1
|
Peng J, Zhu H, Ruan B, Duan Z, Cao M. miR-155 promotes m6A modification of SOX2 mRNA through targeted regulation of HIF-1α and delays wound healing in diabetic foot ulcer in vitro models. J Diabetes Investig 2024. [PMID: 39509294 DOI: 10.1111/jdi.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Diabetic foot ulcers (DFU) are one of the most destructive complications of diabetes mellitus. The aim of this study was to link miR-155 and SOX2 with DFU to explore the regulation of wound healing by DFU and its potential mechanism. METHODS Human keratinocytes (HaCaT) were induced with advanced glycation end products (AGEs) to construct DFU models in vitro. AGE-induced HaCaT cells were subjected to CCK-8 assays, flow cytometry, and wound healing assays to evaluate cell proliferation, apoptosis, and migration capacity, respectively. RT-qPCR and Western blotting were used to determine gene and protein expression levels, respectively. N6-methyladenosine (M6A) levels in total RNA were assessed using an M6A methylation quantification kit. RESULTS Our results suggested that the inhibition of miR-155 promoted wound healing in an in vitro DFU model, while the knockdown of HIF-1α reversed this process, and that HIF-1α was a target protein of miR-155. In addition, knockdown of HIF-1α promoted the m6A level of SOX2 mRNA, inhibited the expression of SOX2, and inhibited the activation of the EGFR/MEK/ERK signaling pathway, thus inhibiting the proliferation and migration of HaCaT cells and promoting the apoptosis of HaCaT cells, while overexpression of SOX2 reversed this effect. We also found that METTL3 knockdown had the opposite effect of HIF-1α knockdown. CONCLUSIONS Inhibition of miR-155 promoted the expression of HIF-1α and attenuated the m6A modification of SOX2 mRNA, thereby promoting the expression of SOX2 and activating the downstream EGFR/MEK/ERK signaling pathway to promote wound healing in an in vitro DFU model.
Collapse
Affiliation(s)
- Jiarui Peng
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhu
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Bin Ruan
- Department of Occupational Disease, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhisheng Duan
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Mei Cao
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
2
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
3
|
Mahdinia E, Rostami R, Rezaei A, Ghaderi P, Yarahmadi S, Fallah S. Evaluation of autophagy related ATG4B gene, protein and miR-655-3p expression levels in endometrial cancer and hyperplasia. J Gynecol Oncol 2024; 36:36.e33. [PMID: 39302146 DOI: 10.3802/jgo.2025.36.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE The pathogenesis of endometrial cancer (EC) and hyperplasia is complex and poorly understood. Autophagy has emerged as a crucial aspect of this process. METHODS This study examines the role of autophagy in the pathogenesis of EC and hyperplasia by investigating the expression of the autophagy-related 4B cysteine peptidase (ATG4B) gene, protein, and miR-665-3p levels in patients compared to a control group. This cross-sectional case control study analyzed 90 endometrial tissues, including 30 tumors, 30 normal controls, and 30 hyperplasia, using quantitative reverse transcription polymerase chain reaction and Western blot to assess ATG4B gene and protein levels. RESULTS Higher ATG4B gene expression levels were found in the endometrial tissue of EC patients than in hyperplasia patients and controls. Furthermore, protein levels of ATG4B were also higher in EC and hyperplasia patients than in controls. ATG4B gene expression and protein levels were positively correlated in EC patients. However, in EC patients, miR-655-3p showed a significant negative correlation with the ATG4B gene and protein levels. CONCLUSION ATG4B gene and protein expression is elevated in EC tissue, suggesting their role as a tumor promoter. Evaluating their levels could serve as markers for monitoring EC progression and prognosis.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahim Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Ghaderi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
5
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2024. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Karamali N, Daraei A, Rostamlou A, Mahdavi R, Akbari Jonoush Z, Ghadiri N, Mahmoudi Z, Mardi A, Javidan M, Sohrabi S, Baradaran B. Decoding contextual crosstalk: revealing distinct interactions between non-coding RNAs and unfolded protein response in breast cancer. Cancer Cell Int 2024; 24:104. [PMID: 38468244 PMCID: PMC10926595 DOI: 10.1186/s12935-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is significantly influenced by endoplasmic reticulum (ER) stress, impacting both its initiation and progression. When cells experience an accumulation of misfolded or unfolded proteins, they activate the unfolded protein response (UPR) to restore cellular balance. In breast cancer, the UPR is frequently triggered due to challenging conditions within tumors. The UPR has a dual impact on breast cancer. On one hand, it can contribute to tumor growth by enhancing cell survival and resistance to programmed cell death in unfavorable environments. On the other hand, prolonged and severe ER stress can trigger cell death mechanisms, limiting tumor progression. Furthermore, ER stress has been linked to the regulation of non-coding RNAs (ncRNAs) in breast cancer cells. These ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play essential roles in cancer development by influencing gene expression and cellular processes. An improved understanding of how ER stress and ncRNAs interact in breast cancer can potentially lead to new treatment approaches. Modifying specific ncRNAs involved in the ER stress response might interfere with cancer cell survival and induce cell death. Additionally, focusing on UPR-associated proteins that interact with ncRNAs could offer novel therapeutic possibilities. Therefore, this review provides a concise overview of the interconnection between ER stress and ncRNAs in breast cancer, elucidating the nuanced effects of the UPR on cell fate and emphasizing the regulatory roles of ncRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Negin Karamali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arshia Daraei
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arman Rostamlou
- Department of Medical Biology, School of Medicine, University of EGE, Bornova, Izmir, Turkey
| | - Roya Mahdavi
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Akbari Jonoush
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nooshin Ghadiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mahmoudi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Javidan
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Sohrabi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Yuan Y, Deng S, Yang J, Shou Z, Wei C, Zhang L, Zhu F, Gao F, Liu X, Liu Y, Chen Q, Fan H. Antagomir of miR-31-5p modulates macrophage polarization via the AMPK/SIRT1/NLRP3 signaling pathway to protect against DSS-induced colitis in mice. Aging (Albany NY) 2024; 16:5336-5353. [PMID: 38466649 PMCID: PMC11006482 DOI: 10.18632/aging.205651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
10
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
11
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
12
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
13
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
14
|
