1
|
Honrath S, Scherer D, Burger M, Leroux JC. Interaction proteomics analysis to provide insight into TFAMoplex-mediated transfection. J Control Release 2024; 373:252-264. [PMID: 39009084 DOI: 10.1016/j.jconrel.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
In an earlier investigation, our group introduced the TFAMoplex, a transfection agent based on the mitochondrial transcription factor A (TFAM) protein, which complexes DNA into nanoparticles. The original TFAMoplex further contained a bacterial phospholipase to achieve endosomal escape, and the vaccinia-related kinase 1 (VRK1), which significantly boosted the transfection efficiency of the system by an unknown mechanism. This study aims at replacing VRK1 within the TFAMoplex with dynein light chain proteins, specifically RP3, to directly tether the complexes to the dynein motor complex for enhanced cytosolic transport. To confirm the interaction between the dynein complex and the resulting fusion protein, we examined the binding kinetics of TFAM-RP3 to the dynein intermediate chains 1 and 2. Furthermore, we established a proteomics-based assay to compare cytosolic protein interactions of different TFAMoplex variants, including the RP3-modified version and the original VRK1-containing system. In the group of the VRK1-containing TFAMoplex, significant shifts of protein interactors were observed, especially for nucleolar proteins. Leveraging this knowledge, we incorporated one of these nuclear proteins, leucine-rich repeat-containing protein 59 (LRRC59), into the TFAMoplex, resulting in a significant improvement of transfection properties compared to the RP3-modified system and comparable levels versus the original, VRK1-containing version. This study not only advances our comprehension of the TFAMoplex system but also offers broader insights into the potential of protein engineering for designing effective gene delivery systems.
Collapse
Affiliation(s)
- Steffen Honrath
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - David Scherer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michael Burger
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland..
| | - Jean-Christophe Leroux
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland..
| |
Collapse
|
2
|
Lai Y, Lin Y. Biological functions and therapeutic potential of CKS2 in human cancer. Front Oncol 2024; 14:1424569. [PMID: 39188686 PMCID: PMC11345170 DOI: 10.3389/fonc.2024.1424569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The incidence of cancer is increasing worldwide and is the most common cause of death. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Cyclin-dependent kinase subunit 2 (CKS2) is involved in cell cycle and proliferation processes, and based on these processes, CKS2 was identified as a cancer gene. CKS2 is expressed in a variety of tissues in the human body, but its abnormal expression is associated with cancer in a variety of systems. CKS2 is generally elevated in cancer, plays a role in almost all aspects of cancer biology (such as cell proliferation, invasion, metastasis, and drug resistance) through multiple mechanisms regulating certain important genes, and is associated with clinicopathological features of patients. In addition, CKS2 expression patterns are closely related to cancer type, stage and other clinical variables. Therefore, CKS2 is considered as a tool for cancer diagnosis and prognosis and may be a promising tumor biomarker and therapeutic target. This article reviews the biological function, mechanism of action and potential clinical significance of CKS2 in cancer, in order to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy and scientific research of cancer.
Collapse
Affiliation(s)
- Yueliang Lai
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Ye Lin
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Guan X, Guo H, Guo Y, Han Q, Li Z, Zhang C. Perforin 1 in Cancer: Mechanisms, Therapy, and Outlook. Biomolecules 2024; 14:910. [PMID: 39199299 PMCID: PMC11352983 DOI: 10.3390/biom14080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
PRF1 (perforin 1) is a key cytotoxic molecule that plays a crucial role in the killing function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Recent studies have focused on PRF1's role in cancer development, progression, and prognosis. Studies have shown that aberrant PRF1 expression has a significant role to play in cancer development and progression. In some cancers, high expression of the PRF1 gene is associated with a better prognosis for patients, possibly because it helps enhance the body's immune response to tumors. However, some studies have also shown that the absence of PRF1 may make it easier for tumors to evade the body's immune surveillance, thus affecting patient survival. Furthermore, recent studies have explored therapeutic strategies based on PRF1, such as enhancing the ability of immune cells to kill cancer cells by boosting PRF1 activity. In addition, they have improved the efficacy of immunotherapy by modulating its expression to enhance the effectiveness of the treatment. Based on these findings, PRF1 may be a valuable biomarker both for the treatment of cancer and for its prognosis in the future. To conclude, PRF1 has an important biological function and has clinical potential for the treatment of cancer, which indicates that it deserves more research and development in the future.
