1
|
Ashour K, Sali S, Aldoukhi AH, Hall D, Mubaid S, Busque S, Lian XJ, Gagné JP, Khattak S, Di Marco S, Poirier GG, Gallouzi IE. pADP-ribosylation regulates the cytoplasmic localization, cleavage, and pro-apoptotic function of HuR. Life Sci Alliance 2024; 7:e202302316. [PMID: 38538092 PMCID: PMC10972696 DOI: 10.26508/lsa.202302316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
HuR (ElavL1) is one of the main post-transcriptional regulators that determines cell fate. Although the role of HuR in apoptosis is well established, the post-translational modifications that govern this function remain elusive. In this study, we show that PARP1/2-mediated poly(ADP)-ribosylation (PARylation) is instrumental in the pro-apoptotic function of HuR. During apoptosis, a substantial reduction in HuR PARylation is observed. This results in the cytoplasmic accumulation and the cleavage of HuR, both of which are essential events for apoptosis. These effects are mediated by a pADP-ribose-binding motif within the HuR-HNS region (HuR PAR-binding site). Under normal conditions, the association of the HuR PAR-binding site with pADP-ribose is responsible for the nuclear retention of HuR. Mutations within this motif prevent the binding of HuR to its import factor TRN2, leading to its cytoplasmic accumulation and cleavage. Collectively, our findings underscore the role of PARylation in controlling the pro-apoptotic function of HuR, offering insight into the mechanism by which PARP1/2 enzymes regulate cell fate and adaptation to various assaults.
Collapse
Affiliation(s)
- Kholoud Ashour
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Faculty of Applied Medical Sciences, Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Sujitha Sali
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Ali H Aldoukhi
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Derek Hall
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Souad Mubaid
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Sandrine Busque
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Xian Jin Lian
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Jean-Philippe Gagné
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Shahryar Khattak
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Sergio Di Marco
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Imed-Eddine Gallouzi
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Department of Biochemistry, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
3
|
Viana Neto AM, Guerreiro DD, Martins JAM, Vasconcelos FÁR, Melo RÉBF, Velho ALMCS, Neila-Montero M, Montes-Garrido R, Nagano CS, Araújo AA, Moura AA. Sperm traits and seminal plasma proteome of locally adapted hairy rams subjected to intermittent scrotal insulation. Anim Reprod Sci 2024; 263:107439. [PMID: 38447240 DOI: 10.1016/j.anireprosci.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
The present study evaluated the effects of heat stress on reproductive parameters of hairy rams. Six animals were subjected to scrotal insulation during four consecutive nights (6 PM - 6 AM). Day (D) 0 was the first day of insulation. Scrotal circumference increased from 30.5 ± 0.3 cm (at pre-insulation) to 31.8 ± 0.4 cm on D4, decreased 3.9 cm on D28, returning to 30.6 ± 0.6 cm on D57. Sperm concentration decreased from 3.7 ± 0.12 ×109 sperm/mL before insulation to 2.6 ± 0.1 ×109 on D23, returning to normal on D57. Sperm motility averaged 75 ± 2.9% before insulation, was undetectable on D23, and became normal on D77. Sperm with normal morphology reached 5.9 ± 2.6% on D35 but recovered (86.8 ± 2.1%) on D91. Sperm DNA integrity decreased from 86.5 ± 4.7% before insulation to 11.1 ± 3.7% on D63, returning to pre-insulation values on D120. Sperm BSP immunostaining was reduced after scrotal insulation. Variations in seminal protein abundances coincided with changes in sperm parameters. Seminal plasma superoxide dismutase, carboxypeptidase Q-precursor and NPC intracellular cholesterol transporter 2 decreased on D18, returning to normal after D28. Albumin, inhibitor of carbonic anhydrase precursor, EGF-like repeat and discoid I-like domain-containing protein 3 and polymeric immunoglobulin receptor increased after insulation. In summary, intermittent scrotal insulation drastically altered ram sperm attributes and seminal proteins, especially those associated with oxidative stress. Knowledge of animal´s response to thermal stress is vital in the scenario of climate changes.