Alfaifi J, Germain A, Heba AC, Arnone D, Gailly L, Ndiaye NC, Viennois E, Caron B, Peyrin-Biroulet L, Dreumont N. Deep Dive Into MicroRNAs in Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:986-999. [PMID: 36545755 DOI: 10.1093/ibd/izac250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is thought to develop in genetically predisposed individuals as a consequence of complex interactions between dysregulated inflammatory stimuli, immunological responses, and environmental factors. The pathogenesis of IBD has yet to be fully understood. The global increase in the incidence of IBD suggests a gap in the current understanding of the disease. The development of a new diagnostic tool for inflammatory bowel disease that is both less invasive and more cost-effective would allow for better management of this condition. MicroRNAs (miRNAs) are a class of noncoding RNAs with important roles as posttranscriptional regulators of gene expression, which has led to new insights into understanding IBD. Using techniques such as microarrays and real-time polymerase chain reactions, researchers have investigated the patterns in which patients with Crohn's disease and ulcerative colitis show alterations in the expression of miRNA in tissue, blood, and feces. These miRNAs are found to be differentially expressed in IBD and implicated in its pathogenesis through alterations in autophagy, intestinal barrier, and immune homeostasis. In this review, we discuss the miRNA expression profiles associated with IBD in tissue, peripheral blood, and feces and provide an overview of the miRNA mechanisms involved in IBD.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Adeline Germain
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Djésia Arnone
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Laura Gailly
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Emilie Viennois
- INSERM U1149, Center of Research on Inflammation, Université de Paris, Paris, France
| | - Bénédicte Caron
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Natacha Dreumont
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| |
Collapse
|
15
|
Yang H, Fu L, Li L, Zhang D, Li Q, Zhou P. miR-665 overexpression inhibits the apoptosis of luteal cells in small ruminants suppressing HPGDS. Theriogenology 2023; 206:40-48. [PMID: 37178673 DOI: 10.1016/j.theriogenology.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Evidence has shown that microRNA-665 (miR-665) is highly expressed in the mid-luteal phase compared with the early and end-luteal phase of the corpus luteum (CL) life cycle. However, whether miR-665 is a positive regulator of the life span of the CL is still unknown. The objective of this study is to explore the effect of miR-665 on the structural luteolysis in the ovarian CL. In this study, the targeting relationship between miR-665 and hematopoietic prostaglandin synthase (HPGDS) was firstly verified by dual luciferase reporter assay. Then, quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-665 and HPGDS in luteal cells. Following miR-665 overexpression, the apoptosis rate of the luteal cells was determined using flow cytometry; B-cell lymphoma-2 (BCL-2) and caspase-3 mRNA and protein were measured using qRT-PCR and Western blot (WB) analysis. Finally, the DP1 and CRTH2 receptors of PGD2, a synthetic product of HPGDS, were localized using immunofluorescence. Results confirmed that HPGDS was a direct target gene of miR-665, and miR-665 expression was negatively correlated with HPGDS mRNA expression in luteal cells. Meanwhile, after miR-665 was overexpressed, the apoptotic rate of the luteal cells showed a significant decrease (P < 0.05) and this was accompanied by elevated expression levels of anti-apoptotic factor BCL-2 mRNA and protein and decreased expression levels of apoptotic factor caspase-3 mRNA and protein (P < 0.01). Moreover, the immune fluorescence staining results showed that the DP1 receptor was also significantly decreased (P < 0.05), but the CRTH2 receptor was significantly increased (P < 0.05) in luteal cells. Overall, these results indicate that miR-665 reduces the apoptosis of luteal cells via inhibiting caspase-3 expression and promoting BCL-2 expression, and the biological function of miR-665 may be attributed to its target gene HPGDS which regulates the balance of DP1 and CRTH2 receptors expression in luteal cells. As a consequence, this study suggests that miR-665 might be a positive regulator of the life span of the CL rather than destroy the integrity of CL in small ruminants.
Collapse
Affiliation(s)
- Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Licai Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| |
Collapse
|
16
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
17
|
Azizi M, Salehi-Mazandarani S, Nikpour P, Andalib A, Rezaei M. The role of unfolded protein response-associated miRNAs in immunogenic cell death amplification: A literature review and bioinformatics analysis. Life Sci 2023; 314:121341. [PMID: 36586572 DOI: 10.1016/j.lfs.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Immunogenic cell death (ICD) is a type of cellular death that is elicited in response to the specific types of anti-cancer therapies and enhances the anti-tumor immune responses by the combination of antigenicity and adjuvanticity of dying tumor cells. There is a well-established interlink between endoplasmic reticulum stress (ERS) and ICD elicited by anti-cancer therapies. Most recent evidences support that unfolded protein response (UPR)-associated miRNAs can be key players in the ERS-induced ICD. Hence, in the present study, we conducted a literature review on the role of these miRNAs and associated molecular pathways that may regulate ICD. We first collected UPR-associated miRNAs that promote ERS-induced apoptosis and then focused on microRNAs (miRNAs) that promote ERS-induced apoptosis via PERK/eIF2α/ATF4/CHOP pathway activation, as the main core for ICD and release of damage-associated molecular patterns. To better identify PERK/eIF2α/ATF4/CHOP pathway-inducing miRNAs that can be used as potential therapeutic targets for improving ICD in cancer treatment, we did a comprehensive bioinformatics analysis and network construction. Our results showed that "pathways in cancer", "MAPK signaling pathway", "PI3K-Akt signaling pathway", and "Cellular senescence", which correlate with UPR components and ERS induction, were among the significant signaling pathways related to the target genes of these miRNAs. Furthermore, a protein-protein interaction (PPI) network was constructed, which revealed the involvement of the PPI-extracted hub genes in the regulation of proliferation and apoptosis. In conclusion, we propose that these types of miRNAs can be considered as the potential cancer therapy options for better induction of ICD in combination with other ICD inducers.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Kang L, Miao Y, Jin Y, Shen S, Lin X. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immun Inflamm Dis 2023; 11:e743. [PMID: 36705422 PMCID: PMC9761342 DOI: 10.1002/iid3.743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Chronic periodontitis (CP) is an inflammatory periodontal disease with high incidence and complex pathology. This research is aimed to investigate the function of exosomal miR-205-5p (Exo-miR-205-5p) in CP and the underlying molecular mechanisms. METHOD Exo-miR-205-5p was isolated from miR-205-5p mimics-transfected periodontal ligament stem cells (PDLSCs), and subsequently cocultured with lipopolysaccharide (LPS)-induced cells or injected into LPS-treated rats. The mRNA expression of inflammatory factors and Th17/Treg-related factors were measured by quantitative real-time PCR. The contents of inflammatory factors and the percentages of Th17/Treg cells were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively. Besides, the target relation between miR-205-5p and X-box binding protein 1 (XBP1) was explored. RESULTS MiR-205-5p was downregulated in LPS-induced PDLSCs and corresponding exosomes. Exo-miR-205-5p inhibited inflammatory cell infiltration, decreased the production of TNF-α, IL-1β, and IL-6, and decreased the percentage of Th17 cells in LPS-treated rats. In addition, XBP1 was a target of miR-205-5p. Overexpression of XBP1 weakened the effects of Exo-miR-205-5p on inhibiting inflammation and regulating Treg/Th17 balance in LPS-induced cells. CONCLUSIONS Exo-miR-205-5p derived from PDLSCs relieves the inflammation and balances the Th17/Treg cells in CP through targeting XBP1.
