietary fibrosis panels and VCTE show superior diagnostic accuracy for noninvasive diagnosis of fibrosis stage in NAFLD as compared to FIB-4 and NFS.
Collapse
Affiliation(s)
- Katharina Staufer
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - Emina Halilbasic
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerhard Prager
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Posch
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Petra Munda
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rudolf E Stauber
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Axl expression is increased in early stages of left ventricular remodeling in an animal model with pressure-overload. PLoS One 2019; 14:e0217926. [PMID: 31181097 PMCID: PMC6557565 DOI: 10.1371/journal.pone.0217926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
Background AXL is a receptor tyrosine kinase that has been related to kidney and vascular disorders. Heart failure patients with reduced ejection fraction have higher AXL in serum than controls. No information about Axl expression with HF progression is available. Methods Thoracic transverse aortic constriction (TAC) was successfully performed on male Wistar rats (n = 25) with different constriction levels. Controls underwent sham surgery (n = 12). Echocardiography measurements were performed 4–8 weeks after surgery. Collagen deposition was measured with picrosirius red staining. Axl mRNA levels in left ventricle (LV), left kidney (LK) and ascending aorta (aAo) and the LV expression of cardiac remodeling and fibrogenic factors were quantified with real-time PCR. AXL LV protein levels were quantified with western blot and localization was analyzed by immunohistochemistry. Soluble AXL levels in plasma were assayed with ELISA. Results Successful TAC rats were classified into LV hypertrophy (LVH) or heart failure (HF), modeling the progressive cardiac changes after pressure overload. Collagen deposition was increased only in the HF group. LV Axl mRNA levels were higher in LVH and HF than in Sham rats, and correlated with LVHi, and hypertrophic and fibrogenic mediators. However, no association was found with LV systolic function. AXL was expressed in LV myocytes and other cell types. Concentration of circulating sAXL in plasma was increased in the LVH group compared to Sham and HF rats. Axl mRNA levels were similar in all groups in the LK and aAo. Conclusions Axl expression pattern suggests a role in the early progression of LV remodeling in HF but not in the later systolic dysfunction. The higher levels of circulating AXL found in HF patients most probably shed from the heart.
Collapse
|
36
|
Lowrey CR, Bourke TC, Bagg SD, Dukelow SP, Scott SH. A postural unloading task to assess fast corrective responses in the upper limb following stroke. J Neuroeng Rehabil 2019; 16:16. [PMID: 30691482 PMCID: PMC6350318 DOI: 10.1186/s12984-019-0483-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Background Robotic technologies to measure human behavior are emerging as a new approach to assess brain function. Recently, we developed a robot-based postural Load Task to assess corrective responses to mechanical disturbances to the arm and found impairments in many participants with stroke compared to a healthy cohort (Bourke et al, J NeuroEngineering Rehabil 12: 7, 2015). However, a striking feature was the large range and skewed distribution of healthy performance. This likely reflects the use of different strategies across the healthy control sample, making it difficult to identify impairments. Here, we developed an intuitive “Unload Task”. We hypothesized this task would reduce healthy performance variability and improve the detection of impairment following stroke. Methods Performance on the Load and Unload Task in the KINARM exoskeleton robot was directly compared for healthy control (n = 107) and stroke (n = 31) participants. The goal was to keep a cursor representing the hand inside a virtual target and return “quickly and accurately” if the robot applied (or removed) an unexpected load to the arm (0.5–1.5 Nm). Several kinematic parameters quantified performance. Impairment was defined as performance outside the 95% of controls (corrected for age, sex and handedness). Task Scores were calculated using standardized parameter scores reflecting overall task performance. Results The distribution of healthy control performance was smaller and less skewed for the Unload Task compared to the Load Task. Fewer task outliers (outside 99.9 percentile for controls) were removed from the Unload Task (3.7%) compared to the Load Task (7.4%) when developing normative models of performance. Critically, more participants with stroke failed the Unload Task based on Task Score with their affected arm (68%) compared to the Load Task (23%). More impairments were found at the parameter level for the Unload (median = 52%) compared to Load Task (median = 29%). Conclusions The Unload Task provides an improved approach to assess fast corrective responses of the arm. We found that corrective responses are impaired in persons living with stroke, often equally in both arms. Impairments in generating rapid motor corrections may place individuals at greater risk of falls when they move and interact in the environment.
Collapse
Affiliation(s)
- Catherine R Lowrey
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Teige C Bourke
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Present Address: Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephen D Bagg
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Medicine, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen H Scott
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Du W, Brekken RA. Does Axl have potential as a therapeutic target in pancreatic cancer? Expert Opin Ther Targets 2018; 22:955-966. [PMID: 30244621 PMCID: PMC6292430 DOI: 10.1080/14728222.2018.1527315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is a leading cause of cancer-related death. Metastasis, therapy resistance, and immunosuppression are dominant characteristics of pancreatic tumors. Strategies that enhance the efficacy of standard of care and/or immune therapy are likely the most efficient route to improve overall survival in this disease. Areas covered: Axl, a member of the TAM (Tyro3, Axl, MerTK) family of receptor tyrosine kinases, is involved in cell plasticity, chemoresistance, immune suppression, and metastasis in various cancers, including pancreatic cancer. This review provides an overview of Axl and its function in normal conditions, summarizes the regulation and function of Axl in cancer, and highlights the contribution of Axl to pancreatic cancer as well as its potential as a therapeutic target. Expert opinion: Axl is an attractive therapeutic target in pancreatic cancer because it contributes to many of the roadblocks that hamper therapeutic efficacy. Clinical evidence supporting Axl inhibition in pancreatic cancer is currently limited; however, multiple clinical trials have been initiated or are in the planning phase to test the effect of inhibiting Axl in conjunction with standard therapy in pancreatic cancer patients. We anticipate that these studies will provide robust validation of Axl as a therapeutic target in pancreatic cancer.
Collapse
|