Collapse
Affiliation(s)
| | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Jorge A M Martins
- School of Veterinary Medicine, Federal University of Cariri, Juazeiro do Norte, Brazil
| | | | - R Évila B F Melo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marta Neila-Montero
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
4
|
Kleszcz R, Majchrzak-Celińska A, Baer-Dubowska W. Tannins in cancer prevention and therapy. Br J Pharmacol 2023. [PMID: 37614022 DOI: 10.1111/bph.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Tannins are a heterogenous class of polyphenolic natural products with promising cancer chemopreventive and therapeutic potential. Studies undertaken over the last 30 years have demonstrated their capacity to target many cellular pathways and molecules important in the development of cancer. Recently, new mechanisms that might be important in anti-carcinogenic activity, such as inhibition of epithelial-to-mesenchymal transition, reduction of cancer stem cell creation, and modulation of cancer cells metabolism have been described. Along with the mechanisms underlying the anti-cancer activity of tannins, this review focuses on their possible application as chemosensitizers in adjuvant therapy and countering multidrug resistance. Furthermore, characteristic physicochemical properties of some tannins, particularly tannic acid, are useful in the formation of nanovehicles for anticancer drugs or the isolation of circulating cancer cells. These new potential applications of tannins deserve further studies. Well-designed clinical trials, which are scarce, are needed to assess the therapeutic effects of tannins themselves or as adjuvants in cancer treatment.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
5
|
Zou Y, Shi H, Lin H, Wang X, Wang G, Gao Y, Yi F, Yin Y, Li D, Li M. The abrogation of GRP78 sensitizes liver cancer cells to lysionotin by enhancing ER stress-mediated pro-apoptotic pathway. Cell Stress Chaperones 2023; 28:409-422. [PMID: 37326827 PMCID: PMC10352479 DOI: 10.1007/s12192-023-01358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is frequently and highly expressed in various human malignancies and protects cancer cells against apoptosis induced by multifarious stresses, particularly endoplasmic reticulum stress (ER stress). The inhibition of GRP78 expression or activity could enhance apoptosis induced by anti-tumor drugs or compounds. Herein, we will evaluate the efficacy of lysionotin in the treatment of human liver cancer as well as the molecular mechanism. Moreover, we will examine whether inhibition of GRP78 enhanced the sensitivity of hepatocellular carcinoma cells to lysionotin. We found that lysionotin significantly suppressed proliferation and induced apoptosis of liver cancer cells. TEM showed that lysionotin-treated liver cancer cells showed an extensively distended and dilated endoplasmic reticulum lumen. Meanwhile, the levels of the ER stress hallmark GRP78 and UPR hallmarks (e.g., IRE1α and CHOP) were significantly increased in response to lysionotin treatment in liver cancer cells. Moreover, the reactive oxygen species (ROS) scavenger NAC and caspase-3 inhibitor Ac-DEVD-CHO visibly attenuated the induction of GRP78 and attenuated the decrease in cell viability induced by lysionotin. More importantly, the knockdown of GRP78 expression by siRNAs or treatment with EGCG, both induced remarkable increase in lysionotin-induced PARP and pro-caspase-3 cleavage and JNK phosphorylation. In addition, knockdown of GRP78 expression by siRNA or suppression GRP78 activity by EGCG both significantly improved the effectiveness of lysionotin. These data indicated that pro-survival GRP78 induction may contribute to lysionotin resistance. The combination of EGCG and lysionotin is suggested to represent a novel approach in cancer chemo-prevention and therapeutics.
Collapse
Affiliation(s)
- Ying Zou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hewen Shi
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Su H, Xu J, Su Z, Xiao C, Wang J, Zhong W, Meng C, Yang D, Zhu Y. Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α-sXBP1-GATA4 pathway. Cell Mol Life Sci 2023; 80:161. [PMID: 37219631 DOI: 10.1007/s00018-023-04805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pressure overload-induced pathological cardiac hypertrophy is an independent predecessor of heart failure (HF), which remains the leading cause of worldwide mortality. However, current evidence on the molecular determinants of pathological cardiac hypertrophy is still inadequacy. This study aims to elucidate the role and mechanisms of Poly (ADP-ribose) polymerases 16 (PARP16) in the pathogenesis of pathological cardiac hypertrophy. METHODS Gain and loss of function approaches were used to demonstrate the effects of genetic overexpression or deletion of PARP16 on cardiomyocyte hypertrophic growth in vitro. Ablation of PARP16 by transducing the myocardium with serotype 9 adeno-associated virus (AAV9)-encoding PARP16 shRNA were then subjected to transverse aortic construction (TAC) to investigate the effect of PARP16 on pathological cardiac hypertrophy in vivo. Co-immunoprecipitation (IP) and western blot assay were used to detect the mechanisms of PARP16 in regulating cardiac hypertrophic development. RESULTS PARP16 deficiency rescued cardiac dysfunction and ameliorated TAC-induced cardiac hypertrophy and fibrosis in vivo, as well as phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro. Whereas overexpression of PARP16 exacerbated hypertrophic responses including the augmented cardiomyocyte surface area and upregulation of the fetal gene expressions. Mechanistically, PARP16 interacted with IRE1α and ADP-ribosylated IRE1α and then mediated the hypertrophic responses through activating the IRE1α-sXBP1-GATA4 pathway. CONCLUSIONS Collectively, our results implicated that PARP16 is a contributor to pathological cardiac hypertrophy at least in part via activating the IRE1α-sXBP1-GATA4 pathway, and may be regarded as a new potential target for exploring effective therapeutic interventions of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Haibi Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jie Xu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Zhenghua Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Chenxi Xiao
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinghuan Wang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Wen Zhong
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Chen Meng
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Di Yang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, People's Republic of China.