Collapse
Affiliation(s)
- Lixun Kang
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Yibin Miao
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Ying Jin
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Siyu Shen
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Xiaoping Lin
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| |
Collapse
|
19
|
Zhang W, Liu L, Xiao X, Zhou H, Peng Z, Wang W, Huang L, Xie Y, Xu H, Tao L, Nie W, Yuan X, Liu F, Yuan Q. Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease. Front Immunol 2023; 14:961642. [PMID: 37026010 PMCID: PMC10070855 DOI: 10.3389/fimmu.2023.961642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Hongshan Zhou
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Fang Liu
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Research Center for Medical Metabolomics, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| |
Collapse
|
20
|
Zhou F, Chen L, Xu S, Si C, Li N, Dong H, Zheng P, Wang W. Upregulation of miR-151-5p promotes the apoptosis of intestinal epithelial cells by targeting brain-derived neurotrophic factor in ulcerative colitis mice. Cell Cycle 2022; 21:2615-2626. [PMID: 35938703 PMCID: PMC9704397 DOI: 10.1080/15384101.2022.2105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
Ulcerative colitis (UC) is the most prevalent form of chronic inflammatory bowel disease, the etiology of which is poorly understood. This study investigated the role of miR-151-5p on UC and explored the role of brain-derived neurotrophic factor (BDNF) in a UC mouse model and cell model. A UC mouse model was engineered by dextran sulfate sodium (DSS) induction. Primary mouse intestinal epithelial cells (IECs) were isolated. Colitis mice were intraperitoneally injected with miR-151-5p antagomir and antagomir negative control, and weight loss, disease activity index, and colon length of mice were measured. Colon tissues of mice were histologically analyzed. A UC cell model was constructed by treating MODE-K cells with DSS. miR-151-5p expression in the cell model was modulated by transfection. The exogenous BDNF effect on the UC cell model and intestinal cell apoptosis, viability and proliferation was detected by flow cytometry, CCK-8 and EdU experiment. The expression of miR-151-5p and apoptosis-related proteins was assessed through q-PCR and western blotting. miR-151-5p was upregulated in the colon tissues and primary IECs of colitis mice. miR-151-5p directly inhibited the expression of BNDF. miR-151-5p upregulation promoted apoptosis in UC MODE-K cells. miR-151-5p upregulation repressed the viability of UC MODE-K cells. Exogenous BNDF treatment reversed the effect of miR-151-5p on UC MODE-K cells. miR-151-5p knockdown improved UC symptoms in mice, including alleviating weight loss, reducing disease activity index and improving colon length and damaged colon tissues. miR-151-5p contributed to intestinal epithelial cells apoptosis in colitis mice via inhibiting BNDF expression.
Collapse
Affiliation(s)
- Feng Zhou
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Lipeng Chen
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Shan Xu
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Caijuan Si
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Nan Li
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Hui Dong
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Peifen Zheng
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| | - Weifeng Wang
- Department of gastroenterology, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
21
|
MicroRNAs as Innovative Biomarkers for Inflammatory Bowel Disease and Prediction of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23147991. [PMID: 35887337 PMCID: PMC9318064 DOI: 10.3390/ijms23147991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn’s disease (CD). These are autoimmune diseases of the gastrointestinal tract with a chronic relapsing and remitting course. Due to complex interactions between multiple factors in the etiology of IBD, the discovery of new predictors of disease course and response to therapy, and the development of effective therapies is a significant challenge. The dysregulation of microRNAs (miRNAs), a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides, that regulate gene expression by an RNA interference process, is implicated in the complex pathogenetic context of IBD. Both tissue-derived, circulating, and fecal microRNAs have been explored as promising biomarkers in the diagnosis and the prognosis of disease severity of IBD. In this review, we summarize the expressed miRNA profile in blood, mucosal tissue, and stool and highlight the role of miRNAs as biomarkers with potential diagnostic and therapeutic applications in ulcerative colitis and Crohn’s disease. Moreover, we discuss the new perspectives in developing a new screening model for the detection of colorectal cancer (CRC) based on fecal miRNAs.
Collapse
|
22
|
Xiao X, Mao X, Chen D, Yu B, He J, Yan H, Wang J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front Immunol 2022; 13:868229. [PMID: 35493445 PMCID: PMC9043318 DOI: 10.3389/fimmu.2022.868229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The most obvious pathological characterization of inflammatory bowel disease (IBD) is intestinal epithelium erosion and severe inflammation invasion. Micro-ribonucleic acids (miRNA or microRNA), single-stranded noncoding RNAs of ~22 nucleotides, have been considered as the potential therapeutic targets in the pathogenesis of IBD. Many previous studies have focused on the mechanisms that miRNAs use to regulate inflammation, immunity, and microorganisms in IBD. The review highlights in detail the findings of miRNAs in the intestinal epithelial barrier of IBD, and focuses on their gene targets, signaling pathways associated with IBD, and some potential therapies. It will be beneficial for the elucidation of the interaction between miRNAs and the intestinal epithelial barrier in IBD and provide a theoretical reference for preventing and treating IBD in the future.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| |
Collapse
|
23
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Inhibition of microRNA-665 Alleviates Septic Acute Kidney Injury by Targeting Bcl-2. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2961187. [PMID: 35281537 PMCID: PMC8913057 DOI: 10.1155/2022/2961187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Sepsis can easily cause acute kidney injury (AKI) and seriously endanger human health. This article aims to investigate and study the role of microRNA-665 (miR-665) in septic AKI and the underlying molecular mechanism. Lipopolysaccharide (LPS) was used to construct cell and animal models of septic AKI. The expression of miR-665 in cells and kidney tissues was detected by quantitative reverse-transcription polymerase chain reaction (RT-PCR). The contents of inflammatory factors (TNF-α, IL-1β, and IL-6) in the cell supernatant were detected using commercial kits. Renal tissue damage was observed by hematoxylin-eosin (HE) staining. Kidney function was assessed by serum Cr, serum BUN, and urine NAG levels. The apoptosis of HK-2 cells was analyzed by flow cytometry and TUNEL staining. Luciferase activity assay was performed for the verification of the target of miR-665. The expression of miR-665 was increased in the cell model and animal model of septic AKI constructed by LPS. By transfecting miR-665 inhibitor in HK-2 cells and injecting miR-665 antagomir (antagomiR-665) through the tail vein of rats, the expression of miR-665 in HK-2 cells and rat kidneys was remarkably reduced. Silencing miR-665 dramatically inhibited the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) in LPS-induced HK-2 cells and reduced LPS-induced apoptosis in HK-2 cells. At the same time, the levels of serum Cr, serum BUN, and urine NAG decreased markedly, and the damage of the kidney was also alleviated. Finally, luciferase reporter experiments demonstrated that miR-665 directly targets Bcl-2. We revealed that miR-665 expression was increased in septic AKI, and silencing miR-665 could inhibit LPS-induced inflammation and apoptosis of the kidney by targeting Bcl-2, thereby improving renal function.