Collapse
Affiliation(s)
- Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; (H.G.); (Y.G.); (Q.H.); (Z.L.)
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
6
|
Xue JD, Xiang WF, Cai MQ, Lv XY. Biological functions and therapeutic potential of SRY related high mobility group box 5 in human cancer. Front Oncol 2024; 14:1332148. [PMID: 38835366 PMCID: PMC11148273 DOI: 10.3389/fonc.2024.1332148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Cancer is a heavy human burden worldwide, with high morbidity and mortality. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Transcription factors, including SRY associated high mobility group box (SOX) proteins, are thought to be involved in the regulation of specific biological processes. There is growing evidence that SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumor microenvironment, and metastasis. SOX5 is a member of SOX Group D of Sox family. SOX5 is expressed in various tissues of human body and participates in various physiological and pathological processes and various cellular processes. However, the abnormal expression of SOX5 is associated with cancer of various systems, and the abnormal expression of SOX5 acts as a tumor promoter to promote cancer cell viability, proliferation, invasion, migration and EMT through multiple mechanisms. In addition, the expression pattern of SOX5 is closely related to cancer type, stage and adverse clinical outcome. Therefore, SOX5 is considered as a potential biomarker for cancer diagnosis and prognosis. In this review, the expression of SOX5 in various human cancers, the mechanism of action and potential clinical significance of SOX5 in tumor, and the therapeutic significance of Sox5 targeting in cancer were reviewed. In order to provide a new theoretical basis for cancer clinical molecular diagnosis, molecular targeted therapy and scientific research.
Collapse
Affiliation(s)
- Juan-di Xue
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| | - Wan-Fang Xiang
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Ming-Qin Cai
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Xiao-Yun Lv
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, Severino P, Priefer R, Prajapati BG, Maheshwari R. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater 2024; 180:1-17. [PMID: 38604468 DOI: 10.1016/j.actbio.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Cristina Blanco-Llamero
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal
| | | | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Humzah Postwala
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Patricia Severino
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil; Massachusetts College of Pharmacy and Health Sciences University, Boston, MA 02115, USA
| | - Ronny Priefer
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bhupendra Gopalbhai Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
8
|
Adams C, Keller M, Michlitsch JG, Aguayo-Hiraldo P, Chen K, Hossain MZ, Davis A, Park JR, Verneris MR, Gardner RA. Development of a Safety Surveillance Plan for the Academic Medicine Sponsor Performing First-in-Human Cellular Therapy Clinical Trials: A Report from the Consortium for Pediatric Cellular Immunotherapy. Transplant Cell Ther 2024; 30:475-487. [PMID: 38447751 PMCID: PMC11182654 DOI: 10.1016/j.jtct.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Pharmacovigilance (PV), also known as drug safety, is the science of risk management involving the detection, assessment, understanding, and prevention of adverse effects related to a medication. This discipline has traditionally focused on the postmarketing period, with less attention to early-phase clinical trials. However, during the immunotherapy and cellular therapy investigational stage, regulatory agencies are increasingly emphasizing the need to identify and characterize safety signals earlier in clinical development as part of a comprehensive safety surveillance plan. Compliance with PV and safety regulations are further heightened as cell and gene therapy (CGT) trials grow in complexity and scope owing to ever-changing and increasingly rigorous regulatory mandates. Based on this changing landscape, a critical aspect of early-phase trials of cellular products where significant safety events are anticipated is to ensure that every effort is made to protect clinical trial participants by maximizing attention to the risk-versus-benefit profile. This includes the development of robust plans for safety surveillance that provide a continual assessment of safety signals to enable safety reporting to regulatory bodies and the Food and Drug Administration, a regular analysis of aggregate safety data, and a plan to communicate safety findings. This report focuses on PV in early-phase clinical trials of first-in-human investigational products sponsored by academic centers in which the availability of PV resources and subject matter experts is limited. To more fully understand the challenges of CGT PV oversight within pediatric academic medical centers conducting early-phase clinical trials, a working group from institutions participating in the Consortium for Pediatric Cellular Immunotherapy composed of faculty and regulatory professionals was convened to compare experiences, identify best practices, and review published literature to identify commonalities and opportunities for alignment. Here we present guidelines on PV planning in early-phase CGT clinical trials occurring in academic medical centers and offer strategies to mitigate risk to trial participants. Standards to address regulatory requirements and governance for safety signal identification and risk assessment are discussed.