| |
Collapse
|
7
|
Zhang H, Xu M, Li H, Mai X, Sun J, Mi L, Ma J, Zhu X, Fei Y. Detection speed optimization of the OI-RD microscope for ultra-high throughput screening. BIOMEDICAL OPTICS EXPRESS 2023; 14:2386-2399. [PMID: 37206144 PMCID: PMC10191655 DOI: 10.1364/boe.487563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
The oblique-incidence reflectivity difference (OI-RD) microscope is a label-free detection system for microarrays that has many successful applications in high throughput drug screening. The increase and optimization of the detection speed of the OI-RD microscope will enable it to be a potential ultra-high throughput screening tool. This work presents a series of optimization methods that can significantly reduce the time to scan an OI-RD image. The wait time for the lock-in amplifier was decreased by the proper selection of the time constant and development of a new electronic amplifier. In addition, the time for the software to acquire data and for translation stage movement was also minimized. As a result, the detection speed of the OI-RD microscope is 10 times faster than before, making the OI-RD microscope suitable for ultra-high throughput screening applications.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Mengjing Xu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Haofeng Li
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Xiaohan Mai
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Jiawei Sun
- Department of Science and Technology, Shanghai Deyu Intelligent Technology Co., Ltd., Shanghai, 201413, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Xiangdong Zhu
- Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
9
|
Zhang J, An L, Zhao R, Shi R, Zhou X, Wei S, Zhang Q, Zhang T, Feng D, Yu Z, Wang H. KIF4A promotes genomic stability and progression of endometrial cancer through regulation of TPX2 protein degradation. Mol Carcinog 2023; 62:303-318. [PMID: 36468837 DOI: 10.1002/mc.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Kinesin family member 4A (KIF4A) belongs to the kinesin superfamily proteins, which are closely associated with mitophagy. Nonetheless, the role of KIF4A in endometrial cancer (EC) remains poorly characterized. The present study showed that KIF4A not only was upregulated but also predicted poor prognosis in patients with EC. KIF4A knockdown in EC cells resulted in attenuated proliferative capacity in vitro and in vivo. Transcriptome sequencing and gene function analysis revealed that KIF4A contributed to the maintenance of EC cells' genomic stability and that KIF4A knockdown induced the DNA damage response, cell cycle arrest, and apoptosis. Mechanistically, KIF4A interacted with TPX2 (a protein involved in DNA damage repair to cope with the replication pressure) to enhance its stability via inhibition of TPX2 ubiquitination and eventually ensured the genomic stability of EC cells during mitosis. Taken together, our results indicated that KIF4A functions as a tumor oncogene that facilitates EC progression via the maintenance of genomic stability. Therefore, targeting the KIF4A/TPX2 axis may provide new concepts and strategies for the treatment of patients with EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lanfen An
- Division of Life Science and Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
10
|
Xia F, Sun S, Xia L, Xu X, Hu G, Wang H, Chen X. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review. Medicine (Baltimore) 2022; 101:e32394. [PMID: 36595834 PMCID: PMC9794298 DOI: 10.1097/md.0000000000032394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer has a high morbidity and mortality; therefore, it poses a major global health concern. Imbalance in endoplasmic reticulum homeostasis can induce endoplasmic reticulum stress (ERS). ERS has been shown to play both tumor-promoting and tumor-suppressive roles in various cancer types by activating a series of adaptive responses to promote tumor cell survival and inducing ERS-related apoptotic pathways to promote tumor cell death, inhibit tumor growth and suppress tumor invasion. Because multiple roles of ERS in tumors continue to be reported, many studies have attempted to target ERS in cancer therapy. The therapeutic effects of traditional Chinese medicine (TCM) treatments on tumors have been widely recognized. TCM treatments can enhance the sensitivity of tumor radiotherapy, delay tumor recurrence and improve patients' quality of life. However, there are relatively few reports exploring the antitumor effects of TCM from the perspective of ERS. This review addresses the progress of TCM intervention in tumors via ERS with a view to providing a new direction for tumor treatment.
