1
|
Sonam Dongsar T, Tsering Dongsar T, Molugulu N, Annadurai S, Wahab S, Gupta N, Kesharwani P. Targeted therapy of breast tumor by PLGA-based nanostructures: The versatile function in doxorubicin delivery. ENVIRONMENTAL RESEARCH 2023; 233:116455. [PMID: 37356522 DOI: 10.1016/j.envres.2023.116455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Bots ST, Kemp V, Cramer SJ, van den Wollenberg DJ, Hornsveld M, Lamfers ML, van der Pluijm G, Hoeben RC. Nonhuman Primate Adenoviruses of the Human Adenovirus B Species Are Potent and Broadly Acting Oncolytic Vector Candidates. Hum Gene Ther 2022; 33:275-289. [PMID: 34861769 PMCID: PMC8972008 DOI: 10.1089/hum.2021.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.
Collapse
Affiliation(s)
- Selas T.F. Bots
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J. Cramer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marten Hornsveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Targeting CD46 Enhances Anti-Tumoral Activity of Adenovirus Type 5 for Bladder Cancer. Int J Mol Sci 2018; 19:ijms19092694. [PMID: 30201920 PMCID: PMC6164063 DOI: 10.3390/ijms19092694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
CD46 is generally overexpressed in many human cancers, representing a prime target for CD46-binding adenoviruses (Ads). This could help to overcome low anti-tumoral activity by coxsackie-adenoviral receptor (CAR)-targeting cancer gene therapy viruses. However, because of scarce side-by-side information about CAR and CD46 expression levels in cancer cells, mixed observations of cancer therapeutic efficacy have been observed. This study evaluated Ad-mediated therapeutic efficacy using either CAR-targeting Ad5 or CD46-targeting Ad5/35 fiber chimera in bladder cancer cell lines. Compared with normal urothelia, bladder cancer tissue generally overexpressed both CAR and CD46. While CAR expression was not correlated with disease progression, CD46 expression was inversely correlated with tumor grade, stage, and risk grade. In bladder cancer cell lines, expression levels of CD46 and CAR were highly correlated with Ad5/35- and Ad5-mediated gene transduction and cytotoxicity, respectively. In a human EJ bladder cancer xenograft mouse model, with either overexpressed or suppressed CD46 expression levels, Ad5/35-tk followed by ganciclovir (GCV) treatment significantly affected tumor growth, whereas Ad5-tk/GCV had only minimal effects. Overall, our findings suggest that bladder cancer cells overexpress both CAR and CD46, and that adenoviral cancer gene therapy targeting CD46 represents a more suitable therapy option than a CAR-targeting therapy, especially in patients with low risk bladder cancers.
Collapse
|
4
|
Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee K, Lee SJ, Hemmi S, Joo YE, Kim MS, Jung C. Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers. Oncotarget 2018; 7:38210-38223. [PMID: 27203670 PMCID: PMC5122383 DOI: 10.18632/oncotarget.9427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
CD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46. Since our finding from tumor microarray indicate that CD46 was overexpressed in cancers of the prostate and colon, fiber chimeric Ad5/35 vectors that have infection tropism for CD46 were employed to demonstrate its efficacy in colorectal cancers (CRC). CD46-overexpressed cells showed a significantly higher response to Ad5/35-GFP and to Ad5/35-tk/GCV. While CRC cells express variable levels of CD46, CD46 expression was positively correlated with Ad5/35-mediated GFP fluorescence and accordingly its cell killing. Injection of Ad5/35-tk/GCV caused much greater tumor-suppression in mice bearing CD46-overexpressed cancer xenograft compared to mock group. Analysis of CRC samples revealed that patients with positive CD46 expression had a higher survival rate (p=0.031), carried tumors that were well-differentiated, but less invasive and metastatic, and with a low T stage (all p<0.05). Taken together, our study demonstrated that species B-based adenoviral gene therapy is a suitable approach for generally CD46-overexpressed CRC but would require careful consideration preceding CD46 analysis and categorizing CRC patients.
Collapse
Affiliation(s)
- Young-Suk Cho
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Manh-Hung Do
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Se-Young Kwon
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
5
|
Fang L, Cheng Q, Liu W, Zhang J, Ge Y, Zhang Q, Li L, Liu J, Zheng J. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell. Cancer Biol Ther 2016; 17:664-73. [PMID: 27195521 DOI: 10.1080/15384047.2016.1190485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ASBTARCT Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.