Collapse
|
25
|
Demirel-Yalciner T, Sozen E, Ozer NK. Endoplasmic Reticulum Stress and miRNA Impairment in Aging and Age-Related Diseases. FRONTIERS IN AGING 2022; 2:790702. [PMID: 35822008 PMCID: PMC9261320 DOI: 10.3389/fragi.2021.790702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Aging is a physiological process defined by decreased cellular and tissue functions. Reduced capacity of protein degradation is one of the important hallmarks of aging that may lead to misfolded protein accumulation and progressive loss of function in organ systems. Recognition of unfolded/misfolded protein aggregates via endoplasmic reticulum (ER) stress sensors activates an adaptive mechanism, the unfolded protein response (UPR). The initial step of UPR is defined by chaperone enhancement, ribosomal translation suppression, and misfolded protein degradation, while prolonged ER stress triggers apoptosis. MicroRNAs (miRNAs) are non-coding RNAs affecting various signaling pathways through degradation or translational inhibition of targeted mRNAs. Therefore, UPR and miRNA impairment in aging and age-related diseases is implicated in various studies. This review will highlight the recent insights in ER stress–miRNAs alterations during aging and age-related diseases, including metabolic, cardiovascular, and neurodegenerative diseases and several cancers.
Collapse
Affiliation(s)
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- *Correspondence: Nesrin Kartal Ozer,
| |
Collapse
|
26
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
27
|
Casado-Bedmar M, Viennois E. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J Crohns Colitis 2021; 16:992-1005. [PMID: 34918052 PMCID: PMC9282881 DOI: 10.1093/ecco-jcc/jjab223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs [miRNAs], small non-coding RNAs, have recently been described as crucial contributors to intestinal homeostasis. They can interact with the gut microbiota in a reciprocal manner and deeply affect host health status, leading to several disorders when unbalanced. Inflammatory bowel disease [IBD] is a chronic inflammation of the gastrointestinal tract that co-occurs with alterations of the gut microbiota, and whose aetiology remains largely unclear. On one hand, host miRNA could be playing a relevant role in IBD pathophysiology by shaping the gut microbiota. The gut microbiome, on the other hand, may regulate the expression of host miRNAs, resulting in intestinal epithelial dysfunction, altered autophagy, and immune hyperactivation. Interestingly, it has been hypothesised that their reciprocal impact may be used for therapeutic goals. This review describes the latest research and suggests mechanisms through which miRNA and intestinal microbiota, as joint actors, may participate specifically in IBD pathophysiology. Furthermore, we discuss the diagnostic power and therapeutic potential resulting from their bidirectional communication after faecal transplantation, probiotics intake, or anti-miRNAs or miRNA mimics administration. The current literature is summarised in the present work in a comprehensive manner, hoping to provide a better understanding of the miRNA-microbiota cross-talk and to facilitate their application in IBD.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- INSERM, U1149, Center for Research on Inflammation, Université de Paris, Paris, France
| | - Emilie Viennois
- Corresponding author: Emilie Viennois, INSERM, U1149, Center for Research on Inflammation, Université de Paris, 75018 Paris, France.
| |
Collapse
|
28
|
Zhang LC, Wu XY, Yang RB, Chen F, Liu JH, Hu YY, Wu ZD, Wang LF, Sun X. Recombinant protein Schistosoma japonicum-derived molecule attenuates dextran sulfate sodium-induced colitis by inhibiting miRNA-217-5p to alleviate apoptosis. World J Gastroenterol 2021; 27:7982-7994. [PMID: 35046625 PMCID: PMC8678816 DOI: 10.3748/wjg.v27.i46.7982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) affects millions of people worldwide and has emerged as a growing problem in industrialized nations. The lack of therapeutic targets has limited the treatment of IBD. Studies found that parasitic nematode infections can ameliorate clinical and experimental colitis. Our previous study found that rSj16, a 16-kDa secreted protein of Schistosoma japonicum produced by Escherichia coli, has protective effects on dextran sulfate sodium (DSS)-induced colitis in mice. Apoptosis is an important factor in the pathogenesis of colitis. However, it is not clear whether the effect of rSj16 on colitis is related to apoptosis.
AIM To investigate whether the protective effects of rSj16 on colitis is related to apoptosis and its mechanism.
METHODS In-vivo, colitis was induced by DSS. The severity of colitis was assessed. WB was used to detect the changes of apoptosis-related genes in colon tissues. Q-PCR was used to detect the changes of miRNA-217-5p and HNF1B. In-vitro, WB was used to detect the changes of apoptosis-related genes in intestinal epithelial cells. TUNNEL staining and flow cytometry were used to detect cell apoptosis.
RESULTS rSj16 attenuates clinical activity in DSS-induced colitis mice. TUNNEL staining and WB results showed that apoptosis was increased in colon tissue after treatment with DSS, and the apoptosis of colon tissue was significantly reduced after treatment with rSj16. Compared with normal mice, the expression of miR-217-5p was increased in colon tissue of DSS-induced colitis mice. In addition, the miR-217-5p target gene hnf1b was decreased after administration of DSS. After treatment with rSj16, the expression of miR-217-5p was decreased and the expression of HNF1B was increased compared with the DSS-treated group. When Etoposide was used in combination with miR-217-5p mimic on MODE-K cells, the expression of cleaved-Caspase-3 and Bax was increased, and Bcl-2 was decreased compared with only Etoposide treatment, the expression of HNF1B was significantly reduced, suggesting that miR-217-5p acts as a pro-apoptotic in colon epithelial cells and down-regulates the target gene hnf1b. After rSj16 administration in MODE-K cells, miR-217-5p expression was significantly decreased, HNF1B expression was increased, and apoptosis was reduced.
CONCLUSION The protective effects of rSj16 on colitis is related to apoptosis and miRNA-217-5p may be a further target for therapeutic intervention against IBD.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Rui-Bing Yang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Fang Chen
- School of Medicine, South China University of Technology, South China University of Technology, Guangzhou 510000, Guangdong Province, China
| | - Jia-Hua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Yun-Yi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Zhong-Dao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Fu Wang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
29
|
Yao D, Zhou Z, Wang P, Zheng L, Huang Y, Duan Y, Liu B, Li Y. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-κB pathway. Cell Cycle 2021; 20:2547-2564. [PMID: 34747340 DOI: 10.1080/15384101.2021.1995128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study explored the effects of miR-125-5p and interleukin-6 receptor (IL-6 R) on ulcerative colitis (UC) cell models and mouse models. The sera derived from UC patients and healthy subjects were collected for expression analysis. UC in vitro models and in vivo model were constructed and used. Expressions of miR-125-5p, IL-6 R, AK1/STAT3 and NF-κB pathways, and inflammatory factors, histopathology and apoptosis were determined by conducting a series of molecular experiments. The relationship between miR-125-5p and IL-6 R was analyzed by TargetScan7.2 and verified by dual-luciferase assay. The disease activity index (DAI) score, weight change, and colon length of the mice were recorded and analyzed. Decreased expression of miR-125-5p in the sera of UC patients was related to the increased expression of its target gene IL-6 R. In vitro, up-regulation of miR-125-5p decreased IL-6 R expression, contents of inflammatory factors in THP-1 cells and cell apoptosis of NCM460, and inhibited the activation of JAK1/STAT3 and NF-κB pathway. However, down-regulation of miR-125-5p produced the opposite effects to its up-regulation. IL-6 R overexpression partially reversed the effects of miR-125-5p up-regulation on UC cell models. In vivo, miR-125-5p overexpression significantly improved the severity of colitis, including DAI score, colon length, tissue damage, apoptosis, and inflammatory response, in the mice in the UC group. In addition, miR-125-5p up-regulation significantly reduced the expression of IL-6 R in the UC mice, and reduced the expression levels of JAK1, STAT3 and p65 phosphorylation. MiR-125-5p targeting IL-6 R regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-κB pathway.