Collapse
Affiliation(s)
- Fan Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Li Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiuli Xu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueran Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- * Correspondence: Xueran Chen, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (e-mail: )
| |
Collapse
|
11
|
Bejan DS, Sundalam S, Jin H, Morgan RK, Kirby IT, Siordia IR, Tivon B, London N, Cohen MS. Structure-guided design and characterization of a clickable, covalent PARP16 inhibitor. Chem Sci 2022; 13:13898-13906. [PMID: 36544740 PMCID: PMC9710212 DOI: 10.1039/d2sc04820e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
PARP16-the sole ER-resident PARP family member-is gaining attention as a potential therapeutic target for cancer treatment. Nevertheless, the precise function of the catalytic activity of PARP16 is poorly understood. This is primarily due to the lack of inhibitors that are selective for PARP16 over other PARP family members. Herein, we describe a structure-guided strategy for generating a selective PARP16 inhibitor by incorporating two selectivity determinants into a phthalazinone pan-PARP inhibitor scaffold: (i) an acrylamide-based inhibitor (DB008) designed to covalently react with a non-conserved cysteine (Cys169, human numbering) in the NAD+ binding pocket of PARP16 and (ii) a dual-purpose ethynyl group designed to bind in a unique hydrophobic cavity adjacent to the NAD+ binding pocket as well as serve as a click handle. DB008 exhibits good selectivity for PARP16 versus other PARP family members. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) confirmed that covalent labeling of PARP16 by DB008 in cells is dependent on Cys169. DB008 exhibits excellent proteome-wide selectivity at concentrations required to achieve saturable labeling of endogenous PARP16. In-cell competition labeling experiments using DB008 provided a facile strategy for evaluating putative PARP16 inhibitors. Lastly, we found that PARP16 is sequestered into a detergent-insoluble fraction under prolonged amino acid starvation, and surprisingly, treatment with PARP16 inhibitors prevented this effect. These results suggest that the catalytic activity of PARP16 regulates its solubility in response to nutrient stress.
Collapse
Affiliation(s)
- Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Sunil Sundalam
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Rory K Morgan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Ilsa T Kirby
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Ivan R Siordia
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| | - Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science Rehovot 7610001 Israel
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University Portland OR 97239 USA
| |
Collapse
|
12
|
Nizi M, Maksimainen MM, Lehtiö L, Tabarrini O. Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules. J Med Chem 2022; 65:7532-7560. [PMID: 35608571 PMCID: PMC9189837 DOI: 10.1021/acs.jmedchem.2c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical "H-Y-Φ" motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors.
Collapse
Affiliation(s)
- Maria
Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| |
Collapse
|
13
|
Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Front Cell Dev Biol 2022; 10:864101. [PMID: 35652091 PMCID: PMC9149570 DOI: 10.3389/fcell.2022.864101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation is a well-established post-translational modification that is inherently connected to diverse processes, including DNA repair, transcription, and cell signaling. The crucial roles of mono-ADP-ribosyltransferases (mono-ARTs) in biological processes have been identified in recent years by the comprehensive use of genetic engineering, chemical genetics, and proteomics. This review provides an update on current methodological advances in the study of these modifiers. Furthermore, the review provides details on the function of mono ADP-ribosylation. Several mono-ARTs have been implicated in the development of cancer, and this review discusses the role and therapeutic potential of some mono-ARTs in cancer.
Collapse
Affiliation(s)
- Yujie Gan
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
- *Correspondence: Jifeng Feng,
| | - Jianzhong Wu
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
14
|
Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BS, Luo L, Wang C, Zeng L, Xiao B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B 2022; 12:907-923. [PMID: 35256954 PMCID: PMC8897038 DOI: 10.1016/j.apsb.2021.08.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Although several artificial nanotherapeutics have been approved for practical treatment of metastatic breast cancer, their inefficient therapeutic outcomes, serious adverse effects, and high cost of mass production remain crucial challenges. Herein, we developed an alternative strategy to specifically trigger apoptosis of breast tumors and inhibit their lung metastasis by using natural nanovehicles from tea flowers (TFENs). These nanovehicles had desirable particle sizes (131 nm), exosome-like morphology, and negative zeta potentials. Furthermore, TFENs were found to contain large amounts of polyphenols, flavonoids, functional proteins, and lipids. Cell experiments revealed that TFENs showed strong cytotoxicities against cancer cells due to the stimulation of reactive oxygen species (ROS) amplification. The increased intracellular ROS amounts could not only trigger mitochondrial damage, but also arrest cell cycle, resulting in the in vitro anti-proliferation, anti-migration, and anti-invasion activities against breast cancer cells. Further mice investigations demonstrated that TFENs after intravenous (i.v.) injection or oral administration could accumulate in breast tumors and lung metastatic sites, inhibit the growth and metastasis of breast cancer, and modulate gut microbiota. This study brings new insights to the green production of natural exosome-like nanoplatform for the inhibition of breast cancer and its lung metastasis via i.v. and oral routes.