Collapse
Affiliation(s)
- Cheri Adams
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC; GW Cancer Center, George Washington University, Washington, DC
| | | | | | - Karin Chen
- Seattle Children's Hospital, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - Ann Davis
- Seattle Children's Hospital, Seattle, Washington
| | - Julie R Park
- Seattle Children's Hospital, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington; St Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael R Verneris
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca A Gardner
- Seattle Children's Hospital, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington; St Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
9
|
Imran M, Abida, Eltaib L, Siddique MI, Kamal M, Asdaq SMB, Singla N, Al-Hajeili M, Alhakami FA, AlQarni AF, Abdulkhaliq AA, Rabaan AA. Beyond the genome: MALAT1's role in advancing urologic cancer care. Pathol Res Pract 2024; 256:155226. [PMID: 38452585 DOI: 10.1016/j.prp.2024.155226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Urologic cancers (UCs), which include bladder, kidney, and prostate tumors, account for almost a quarter of all malignancies. Long non-coding RNAs (lncRNAs) are tissue-specific RNAs that influence cell growth, death, and division. LncRNAs are dysregulated in UCs, and their abnormal expression may allow them to be used in cancer detection, outlook, and therapy. With the identification of several novel lncRNAs and significant exploration of their functions in various illnesses, particularly cancer, the study of lncRNAs has evolved into a new obsession. MALAT1 is a flexible tumor regulator implicated in an array of biological activities and disorders, resulting in an important research issue. MALAT1 appears as a hotspot, having been linked to the dysregulation of cell communication, and is intimately linked to cancer genesis, advancement, and response to treatment. MALAT1 additionally operates as a competitive endogenous RNA, binding to microRNAs and resuming downstream mRNA transcription and operation. This regulatory system influences cell growth, apoptosis, motility, penetration, and cell cycle pausing. MALAT1's evaluation and prognosis significance are highlighted, with a thorough review of its manifestation levels in several UC situations and its association with clinicopathological markers. The investigation highlights MALAT1's adaptability as a possible treatment target, providing fresh ways for therapy in UCs as we integrate existing information The article not only gathers current knowledge on MALAT1's activities but also lays the groundwork for revolutionary advances in the treatment of UCs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 23624, Saudi Arabia
| | - Fatemah Abdulaziz Alhakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Ahmed Farhan AlQarni
- Histopathology Laboratory, Najran Armed Forces Hospital, Najran 66251, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
10
|
Wang S, Song Y, Shi Q, Qiao G, Zhao Y, Zhou L, Zhao J, Jiang N, Huang H. Safety of dendritic cell and cytokine-induced killer (DC-CIK) cell-based immunotherapy in patients with solid tumor: a retrospective study in China. Am J Cancer Res 2023; 13:4767-4782. [PMID: 37970341 PMCID: PMC10636667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
Systematic assessment of adverse side effects of Adoptive T cell therapy, especially cytokine-induced killer cell and dendric cell treatment Dendritic cells-Cytokine-induced killer (DC-CIK) therapy, especially when combined with chemotherapy, has not been reported. Totally 1100 consecutive patients (2504 trail cycles) enrolled in DC-CIK treatment trials at Beijing Shijitian Hospital between August 2012 and August 2022 were retrospectively reviewed. The 370 patients (34%)/815 cycles enrolled in our trial combined with chemotherapy. In total, 548 (cases)/870 (cycles) patients experienced AEs. The AE class was mainly composed of Neurological 34 cycles (4%), Musculoskeletal 28 cycles (3%), Immunopathies 5 cycles (1%), Hematological 521 cycles (60%), 224 general disorders and administration site conditions cycles (26%), Gastrointestinal 209 cycles (24%), Skin 15 cycles (2%), and 119 Metabolism and Nutrition disorders cycles (14%). The AE class of gastrointestinal (vomiting, P=0.025), nutritional (anorexia, P=0.016), and hematological disorders (anemia P<0.0001, leukopenia P<0.0001) appeared in the DC-CIK treatment and were mainly correlated with chemotherapy. Multiple logistic regression analysis suggested that regardless of whether DC-CIK was combined with chemotherapy, multi-line treatment was more prone to nausea, anorexia, fatigue, anemia, and leukopenia than first-line treatment. However, correlation analysis verified that increasing the number of cycles of DC-CIK treatment alone could reduce the incidence rate of fatigue (P=0.001), anorexia (P<0.0001), and anxiety (P=0.01). Most of the adverse side effects that occurred during autologous DC-CIK treatment were associated with combined or previously applied chemotherapeutic treatment, which also indicated that autologous DC-CIK anti-tumor therapy was safe.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Yuguang Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Qi Shi