Collapse
Affiliation(s)
- Lin Fang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Qian Cheng
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Wenshun Liu
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Jie Zhang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Yan Ge
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Qi Zhang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Liantao Li
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China.,b Cancer Center, Affiliated Hospital of Xuzhou Medical College , Xuzhou , China
| | - Junjie Liu
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Junnian Zheng
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China.,b Cancer Center, Affiliated Hospital of Xuzhou Medical College , Xuzhou , China.,c Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College , Xuzhou , China
| |
Collapse
|
6
|
Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. NANOSCALE 2016; 8:6981-5. [PMID: 26975904 DOI: 10.1039/c5nr07588b] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Core-shell type 'nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines.
Collapse
Affiliation(s)
- S Krishnamurthy
- School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Block N1.3, #B4-10, 70 Nanyang Drive, Singapore 637457.
| | - M K Gnanasammandhan
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA, #03-12, Singapore 117575
| | - C Xie
- School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Block N1.3, #B4-10, 70 Nanyang Drive, Singapore 637457.
| | - K Huang
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA, #03-12, Singapore 117575
| | - M Y Cui
- School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Block N1.3, #B4-10, 70 Nanyang Drive, Singapore 637457.
| | - J M Chan
- School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Block N1.3, #B4-10, 70 Nanyang Drive, Singapore 637457.
| |
Collapse
|
7
|
Ulasov IV, Shah N, Kaverina NV, Lee H, Lin B, Lieber A, Kadagidze ZG, Yoon JG, Schroeder B, Hothi P, Ghosh D, Baryshnikov AY, Cobbs CS. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget 2016; 6:3977-87. [PMID: 25738357 PMCID: PMC4414167 DOI: 10.18632/oncotarget.2897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA.,Institute of Experimental Diagnostic and Biotherapy, NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478
| | - Nameeta Shah
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Natalya V Kaverina
- NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478.,Current address: Division of Nephrology, University of Washington, Seattle, 98109, USA
| | - Hwahyang Lee
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Biaoyang Lin
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Andre Lieber
- University of Washington, Seattle, WA, 98122, USA
| | | | - Jae-Guen Yoon
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lin Y, Xiang Z, He Y. Ontology-based representation and analysis of host-Brucella interactions. J Biomed Semantics 2015; 6:37. [PMID: 26445639 PMCID: PMC4594885 DOI: 10.1186/s13326-015-0036-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/23/2015] [Indexed: 11/26/2022] Open
Abstract
Background Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Results Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host-Brucella interactions and implemented in IDOBRU. Current IDOBRU includes 3611 ontology terms. SPARQL queries identified many results that are critical to the host-Brucella interactions. For example, out of 269 protein virulence factors related to macrophage-Brucella interactions, 81 are critical to Brucella intracellular replication inside macrophages. A SPARQL query also identified 11 biological processes important for Brucella virulence. Conclusions To systematically represent and analyze fundamental host-pathogen interaction mechanisms, we provided for the first time comprehensive ontological modeling of host-pathogen interactions using Brucella as the pathogen model. The methods and ontology representations used in our study are generic and can be broadened to study the interactions between hosts and other pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13326-015-0036-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Lin
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Zuoshuang Xiang
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| |
Collapse
|
9
|
Anticancer gene transfer for cancer gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:255-80. [PMID: 25001541 DOI: 10.1007/978-1-4471-6458-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field.
Collapse
|
10
|
A potential therapeutic strategy for malignant mesothelioma with gene medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:572609. [PMID: 23484132 PMCID: PMC3581274 DOI: 10.1155/2013/572609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 12/29/2022]
Abstract
Malignant mesothelioma, closely linked with occupational asbestos exposure, is relatively rare in the frequency, but the patient numbers are going to increase in the next few decades all over the world. The current treatment modalities are not effective in terms of the overall survival and the quality of life. Mesothelioma mainly develops in the thoracic cavity and infrequently metastasizes to extrapleural organs. A local treatment can thereby be beneficial to the patients, and gene therapy with an intrapleural administration of vectors is one of the potential therapeutics. Preclinical studies demonstrated the efficacy of gene medicine for mesothelioma, and clinical trials with adenovirus vectors showed the safety of an intrapleural injection and a possible involvement of antitumor immune responses. Nevertheless, low transduction efficiency remains the main hurdle that hinders further clinical applications. Moreover, rapid generation of antivector antibody also inhibits transgene expressions. In this paper, we review the current status of preclinical and clinical gene therapy for malignant mesothelioma and discuss potential clinical directions of gene medicine in terms of a combinatory use with anticancer agents and with immunotherapy.
Collapse
|
11
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|