Collapse
Affiliation(s)
- Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
DNA Damage-Regulated Autophagy Modulator 1 (DRAM1) Mediates Autophagy and Apoptosis of Intestinal Epithelial Cells in Inflammatory Bowel Disease. Dig Dis Sci 2021; 66:3375-3390. [PMID: 33184797 DOI: 10.1007/s10620-020-06697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS DNA damage-regulated autophagy modulator 1 (DRAM1) is required for induction of autophagy and apoptosis. However, the influence of DRAM1 on the pathogenesis of inflammatory bowel disease (IBD) has not been explored. METHODS DRAM1 expression was examined in the intestinal mucosa of patients with IBD and colons of colitis mice. We used a recombinant adeno-associated virus carrying small hairpain DRAM1 to knock down the DRAM1 gene to treat colitis in the mice. The effect of DRAM1 on autophagy and apoptosis of intestinal epithelial cells was explored. DRAM1-mediated interaction with the c-Jun N-terminal kinase (JNK) pathway was also examined. RESULTS DRAM1 expression in the intestinal mucosa of the IBD patients was higher than that in the control participates. DRAM1 expression in the inflammatory cells in patients with Crohn's disease (CD) was lower than that in patients with ulcerative colitis (UC). Additionally, DRAM1 expression was correlated with the Simple Endoscopic Score for CD and the Mayo endoscopic score for UC. Serum levels of DRAM1 in the IBD group were substantially higher than those in the normal group. The knockdown of DRAM1 could alleviate colitis symptoms in mice. In in vitro experiments, knocking down DRAM1 could reduce autophagy and apoptosis levels. Mechanistically, DRAM1 may participate in the regulation of these two processes by positively regulating JNK activation. CONCLUSIONS During intestinal inflammation, the upregulation of DRAM1 may promote the activation of JNK and further aggravate intestinal epithelium damage.
Collapse
|
31
|
Zhang B, Su X, Xie Z, Ding H, Wang T, Xie R, Wen Z. Inositol-Requiring Kinase 1 Regulates Apoptosis via Inducing Endoplasmic Reticulum Stress in Colitis Epithelial Cells. Dig Dis Sci 2021; 66:3015-3025. [PMID: 33043405 DOI: 10.1007/s10620-020-06622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) has been studied as critical factor during occurrence and development of ulcerative colitis (UC). However, the role of ERS in inflamed UC remains unclear. AIMS The purpose of this study was to analyze the role of inositol-requiring kinase 1 (IRE-1), a major regulator of ER, in regulating ERS and cell viability. METHODS In UC mucosa tissue, IRE-1, BiP, XBP-1s, CHOP caspase-12 and GADD34 mRNA were assayed by qRT-PCR. Then, human normal colon epithelial cell line (NCM-460) and colon fibroblast cell line (CCD-33Co) were cultured, and downregulated or upregulated IRE-1 expression. ERS was induced with 100 ng/mL of Interleukin 6 (IL-6). CCK8 assay was performed to analyze cell proliferation. Flow cytometry analysis was conducted to detect the apoptosis. Western blot assay was used to examine ERS markers. RESULTS IRE-1, BiP, XBP-1s, caspase-12 and CHOP mRNA were highly expressed in UC mucosa tissue, and the expression of GADD34 mRNA significantly decreased. These results show that ERS-induced unfolded protein response was enhanced in UC mucosa tissue. In cells, silencing the expression of IRE-1 could suppress cell proliferation and promote apoptosis through activating unfolded protein response, while the over-expression of IRE-1 had the opposite effect. IL-6 could induce ERS and cells apoptosis. Furthermore, we demonstrated that shRNA IRE-1 could enhance the inhibition of IL-6 on cells viability. CONCLUSIONS Inhibition of IRE-1 enhanced unfolded protein response and cells apoptosis and IL-6-induced ERS and suggested that IRE-1 might be a potential target of UC.
Collapse
Affiliation(s)
- Bei Zhang
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - XiaoYan Su
- The Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhengYuan Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hao Ding
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ting Wang
- The Department of Gastroenterology, First Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - RuYi Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhiLi Wen
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
32
|
Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, Beyrampour-Basmenj H, Ebrahimi A, Ebrahimi-Kalan A. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021; 287:119726. [PMID: 34144058 DOI: 10.1016/j.lfs.2021.119726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments. Autophagy plays a crucial role in controlling immune homeostasis by eliminating intracellular pathogens and presenting antigens to immune cognition. MicroRNAs are commonly known as endogenous non-coding small RNAs, which span 18-25 nt and take part in the gene expression at the post-transcriptional level regulation. miRNAs play important roles in different processes like, cell differentiation, duplicating, and apoptosis. Moreover, miRNAs are the critical molecules for the regular function of the immune system by modulating immune tolerance mechanisms and autoimmunity. Recent findings support the role of dysregulated miRNAs in the pathogenesis of ADs and in the regulation of autophagy. In this review, we will focus on the role of the miRNAs in the regulation of autophagy and then will explain the role of dysregulated miRNAs in the initiation of the ADs by modulating autophagy.
Collapse
Affiliation(s)
- Sina Khodakarimi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadhassan Omrani
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, Hong SH, Yon DK, Lee SW, Kim MS, Wasuwanich P, Karnsakul W, Shin JI, Kronbichler A. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci 2021; 17:2112-2123. [PMID: 34131410 PMCID: PMC8193269 DOI: 10.7150/ijbs.59904] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that mainly affects young people. IBD is associated with various gastrointestinal symptoms, and thus, affects the quality of life of patients. Currently, the pathogenesis of IBD is poorly understood. Although intestinal bacteria and host immune response are thought to be major factors in its pathogenesis, a sufficient explanation of their role in its pathophysiologic mechanism has not been presented. MicroRNAs (miRNAs), which are small RNA molecules that regulate gene expression, have gained attention as they are known to participate in the molecular interactions of IBD. Recent studies have confirmed the important role of miRNAs in targeting certain molecules in signaling pathways that regulate the homeostasis of the intestinal barrier, inflammatory reactions, and autophagy of the intestinal epithelium. Several studies have identified the specific miRNAs associated with IBD from colon tissues or serum samples of IBD patients and have attempted to use them as useful diagnostic biomarkers. Furthermore, some studies have attempted to treat IBD through intracolonic administration of specific miRNAs in the form of nanoparticle. This review summarizes the latest findings on the role of miRNAs in the pathogenesis, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- HyunTaek Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Abstract
Inflammatory bowel disease (IBD) as a chronic inflammation in colon and small intestine has two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). Genome studies have shown that UC and CD are related to microRNAs (miRNAs) expression in addition to environmental factors. This article reviews important researches that have recently been done on miRNAs roles in CD and UC disease. First, miRNA is introduced and its biogenesis and function are discussed. Afterward, roles of miRNAs in inflammatory processes involved in IBD are showed. Finally, this review proposes some circulating and tissue-specific miRNAs, which are useful for CD and UC fast diagnosis and grade prediction. As a conclusion, miRNAs are efficient diagnostic molecules especially in IBD subtypes discrimination and can be used by microarray and real time PCR methods for disease detection and classification.