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Guoliang Qiao
- Department of Surgical Oncology, Massachusetts General HospitalNo. 55, Fruit Street, Boston, MA 02114, USA
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Lei Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Jing Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Ni Jiang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| | - Hongyan Huang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical UniversityBeijing 100038, China
| |
Collapse
|
11
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
13
|
Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomed Pharmacother 2023; 160:114362. [PMID: 36739763 DOI: 10.1016/j.biopha.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of cancer is increasing globally, and it is the most common cause of death. The identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. SHCSH2 domain-binding protein 1 (SHCBP1) is a protein that specifically binds to the SH2 domain of Src homology-collagen. It participates in the regulation of a variety of signal transduction pathways and can activate a variety of signaling molecules to perform a series of physiological functions. SHCBP1 is expressed in a variety of human tissues, but its abnormal expression in various systems is associated with cancer. SHCBP1 is abnormally expressed in a variety of tumors, and plays roles in almost all aspects of cancer biology (such as cell proliferation, apoptosis prevention, invasion, and metastasis) through various possible mechanisms. Its expression level is related to the clinicopathological characteristics of patients. In addition, the SHCBP1 expression pattern is closely related to cancer type, stage, and other clinical variables. Therefore, SHCBP1 is a promising tumor biomarker for cancer diagnosis and prognosis and a potential therapeutic target. This article reviews the expression, biological functions, mechanisms, and potential clinical significance of SHCBP1 in various human tumors to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy, and scientific research on cancer.
Collapse
|
14
|
Laomeephol C, Areecheewakul S, Tawinwung S, Suppipat K, Chunhacha P, Neves NM, Luckanagul JA. Potential roles of hyaluronic acid in in vivo CAR T cell reprogramming for cancer immunotherapy. NANOSCALE 2022; 14:17821-17840. [PMID: 36472072 DOI: 10.1039/d2nr05949e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has recently shown unprecedented clinical efficacy for cancer treatment, particularly of hematological malignancies. However, the complex manufacturing processes that involve ex vivo genetic modification of autologous T cells limits its therapeutic application. CAR T cells generated in vivo provide a valid alternative immunotherapy, "off-the-shelf", for cancer treatment. This approach requires carriers for the delivery of CAR-encoding constructs, which are plasmid DNA or messenger RNA, to T cells for CAR expression to help eradicate the tumor. As such, there are a growing number of studies reporting gene delivery systems for in vivo CAR T cell therapy based on viral vectors and polymeric nanoparticles. Hyaluronic acid (HA) is a natural biopolymer that can serve for gene delivery, because of its inherent properties of cell recognition and internalization, as well as its biodegradability, biocompatibility, and presence of functional groups for the chemical conjugation of targeting ligands. In this review, the potential of HA in the delivery of CAR constructs is discussed on the basis of previous experience of HA-based nanoparticles for gene therapy. Furthermore, current studies on CAR carriers for in vivo-generated CAR T cells are included, giving an idea of a rational design of HA-based systems for the more efficient delivery of CAR to circulating T cells.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sudartip Areecheewakul
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn University Cancer Immunology Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koramit Suppipat
- Chulalongkorn University Cancer Immunology Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn University Stem Cell and Cell Therapy Research Center, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preedakorn Chunhacha