Collapse
Key Words
- AF633, Alexa Fluor 633-labeled phalloidin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, urea nitrogen
- Breast cancer
- CDK, CYCLIN-dependent kinase
- CRE, creatinine
- DAF-FM DA, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate
- DAPI, 4′,6-diamidino-2-phenylindole
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- DGDG, digalactosyl diacylglycerols
- DHE, dihydroethidium
- DLS, dynamic light scattering
- DiO, 3,3′-dioctadecyloxacarbocyanine perchlorate
- DiR, 1,1′-dioctadecyl-3,3,3′′,3′-tetramethylindotricarbocyanine iodide
- EC, epicatechin
- ECG, epicatechin gallate
- EGCG, epigallocatechin gallate
- Exosome-like nanoparticle
- FBS, fetal bovine serum
- GIT, gastrointestinal tract
- H&E, Hematoxylin & Eosin
- HPLC, high-performance liquid chromatography
- Intravenous injection
- LC‒MS, liquid chromatography‒mass spectrometry
- MFI, mean fluorescence intensity
- MGDG, monogalactosyl diacylglycerols
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Metastasis
- Microbiota modulation
- NO, nitrogen monoxide
- NPs, nanoparticles
- OUT, operational taxonomic unit
- Oral administration
- PA, phosphatidic acids
- PBS, phosphate-buffered saline
- PC, phosphatidylcholines
- PDI, polydispersity index
- PE, phosphatidylethanolamines
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PLT, platelets
- PMe, phosphatidylmethanol
- PS, phosphatidylserine
- RBC, red blood cell
- RNS, reactive nitrogen species
- ROS generation
- ROS, reactive oxygen species
- SA, superoxide anion
- SQDG, sulphoquinovosyl diylyceride
- TEM, transmission electron microscopy
- TFENs, exosome-like NPs from tea flowers
- TG, triglyceride
- TUNEL, TdT-mediated dUTP Nick-end labeling
- Tea flower
- WBC, white blood cell
Collapse
|
15
|
Richard IA, Burgess JT, O'Byrne KJ, Bolderson E. Beyond PARP1: The Potential of Other Members of the Poly (ADP-Ribose) Polymerase Family in DNA Repair and Cancer Therapeutics. Front Cell Dev Biol 2022; 9:801200. [PMID: 35096828 PMCID: PMC8795897 DOI: 10.3389/fcell.2021.801200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023] Open
Abstract
The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Iain A Richard
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Joshua T Burgess
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
Sha H, Gan Y, Zou R, Wu J, Feng J. Research Advances in the Role of the Poly ADP Ribose Polymerase Family in Cancer. Front Oncol 2022; 11:790967. [PMID: 34976832 PMCID: PMC8716401 DOI: 10.3389/fonc.2021.790967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Poly ADP ribose polymerases (PARPs) catalyze the modification of acceptor proteins, DNA, or RNA with ADP-ribose, which plays an important role in maintaining genomic stability and regulating signaling pathways. The rapid development of PARP1/2 inhibitors for the treatment of ovarian and breast cancers has advanced research on other PARP family members for the treatment of cancer. This paper reviews the role of PARP family members (except PARP1/2 and tankyrases) in cancer and the underlying regulatory mechanisms, which will establish a molecular basis for the clinical application of PARPs in the future.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Gan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Renrui Zou
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Long F, Yang D, Wang J, Wang Q, Ni T, Wei G, Zhu Y, Liu X. SMYD3-PARP16 axis accelerates unfolded protein response and mediates neointima formation. Acta Pharm Sin B 2021; 11:1261-1273. [PMID: 34094832 PMCID: PMC8148056 DOI: 10.1016/j.apsb.2020.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Neointimal hyperplasia after vascular injury is a representative complication of restenosis. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is involved in the pathogenesis of vascular intimal hyperplasia. PARP16, a member of the poly(ADP-ribose) polymerases family, is correlated with the nuclear envelope and the ER. Here, we found that PERK and IRE1α are ADP-ribosylated by PARP16, and this might promote proliferation and migration of smooth muscle cells (SMCs) during the platelet-derived growth factor (PDGF)-BB stimulating. Using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) analysis, PARP16 was identified as a novel target gene for histone H3 lysine 4 (H3K4) methyltransferase SMYD3, and SMYD3 could bind to the promoter of Parp16 and increased H3K4me3 level to activate its host gene's transcription, which causes UPR activation and SMC proliferation. Moreover, knockdown either of PARP16 or SMYD3 impeded the ER stress and SMC proliferation. On the contrary, overexpression of PARP16 induced ER stress and SMC proliferation and migration. In vivo depletion of PARP16 attenuated injury-induced neointimal hyperplasia by mediating UPR activation and neointimal SMC proliferation. This study identified SMYD3-PARP16 is a novel signal axis in regulating UPR and neointimal hyperplasia, and targeting this axis has implications in preventing neointimal hyperplasia related diseases.