Collapse
|
35
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Yi X, Cheng X. Understanding Competitive Endogenous RNA Network Mechanism in Type 1 Diabetes Mellitus Using Computational and Bioinformatics Approaches. Diabetes Metab Syndr Obes 2021; 14:3865-3945. [PMID: 34526791 PMCID: PMC8436179 DOI: 10.2147/dmso.s315488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM), an autoimmune disease with a genetic tendency, has an increasing prevalence. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are receiving increasing attention in disease pathogenesis. However, their roles in T1DM are poorly understood. The present study aimed at identifying signature lncRNAs and circRNAs and investigating their roles in T1DM using the competing endogenous RNA (ceRNA) network analysis. METHODS The T1DM expression profile was downloaded from Gene Expression Omnibus (GEO) database to identify the differentially expressed circRNAs, lncRNAs, and mRNAs. The biological functions of these differentially expressed circRNAs, lncRNAs, and mRNAs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Targeting relationships of circRNA-miRNA, lncRNA-miRNA, and miRNA-mRNA were predicted, and the circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network was established. Finally, qRT-PCR was applied to identify the effect of hsa_circ_0002202 inhibition on the IFN-I induced macrophage inflammation. RESULTS A total of 178 circRNAs, 404 lncRNAs, and 73 mRNAs were identified to be abnormally expressed in T1DM samples. Functional enrichment analysis results indicated that the differentially expressed genes were mainly enriched in extracellular matrix components and macrophage activation. CeRNA regulatory network showed that circRNAs and lncRNAs regulate mRNAs through integrate multiple miRNAs. In addition, in vitro experiments showed that hsa_circ_0002202 inhibition suppressed the type I interferon (IFN-I)-induced macrophage inflammation. CONCLUSION In the present study, the circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network in T1DM was established for the first time. We also found that hsa_circ_0002202 inhibition suppressed the IFN-I-induced macrophage inflammation. Our study may lay a foundation for future studies on the ceRNA regulatory network in T1DM.
Collapse
Affiliation(s)
- Xuanzi Yi
- Department of Medicine II, Division of Endocrinology and Diabetology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- Correspondence: Xuanzi Yi Department of Medicine II, Division of Endocrinology and Diabetology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, GermanyTel/Fax +49 761 270-73270 Email
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| |
Collapse
|
37
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
38
|
Ardali R, Kazemipour N, Nazifi S, Bagheri Lankarani K, Razeghian Jahromi I, Sepehrimanesh M. Pathophysiological role of Atg5 in human ulcerative colitis. Intest Res 2020; 18:421-429. [PMID: 32380583 PMCID: PMC7609390 DOI: 10.5217/ir.2019.00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Ulcerative colitis (UC), along with Crohn's disease, is one of the main types of inflammatory bowel disease (IBD). On the other hand, deregulated autophagy is involved in many chronic diseases, including IBD. In this study, we aimed to investigate the role of Atg5 and microRNA-181a (miR-181a) in the pathophysiology of UC. METHODS Colon biopsy, stool, and blood samples of 6 men and 9 women were confirmed for UC. Also, 13 men and 17 women were selected as healthy control (HC). Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to measure the Atg-5 content of the colon biopsies. Besides, the serum and stool levels of Atg5 were measured using ELISA. Moreover, the total RNA of blood cells was extracted and evaluated for the expression of miR-181a. RESULTS We found 1.2 ng/mL versus 0.46 ng/mL, 0.34 ng/mL versus 0.24 ng/mL, and 0.082 ng/mL versus 0.062 ng/mL of Atg5 in stool, intestinal tissue, and serum of UC and HCs, respectively. There was no significant difference in the expression of miR-181a in the blood samples of UC and HCs. Immunohistochemistry showed high positivity without any significant difference between the 2 groups in the quantitative analysis. CONCLUSIONS The significant difference observed between the stool Atg5 content of the HCs and UC patients may provide new insight into using this protein as a diagnostic biomarker, however, considering the small size of our studied population further studies are needed.
Collapse
Affiliation(s)
- Razieh Ardali
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Clinical Pathology Division, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | - Masood Sepehrimanesh
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, USA
| |
Collapse
|
39
|
Yang R, Huang H, Cui S, Zhou Y, Zhang T, Zhou Y. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death Dis 2020; 11:603. [PMID: 32733020 PMCID: PMC7393506 DOI: 10.1038/s41419-020-02788-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) have demonstrated therapeutic effects for colitis through immunomodulation and anti-inflammation. However, whether MSC-derived exosomes possessed the similar function remains unclear. In present study, exosomes were isolated from control and IFN-γ-primed MSCs and was verified by transmission electron microscope (TEM) and immunofluorescence staining. Administration of exosomes to mice significantly improved the disease activity index and histological score of colitis, and decreased the ratio of Th17 cells with elevated Treg cells ratio in mice colitis model. Exosomes from IFN-γ-primed MSCs showed superior therapeutic effects to colitis. Exosomes treatment inhibited Th17 differentiation in vitro, and exosomes from IFN-γ-primed MSCs showed higher inhibition efficacy. Mechanistically, exosomes treatment significantly decreased the expression of Stat3 and p-Stat3 to inhibit Th17 cells differentiation. IFN-γ pretreatment increased the level of miR-125a and miR-125b of exosomes, which directly targeted on Stat3, to repress Th17 cell differentiation. Moreover, combination of miR-125a and miR-125b agmior infusion also showed therapeutic effects for colitis, accompanied by decreased Th17 cell ratio. Collectively, this study demonstrates that IFN-γ treatment promoted exosomes from MSCs to attenuate colitis through increasing the level of miR-125a and miR-125b, which binding on 3′-UTR of Stat3 to repress Th17 cell differentiation. This study provides a new approach of exocytosis on the treatment of colitis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China. .,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China. .,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China.