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Afreen, Manturthi S, nath Velidandi A. Thiazole- and Coumarin-Conjugated (β-Lactam Scaffold) Azetidinones Synthesis and Their Substitution Effect in In Silico, and In Vitro Cell Viability Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kim OH, Choi YW, Hong SA, Hong M, Chang IH, Lee HJ. Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sci 2022; 308:120936. [PMID: 36084759 DOI: 10.1016/j.lfs.2022.120936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
AIMS Mechanical forces surrounding solid tumors are pervasive in the tumor microenvironment (TME) and abnormally altered as solid tumors progress. Although it has been reported that biomechanical forces, including wall shear stress (WSS), enhance the metastatic features of cancer cells, its mechanism remains unknown. Here, we investigate how cancer cells sense mechanical stress and propagate signals in the TME. MAIN METHODS Using a microfluidic device, interstitial fluid-mimicking flow (0.05 dyne cm-2) was applied to the human prostate cancer cell line PC3. Piezo1 siRNA and shRNA lentivirus were applied to PC3 cells to ablate Piezo1 expression. PC3-Luc2 cells expressing control shRNA or shPiezo1 lentivirus were administered into the prostate of BALB/c mice for orthotopic injection. KEY FINDING Here, we show that Piezo1, a mechanosensitive ion channel, is activated by WSS in microfluidic channels. Moreover, Yoda1, a Piezo1 agonist, synergistically potentiates cancer cell motility and nuclear retention of YAP/TAZ via WSS. Also, Piezo1 increases Src phosphorylation, which activates YAP. Conversely, silencing Piezo1 significantly reduces cell motility and YAP/TAZ activity induced by WSS, and finally retards tumor growth and metastasis of administered PC3 cells in BALB/c mice. SIGNIFICANCE Taken together, these results demonstrate that Piezo1 allows cancer cells to sense mechanical stimuli by altering the microenvironment during tumor progression and is a critical player in modulating cancer metastasis through the Piezo1-Src-YAP axis.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, South Korea
| | - Young Wook Choi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, South Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
| | - Mineui Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, South Korea.
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
17
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022; 58:8754-8765. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli responsive nanocarriers are important non-viral gene carriers for gene therapy. We discuss the stimulus conditions and then highlight various stimuli responsive nanocarriers in the tumor microenvironment for cancer gene therapy. We hope that this review will inspire readers to develop more effective stimuli responsive nanocarriers for delivering genes.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
18
|
Rajeswari K, Manturthi S, Sirisha K, Velidandi AN. Anchoring and Hydrophobic Nature of Coumarin in Newer Coumarin Based Chalcones: Synthesis, In Silico, and In Vitro Cell Viability Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
20
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Yang YY, Zhang W, Liu H, Jiang JJ, Wang WJ, Jia ZY. Cell-Penetrating Peptide-Modified Graphene Oxide Nanoparticles Loaded with Rictor siRNA for the Treatment of Triple-Negative Breast Cancer. Drug Des Devel Ther 2021; 15:4961-4972. [PMID: 34916779 PMCID: PMC8671723 DOI: 10.2147/dddt.s330059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Breast cancer is a malignant tumor that seriously threatens women's life and health. Methods In this study, we proposed to use graphene nanoparticles loaded with siRNA that can silence Rictor molecules essential for the mammalian target of rapamycin (mTOR) complex 2 (mTORC2) complex to enhance gene delivery to tumor cells through modification of cell-penetrating peptide (CPP) for the treatment of breast cancer. Results Remarkably, we successfully synthesized graphene oxide (GO)/polyethyleneimine (PEI)/polyethylene glycol (PEG)/CPP/small interfering RNA (siRNA) system, and the results were observed by atomic force microscopy (AFM) and ultraviolet visible (UV-Vis) absorption spectra. The optimum mass ratio of siRNA to GO-PEI-PEG-CPP was 1:0.5. We screened out Rictor siRNA-2 from 9 candidates, which presented the highest inhibition rate, and this siRNA was selected for the subsequent experiments. We validated that Rictor siRNA-2 significantly reduced the Rictor expression in triple negative breast cancer (TNBC) cells. Confocal fluorescence microscope and flow cytometry analysis showed that GO-PEI-PEG-CPP/siRNA was able to be effectively uptake by TNBC cells. GO-PEI-PEG-CPP/siRNA improved the effect of siRNA on the inhibition of TNBC cell viability and the induction of TNBC cell apoptosis. The expression of Rictor and the phosphorylation of Akt and p70s6k were inhibited by GO-PEI-PEG-CPP/siRNA. Tumorigenicity analysis in nude mice showed that GO-PEI-PEG-CPP/siRNA significantly repressed the tumor growth of TNBC cells in vivo. The levels of ki-67 were repressed by GO-PEI-PEG-CPP/siRNA, and the apoptosis was induced by GO-PEI-PEG-CPP/siRNA in the system. Discussion Therefore, we concluded that CPP-modified GO nanoparticles loaded with Rictor siRNA significantly repressed TNBC progression by the inhibition of PI3K/Akt/mTOR signaling. Our finding provides a promising therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Yun-Yun Yang