Collapse
Key Words
- ATF6, activating transcription factor 6
- BIP, immunoglobulin heavy-chain binding protein
- ChIP-seq, chromatin immunoprecipitation coupled with deep sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- ECM, extracellular matrix
- EGCG, epigallocatechin-3-gallate
- ER, endoplasmic reticulum
- Endoplasmic reticulum
- H3K4, histone H3 lysine 4
- IACUC, Institutional Animal Care and Use Committee
- IRE1, inositol-requiring enzyme 1
- MMP, matrix metal proteinase
- Neointimal hyperplasia
- PARP, poly(ADP-ribose) polymerases
- PARP16
- PCNA, proliferating cell nuclear antigen
- PDGF, platelet-derived growth factor
- PERK, protein kinase R (PKR)-like ER kinase
- SMCs, smooth muscle cells
- SMYD3
- SMYD3, SET and MYND domain containing 3
- UPR, unfolded protein response
- VCAM-1, vascular cell adhesion molecule-1
- VSMCs, vascular smooth muscle cells
- Vascular smooth muscle cell
- XBP-1, X-box binding protein-1
- p-PERK, phosphate-PKR-like ER kinase
- p-eIF2α, phosphate-eukaryotic initiation factor 2α
- siRNA, small interfering RNA
Collapse
|
20
|
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Li A. Plant Natural Products: Promising Resources for Cancer Chemoprevention. Molecules 2021; 26:933. [PMID: 33578780 PMCID: PMC7916513 DOI: 10.3390/molecules26040933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major factor threatening human health and life safety, and there is a lack of safe and effective therapeutic drugs. Intervention and prevention in premalignant process are effective ways to reverse carcinogenesis and prevent cancer from occurring. Plant natural products are rich in sources and are a promising source for cancer chemoprevention. This article reviews the chemopreventive effects of natural products, especially focused on polyphenols, flavonoids, monoterpene and triterpenoids, sulfur compounds, and cellulose. Meanwhile, the main mechanisms include induction of apoptosis, antiproliferation and inhibition of metastasis are briefly summarized. In conclusion, this article provides evidence for natural products remaining a prominent source of cancer chemoprevention.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - MengMeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - YueRong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
21
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Yang D, Wang Q, Wei G, Wu J, Zhu YC, Zhu Q, Ni T, Liu X, Zhu YZ. Smyd3-PARP16 axis accelerates unfolded protein response and vascular aging. Aging (Albany NY) 2020; 12:21423-21445. [PMID: 33144524 PMCID: PMC7695420 DOI: 10.18632/aging.103895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Vascular endothelial cell senescence and endoplasmic reticulum (ER) stress induced unfolded protein response (UPR) are two critical contributors to individual aging. However, whether these two biological events have crosstalk and are controlled by shared upstream regulators are largely unknown. Here, we found PARP16, a member of the Poly (ADP-ribose) polymerases family that tail-anchored ER transmembrane, was upregulated in angiotensin II (Ang II)-induced vascular aging and promoted UPR. Further, PARP16 was epigenetically upregulated by Smyd3, a histone H3 lysine 4 methyltransferase that bound to the promotor region of Parp16 gene and increased H3K4me3 level to activate its host gene’s transcription. Intervention of either Smyd3 or PARP16 ameliorated vascular aging associated phenotypes in both cell and mice models. This study identified Smyd3-PARP16 as a novel signal axis in regulating UPR and endothelial senescence, and targeting this axis has implications in preventing vascular aging and related diseases.