| | - Huaming Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yikun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| |
Collapse
|
40
|
Liu Y, Zhu F, Li H, Fan H, Wu H, Dong Y, Chu S, Tan C, Wang Q, He H, Gao F, Leng X, Zhou Q, Zhu X. MiR-155 contributes to intestinal barrier dysfunction in DSS-induced mice colitis via targeting HIF-1α/TFF-3 axis. Aging (Albany NY) 2020; 12:14966-14977. [PMID: 32713852 PMCID: PMC7425479 DOI: 10.18632/aging.103555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Intestinal barrier dysfunction is a hallmark of inflammatory bowel disease (IBD). MiR-155 is increased in colitis and downregulates expression of hypoxia-inducible factor 1α (HIF-1α). Here, we investigated the effects of miR-155 on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. We found that miR-155 antagomir treatment relieved weight loss and intestinal damage in IBD mouse models (P < 0.05). Furthermore, electron microscopy and immunofluorescence imaging showed that miR-155 increased intestinal barrier dysfunction and downregulated the expression of tight junction proteins in DSS-induced colitis. FG-4497, which upregulates HIF-1α expression, elicited protective effects on the intestinal barrier in DSS-induced colitis. Dual luciferase reporter assays also confirmed that miR-155 downregulated expression of HIF-1α. Finally, we discovered that HIF-1α levels were elevated by miR-155 antagomir treatment (P < 0.05) and that TFF-3 expression correlated positively with HIF-1α expression. These results suggest that miR-155 contributes to DSS-induced colitis by promoting intestinal barrier dysfunction and inhibiting the HIF-1α/TFF-3 axis.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Quansheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiaoli Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiwen Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
41
|
Zhu L, Shen H, Gu PQ, Liu YJ, Zhang L, Cheng JF. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation. Exp Ther Med 2020; 20:581-590. [PMID: 32537016 DOI: 10.3892/etm.2020.8718] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic immunological disorders of the intestinal tract characterized by persistent inflammation. Baicalin, a type of flavonoid, has exhibited a wide range of pharmacological activities, including immunomodulation and anti-inflammation. However, little is known about the therapeutic role of baicalin in IBD. The aim of the present study was to ascertain whether baicalin could be a therapeutic drug of IBD and investigate its specific mechanisms. In the present study, the results revealed that baicalin not only significantly alleviated TNBS-induced colitis by reducing the release of IL-6, TNF-α and IL-1β and increasing the level of IL-10, but promoted the expression of tight-junction proteins ZO-1 and β-catenin, which may have been achieved by blockage of the PI3K/AKT signaling pathway. In vitro, the results demonstrated that baicalin clearly inhibited the release of TNF-α, IL-6 and IL-1β and promoted the expression of IL-10 in LPS-induced HT-29 cells, and significantly decreased LPS-induced HT-29 cell apoptosis by blockage of the PI3K/AKT signaling pathway. In conclusion, the present research revealed for the first time that baicalin acted as a therapeutic drug in IBD by suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| | - Hong Shen
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| | - Pei-Qing Gu
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| | - Ya-Jun Liu
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| | - Jia-Fei Cheng
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 201129, P.R. China
| |
Collapse
|
42
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Liu X, Song J, Kang Y, Wang Y, Chen A. Long noncoding RNA SOX21-AS1 regulates the progression of triple-negative breast cancer through regulation of miR-520a-5p/ORMDL3 axis. J Cell Biochem 2020; 121:4601-4611. [PMID: 32277517 DOI: 10.1002/jcb.29674] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been reported as a new kind of controllers about cancer processes in biology. In spite of the dysregulation of lncRNAs in various kinds of cancers, only a little of the information was effective on the expression configuration and inner effects of lncRNAs in triple-negative breast cancer (TNBC). This study valued the expression of lncRNA SOX21-AS1 and the biological role it played in TNBC. In our research, SOX21-AS1 had a high expression in TNBC cell lines. The functional experiments showed that knockdown of SOX21-AS1 obviously restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition process and promoted cell apoptosis. Mechanistically, SOX21-AS1 was found to bind with miR-520a-5p. Besides, ORMDL3 was identified as a downstream target of miR-520a-5p, and the suppressed ORMDL3 expression induced by silenced SOX21-AS1 could be restored by miR-520a-5p inhibition. Further, data from rescue assays revealed that SOX21-AS1 could regulate the malignancy of TNBC via miR-520a-5p/ORMDL3 axis. All in all, we identified that SOX21-AS1 regulated the cellular process of TNBC cells via antagonizing miR-520a-5p availability to upregulate ORMDL3 expression.
Collapse
Affiliation(s)
- Xia Liu
- Department of Breast Oncology, Hainan Cancer Hospital, Hainan, China
| | - Jingyong Song
- Department of Breast Oncology, Hainan Cancer Hospital, Hainan, China
| | - Yu Kang
- Department of Breast Oncology, Hainan Cancer Hospital, Hainan, China
| | - Yaojia Wang
- Department of Breast Oncology, Hainan Cancer Hospital, Hainan, China
| | - Anyue Chen
- Department of Breast Oncology, Hainan Cancer Hospital, Hainan, China
| |
Collapse
|
44
|
Liu C, Tang M, Zhang X, Li J, Cao G. Knockdown of miR-665 Protects Against Cardiomyocyte Ischemia/Reperfusion Injury-Induced ROS Accumulation and Apoptosis Through the Activation of Pak1/Akt Signaling in Myocardial Infarction. Int Heart J 2020; 61:347-354. [DOI: 10.1536/ihj.19-416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chuanzhen Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Mengmeng Tang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Xiquan Zhang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Jianhua Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| | - Guangqing Cao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University
| |
Collapse
|
45
|
Li M, Zhao J, Cao M, Liu R, Chen G, Li S, Xie Y, Xie J, Cheng Y, Huang L, Su M, Xu Y, Zheng M, Zou K, Geng L, Xu W, Gong S. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res 2020; 53:12. [PMID: 32209121 PMCID: PMC7092522 DOI: 10.1186/s40659-020-00279-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. Results In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. Conclusions These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Musheng Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ruitao Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guanhua Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Songyu Li
- Department of Clinical Laboratory, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Yuanwen Xie
- Department of Anorectal, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingmin Su
- Department of Cancer Biology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, CF103AT, UK
| | - Yuxin Xu
- Department of Preventive Medicine, School of School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Mingyue Zheng
- School of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
46
|
Shi Y, Dai S, Qiu C, Wang T, Zhou Y, Xue C, Yao J, Xu Y. MicroRNA-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses in inflammatory bowel disease. Mucosal Immunol 2020; 13:303-312. [PMID: 31628427 DOI: 10.1038/s41385-019-0216-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