- Outpatient Comprehensive Treatment, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Wei Zhang
- Department of Thyroid and Breast I, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Hui Liu
- Department of Thyroid and Breast I, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Jun-Jie Jiang
- Department of Thyroid and Breast I, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Wen-Jie Wang
- Department of General Surgery, Botou Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Zheng-Yan Jia
- Department of General Surgery, Qingxian People's Hospital, Cangzhou, Hebei Province, People's Republic of China
| |
Collapse
|
23
|
Cirillo S, Tomeh MA, Wilkinson RN, Hill C, Brown S, Zhao X. Designed Antitumor Peptide for Targeted siRNA Delivery into Cancer Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49713-49728. [PMID: 34657415 DOI: 10.1021/acsami.1c14761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial/anticancer peptides (AMPs/ACPs) have shown promising results as new therapeutic agents in cancer thearpy. Among them, the designed amphiphilic α-helical peptide G(IIKK)3I-NH2 (G3) displayed great affinity and specificity in targeting cancer cells. Here, we report new insights on how G3 penetrates cancer cells. G3 showed high specificity to HCT-116 colon cancer cells compared to the HDFs (human neonatal primary dermal fibroblasts) control. With high concentrations of peptide, a clear cancer cell membrane disruption was observed through SEM. Gene knockdown of the endocytic pathways demonstrated that an energy-dependent endocytic pathway is required for the uptake of the peptide. In addition, G3 can protect and selectively deliver siRNAs into cancer cells and successfully modulated their gene expression. Gene delivery was also tested in 3D cancer spheroids and showed deep penetration delivery into the cancer spheroids. Finally, the in vivo toxicity of G3 was evaluated on zebrafish embryos, showing an increasing toxicity effect with concentration. However, the toxicity of the peptide was attenuated when complexed with siRNA. In addition, negligible toxicity was observed at the concentration range for efficient gene delivery. The current results demonstrate that G3 is promising as an excellent agent for cancer therapy.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Chris Hill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
24
|
Efficient Isolation of Bacterial RNAs Using Silica-Based Materials Modified with Ionic Liquids. Life (Basel) 2021; 11:life11101090. [PMID: 34685465 PMCID: PMC8536996 DOI: 10.3390/life11101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
High quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs. The investigated chloride-based SILs comprise the following cations: 1-methyl-3-propylimidazolium, triethylpropylammonium, dimethylbutylpropylammonium, and trioctylpropylammonium. All SILs were synthesized by us and characterized by solid-state 13C Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), elemental analysis, and zeta potential measurements, confirming the successful covalent attachment of each IL cation with no relevant changes in the morphology of materials. Their innovative application as chromatographic supports for the isolation of recombinant RNA was then evaluated. Adsorption kinetics of transfer RNA (tRNA) on the modified silica-based materials were investigated at 25 °C. Irrespective to the immobilized IL, the adsorption experimental data are better described by a pseudo first-order model, and maximum tRNA binding capacities of circa 16 µmol of tRNA/g of material were achieved with silica modified with 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Furthermore, the multimodal character displayed by SILs was explored towards the purification of tRNA from Escherichia coli lysates, which in addition to tRNA contain ribosomal RNA and genomic DNA. The best performance on the tRNA isolation was achieved with SILs comprising 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Overall, the IL modified silica-based materials represent a more efficient, sustainable, and cost-effective technology for the purification of bacterial RNAs, paving the way for their use in the purification of distinct biomolecules or nucleic acids from other sources.