Collapse
Affiliation(s)
- Di Yang
- Department of Pharmacology, Human Phenome Institute, School of Pharmacy, Fudan University, Shanghai, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, P.R. China.,Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| | - Qing Wang
- Department of Pharmacology, Human Phenome Institute, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yi Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xinhua Liu
- Department of Pharmacology, Human Phenome Institute, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Yi Zhun Zhu
- Department of Pharmacology, Human Phenome Institute, School of Pharmacy, Fudan University, Shanghai, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, P.R. China.,Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
23
|
Centko RM, Carlile GW, Barne I, Patrick BO, Blagojevic P, Thomas DY, Andersen RJ. Combination of Selective PARP3 and PARP16 Inhibitory Analogues of Latonduine A Corrects F508del-CFTR Trafficking. ACS OMEGA 2020; 5:25593-25604. [PMID: 33073085 PMCID: PMC7557227 DOI: 10.1021/acsomega.0c02467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The marine natural product latonduine A (1) shows F508del-cystic fibrosis transmembrane regulator (CFTR) corrector activity in cell-based assays. Pull-down experiments, enzyme inhibition assays, and siRNA knockdown experiments suggest that the F508del-CFTR corrector activities of latonduine A and a synthetic analogue MCG315 (4) result from simultaneous inhibition of PARP3 and PARP16. A library of synthetic latonduine A analogs has been prepared in an attempt to separate the PARP3 and PARP16 inhibitory properties of latonduine A with the goal of discovering selective small-molecule PARP3 and PARP16 inhibitory cell biology tools that could confirm the proposed dual-target F508del-CFTR corrector mechanism of action. The structure activity relationship (SAR) study reported herein has resulted in the discovery of the modestly potent (IC50 3.1 μM) PARP3 selective inhibitor (±)-5-hydroxy-4-phenyl-2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one (5) that shows 96-fold greater potency for inhibition of PARP3 compared with its inhibition of PARP16 in vitro and the potent (IC50 0.362 μM) PARP16 selective inhibitor (±)-7,8-dichloro-5-hydroxy-4-(pyridin-2-yl)-2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one (6) that shows 205-fold selectivity for PARP16 compared with PARP3 in vitro. At 1 or 10 μM, neither 5 or 6 alone showed F508del-CFTR corrector activity, but when added together at 1 or 10 μM each, the combination exhibited F508del-CFTR corrector activity identical to 1 or 10 μM latonduine A (1), respectively, supporting its novel dual PARP target mechanism of action. Latonduine A (1) showed additive in vitro corrector activity in combination with the clinically approved corrector VX809, making it a potential new partner for cystic fibrosis combination drug therapies.
Collapse
Affiliation(s)
- Ryan M. Centko
- Department
of Chemistry and Department of Earth, Ocean & Atmospheric
Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
| | - Graeme W. Carlile
- Departments
of Biochemistry and Human Genetics and The Cystic Fibrosis Translational
Research Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Isabel Barne
- Department
of Chemistry and Department of Earth, Ocean & Atmospheric
Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
| | - Brian O. Patrick
- Department
of Chemistry and Department of Earth, Ocean & Atmospheric
Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
| | - Polina Blagojevic
- Department
of Chemistry and Department of Earth, Ocean & Atmospheric
Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
| | - David Y. Thomas
- Departments
of Biochemistry and Human Genetics and The Cystic Fibrosis Translational
Research Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Raymond J. Andersen
- Department
of Chemistry and Department of Earth, Ocean & Atmospheric
Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
| |
Collapse
|
24
|
Bimonte S, Cascella M. The Potential Roles of Epigallocatechin-3-Gallate in the Treatment of Ovarian Cancer: Current State of Knowledge. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4245-4250. [PMID: 33116412 PMCID: PMC7567575 DOI: 10.2147/dddt.s253092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Ovarian cancer represents the principal leading cause of women dying in the world. The first standard of care involved surgical resection followed by chemotherapy with taxane and platinum, mainly connected with cytotoxic chemotherapies causing diverse severe side effects. Unfortunately, recurrence represents a significant problem, and finally, patients develop resistance to cytotoxic chemotherapy. Other alternative treatments had been developed so far to reduce side effects; however, the outcomes are yet not empowering. Current shreds of evidence showed that epigallocatechin-3-gallate (EGCG) possesses an anticancer effect on ovarian carcinoma, mainly through the inhibition of different genetic signaling pathways which are closely linked with tumorigenesis. This review recapitulates these findings and highlights the roles of EGCG for the chemoprevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
25
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
26
|
Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells. Int J Mol Sci 2019; 20:ijms20102518. [PMID: 31121863 PMCID: PMC6566956 DOI: 10.3390/ijms20102518] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has diverse functions, and especially misfolded protein modification is in the focus of this review paper. With a highly regulatory mechanism, called unfolded protein response (UPR), it protects cells from the accumulation of misfolded proteins. Nevertheless, not only does UPR modify improper proteins, but it also degrades proteins that are unable to recover. Three pathways of UPR, namely PERK, IRE-1, and ATF6, have a significant role in regulating stress-induced physiological responses in cells. The dysregulated UPR may be involved in diseases, such as atherosclerosis, heart diseases, amyotrophic lateral sclerosis (ALS), and cancer. Here, we discuss the relation between UPR and cancer, considering several aspects including survival, dormancy, immunosuppression, angiogenesis, and metastasis of cancer cells. Although several moderate adversities can subject cancer cells to a hostile environment, UPR can ensure their survival. Excessive unfavorable conditions, such as overloading with misfolded proteins and nutrient deprivation, tend to trigger cancer cell death signaling. Regarding dormancy and immunosuppression, cancer cells can survive chemotherapies and acquire drug resistance through dormancy and immunosuppression. Cancer cells can also regulate the downstream of UPR to modulate angiogenesis and promote metastasis. In the end, regulating UPR through different molecular mechanisms may provide promising anticancer treatment options by suppressing cancer proliferation and progression.