MicroRNA (miR)-219a-5p has been implicated in the development of numerous progression of carcinoma and autoimmune diseases. However, whether miR-219a-5p is involved in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. In this study, we demonstrated that miR-219a-5p expression was significantly decreased in the inflamed intestinal mucosa and peripheral blood (PB)-CD4+ T cells from patients with IBD. Proinflammatory cytokines (e.g., IL-6, IL-12, IL-23 and TNF-α) inhibited miR-219a-5p expression in CD4+ T cells in vitro. Lentivirus-mediated miR-219a-5p downregulation facilitated Th1/Th17 cell differentiation, whereas miR-219a-5p overexpression exerted an opposite effect. Luciferase assays confirmed that ETS variant 5 (ETV5) was a functional target of miR-219a-5p and ETV5 expression was significantly increased in the inflamed intestinal mucosa and PB-CD4+ T cells from IBD patients. ETV5 overexpression enhanced Th1/Th17 immune response through upregulating the phosphorylation of STAT3 and STAT4. Importantly, supplementation of miR-219a-5p ameliorated TNBS-induced intestinal mucosal inflammation, characterized by decreased IFN-γ+ CD4+ T cells and IL-17A+ CD4+ T cells infiltration in the colonic lamina propria. Our data thus reveal a novel mechanism whereby miR-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses. miR-219a-5p might be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Yan Shi
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Shenglan Dai
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Caiyu Qiu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Tao Wang
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Yong Zhou
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Cuihua Xue
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| | - Yaping Xu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| |
Collapse
|
47
|
Zhang Y, Liang Q, Zhang Y, Hong L, Lei D, Zhang L. Olmesartan alleviates bleomycin-mediated vascular smooth muscle cell senescence via the miR-665/SDC1 axis. Am J Transl Res 2020; 12:5205-5220. [PMID: 33042414 PMCID: PMC7540088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/01/2020] [Indexed: 12/08/2022]
Abstract
Olmesartan (OMST) is a new angiotensin II receptor antagonist recently approved by the FDA to treat cardiovascular diseases. We investigated the molecular mechanisms by which OMST regulates vascular senescence. In the present study, bleomycin (BLM) was used to induce senescence in vascular smooth muscle cells (VSMCs); after which, the cells were treated with OMST. The effects of OMST on BLM-mediated cell senescence were evaluated using cell adhesion, NAD+/NADH, and Annevin V/PI double staining assays, as well as by immunofluorescence staining of γH2AX, Edu flow cytometry, and evaluations of senescence-associated β-gal activity. Differentially expressed microRNAs (DEMs) were identified by miRNA microarray assays, and subsequently validated by quantitative real time PCR. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the miR-665 promoter. The target genes of miR-665 were predicted and confirmed using luciferase reporter assays. We found that miR-665 was upregulated in VSMCs in response to BLM-induced cellular senescence. BSP studies revealed that CpG sites in the promoter region of the miR-665 gene underwent extensive demethylation during BLM-induced cellular senescence, and there was a concomitant up-regulation of miR-665 expression. SDC1 mRNA was identified as a direct target of miR-665. Either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of OMST on BLM-induced VSMC senescence. Moreover, SDC1 overexpression partially reversed the changes that occurred in cells with BLM-induced senescence caused by miR-665 overexpression. Our findings suggest that the miR-665/SDC1 axis functions as a vital modulator of VSMC senescence, and may represent a novel biological target for treating atherosclerosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Yanan Zhang
- College of Veterinary Medicine, Northeast Agricultural University Harbin 150030, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen Shenzhen 518116, Guangdong, China
| | - Da Lei
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| |
Collapse
|
48
|
Zhao D, Wu N, Wang L, Pang X, Liu X, Zhang X. Role of microRNA-449a in the progress of inflammatory bowel disease in children. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1724828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Dandan Zhao
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Na Wu
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Libo Wang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaoli Pang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xuehua Liu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaohong Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
49
|
Fan J, Zhang X, Nie X, Li H, Yuan S, Dai B, Zhan J, Wen Z, Jiang J, Chen C, Wang D. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. SCIENCE CHINA-LIFE SCIENCES 2019; 63:724-736. [PMID: 31664601 DOI: 10.1007/s11427-018-9515-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Although numerous miRNAs have been discovered, their functions in the different subcellular organelles have remained obscure. In this study, we found that miR-665 was enriched in the nucleus of cardiomyocytes, and then investigated the underlying role of nuclear miR-665 in heart failure. RNA fluorescence in situ hybridization assays in human heart tissue sections and primary cardiomyocytes showed that miR-665 was localized in the nucleus of cardiomyocytes. Increased expression of nuclear miR-665 was observed not only in the cardiomyocytes isolated from the heart of mice treated in vivo by transverse aortic constriction (TAC), but also in phenylephrine (PE)-treated cultured cardiomyocytes in vitro. To further explore the role of miR-665 in heart failure, a type 9 recombinant adeno-associated virus (rAAV) system was employed to manipulate the expression of miR-665 in mice. Overexpression of miR-665 aggravated TAC-induced cardiac dysfunction, while down-expression of miR-665 showed opposite effects. Bioinformatic prediction and biological validation confirmed that the PTEN (phosphatase and tensin homolog) gene was one of the targets of miR-665 in the nucleus. Furthermore, restoring PTEN expression significantly eliminated the destructive effects of miR-665 over-expression in TAC-induced cardiac dysfunction. Our data showed that nuclear miR-665 aggravates heart failure via inhibiting PTEN expression, which provided a therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| |
Collapse
|
50
|
Tang H, Long Q, Zhuang K, Yan Y, Han K, Guo H, Lu X. miR-665 promotes the progression of gastric adenocarcinoma via elevating FAK activation through targeting SOCS3 and is negatively regulated by lncRNA MEG3. J Cell Physiol 2019; 235:4709-4719. [PMID: 31650535 DOI: 10.1002/jcp.29349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Studies have found that miR-665 acted as a tumor suppressor or an oncogene in different malignancies. miR-665 expression was elevated in gastric adenocarcinoma tissues; however, its role and mechanism in this disease are not fully clarified. The expression of miR-665 and its target gene was detected in human gastric adenocarcinoma tissues and cells. Moreover, we analyzed the effects of miR-665 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of gastric adenocarcinoma cells as well as tumor growth in vivo. The mechanisms of miR-665 in gastric adenocarcinoma were investigated by using molecular biology techniques. We found miR-665 was upregulated and suppressor of cytokine signaling 3 (SOCS3) was downregulated in gastric adenocarcinoma tissues and cells. Elevated miR-665 was positively correlated with tumor size, lymph node metastasis, invasion depth, TNM stage, and poor differentiation in gastric adenocarcinoma patients. Overexpression of miR-665 promoted, whereas knockdown of miR-665 suppressed the proliferation, migration, and EMT of gastric adenocarcinoma cells. Furthermore, we demonstrated that miR-665 functioned through targeting SOCS3, followed by activation of the FAK/Src signaling pathway in gastric adenocarcinoma cells. miR-665 antagomir inhibited tumor growth as well as the activation of the FAK/Src pathway but increased SOCS3 expression in nude mice. In addition, miR-665 expression was negatively regulated by long noncoding RNA maternally expressed gene 3 (MEG3). In conclusion, miR-665 acted as an oncogene in gastric adenocarcinoma by inhibiting SOCS3 followed by activation of the FAK/Src pathway and it was negatively modulated by MEG3. miR-665 may be a promising therapeutic target for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Hailing Tang
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Qianfa Long
- Division of Neurosurgery, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Zhuang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuan Yan
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Hanqing Guo
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Xiaolan Lu
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|