Collapse
|
27
|
Shi J, Zhang M, Zhang L, Deng H. Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:466-472. [PMID: 29679944 DOI: 10.1016/j.envpol.2018.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
Collapse
Affiliation(s)
- Jun Shi
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, China; Shanghai Institute of Pollution Control and Ecological Safety, China
| | - Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China.
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| | - Huipin Deng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, China; Shanghai Institute of Pollution Control and Ecological Safety, China
| |
Collapse
|
28
|
Martinotti S, Ranzato E, Burlando B. (-)- Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress. J Cell Physiol 2018; 233:7082-7090. [PMID: 29744892 DOI: 10.1002/jcp.26631] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/30/2018] [Indexed: 12/15/2022]
Abstract
GRP78 is a molecular chaperone of the endoplasmic reticulum (ER) that aids proper folding of nascent polypeptides. When unfolded proteins accumulate, GRP78 triggers unfolded protein response (UPR), involving activation of transcription factors like XBP1 and CHOP that may restore cell homeostasis. Increased expression of GRP78 and mild UPR can be constitutive in cancer cells, hindering apoptosis, and promoting cell survival, for example, by GRP78 relocation to the plasma membrane that activates MAPK and PI3 K/AKT pathways. These processes are thought to favor the insurgence of chemoresistance and worsen patient outcome. We have previously shown that (-)-epigallocatechin-3-gallate (EGCG) enhances ROS production and alters Ca2+ homeostasis in cell lines deriving from therapy-recalcitrant malignant mesothelioma (MMe). We consider here the EGCG impact on GRP78 and downstream factors by using qRT-PCR, Western blot, immunofluorescence, caspase assays, GRP78 siRNA silencing, and cell surface ELISA. MMe cells were found to display mild constitutive UPR, as shown by increased levels of GRP78, and presence of the protein at the cell surface, linked to AKT activation. Exposure to EGCG further increased GRP78 in the ER, and induced ATF4, spliced XBP1, CHOP, and EDEM expressions, combined with a reduction of cell surface GRP78 and a rise in caspase 3 and 8 activities. We propose that GRP78 accumulation in the ER, caused by EGCG, converts constitutive UPR of MMe cells into proapoptotic ER stress. This argues for a possible therapeutic use of EGCG in the treatment of MMe as a co-drug able to abolish chemoresistance to conventional drugs at tolerable doses.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e InnovazioneTecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e InnovazioneTecnologica, University of Piemonte Orientale, Vercelli, Italy
| | - Bruno Burlando
- DIFAR-Department of Pharmacy, University of Genova, Genova, Italy.,Biophysics Institute, National Research Council (CNR), Genova, Italy
| |
Collapse
|
29
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
30
|
Label-free Microarray-based Binding Affinity Constant Measurement with Modified Fluidic Arrangement. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2102-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Abstract
ADP-ribosylation, including poly-ADP-ribosylation (PARylation) and mono-ADP-ribosylation (MARylation), is a multifunctional post-translational modification catalyzed by intracellular ADP-ribosyltransferases (ARTDs or PARPs). Although PARylation has been investigated most thoroughly, the function of MARylation is currently largely undefined. Here, we provide evidences that deficiency of PARP10, a mono-ADP-ribosyltransferase, markedly increased the migration and invasion of tumor cells through regulation of epithelial-mesenchymal transition (EMT), and PARP10 inhibited tumor metastasis in vivo, which was dependent on its enzyme activity. Mechanistically, we found that PARP10 interacted with and mono-ADP-ribosylated Aurora A, and inhibited its kinase activity, thereby regulating its downstream signaling. Moreover, the expression level of PARP10 was downregulated in intrahepatic metastatic hepatocellular carcinoma (HCC) compared with its corresponding primary HCC and adjacent non-tumorous tissues. Taken together, our results indicated that PARP10 has an important role in tumor metastasis suppression via negatively regulation of Aurora A activity.
Collapse
|
32
|
Zhu C, Ge B, Chen R, Zhu X, Mi L, Ma J, Wang X, Zheng F, Fei Y. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens. SENSORS (BASEL, SWITZERLAND) 2018; 18:E524. [PMID: 29425166 PMCID: PMC5854966 DOI: 10.3390/s18020524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
Total internal reflection (TIR) is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane) is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD) in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm² with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.
Collapse
Affiliation(s)
- Chenggang Zhu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Bilin Ge
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Ru Chen
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Xiangdong Zhu
- Department of Physics, University of California, Davis, CA 95616, USA.
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Xu Wang
- Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China.
| | - Fengyun Zheng
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| |
Collapse
|