Collapse
|
25
|
Araujo DV, Oliva M, Li K, Fazelzad R, Liu ZA, Siu LL. Contemporary dose-escalation methods for early phase studies in the immunotherapeutics era. Eur J Cancer 2021; 158:85-98. [PMID: 34656816 DOI: 10.1016/j.ejca.2021.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
Phase 1 dose-escalation trials are crucial to drug development by providing a framework to assess the toxicity of novel agents in a stepwise and monitored fashion. Despite widely adopted, rule-based dose-escalation methods (such as 3 + 3) are limited in finding the maximum tolerated dose (MTD) and tend to treat a significant number of patients at subtherapeutic doses. Newer methods of dose escalation, such as model-based and model-assisted designs, have emerged and are more accurate in finding MTD. However, these designs have not yet been broadly embraced by investigators. In this review, we summarise the advantages and disadvantages of contemporary dose-escalation methods, with emphasis on model-assisted designs, including time-to-event designs and hybrid methods involving optimal biological dose (OBD). The methods reviewed include mTPI, keyboard, BOIN, and their variations. In addition, the challenges of drug development (and dose-escalation) in the era of immunotherapeutics are discussed, where many of these agents typically have a wide therapeutic window. Fictional examples of how the dose-escalation method chosen can alter the outcomes of a phase 1 study are described, including the number of patients enrolled, the trial's timeframe, and the dose level chosen as MTD. Finally, the recent trends in dose-escalation methods applied in phase 1 trials in the immunotherapeutics era are reviewed. Among 856 phase I trials from 2014 to 2019, a trend towards the increased use of model-based and model-assisted designs over time (OR = 1.24) was detected. However, only 8% of the studies used non-rule-based dose-escalation methods. Increasing familiarity with such dose-escalation methods will likely facilitate their uptake in clinical trials.
Collapse
Affiliation(s)
- Daniel V Araujo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Oncology, Hospital de Base, São José Do Rio Preto, SP, Brazil
| | - Marc Oliva
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Oncology, Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kecheng Li
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rouhi Fazelzad
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
26
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
27
|
Dasgupta A, Herzegh K, Spencer HT, Doering C, Day E, Swaney WP. Regulatory Framework for Academic Investigator-Sponsored Investigational New Drug Development of Cell and Gene Therapies in the USA. CURRENT STEM CELL REPORTS 2021; 7:129-139. [PMID: 34608428 PMCID: PMC8483165 DOI: 10.1007/s40778-021-00196-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Purpose of Review The promise of cell and gene therapy (CGT) products for a multitude of diseases has revitalized investigators to advance novel CGT product candidates to first-in-human trials by pursuing the investigational new drug (IND) mechanism administered by the United States (US) Food and Drug Administration (FDA). This review is intended to familiarize academic investigators with the IND governing regulations set forth by the FDA. Recent Findings CGT products are extraordinarily complex biologics and, therefore, early-stage evaluation programs must be customized to satisfactorily address their unique developmental challenges. The US FDA continues to foster the development of transformational technology that will facilitate the broad application of safe and effective gene therapy products that have the potential to alleviate many conditions previously out of reach of therapeutic intervention. FDA is committed to working with the scientific community and industry to facilitate the availability of these treatments to patients. Summary The pathway to meet regulatory compliance during early stage IND programs can be daunting to academic investigators interested in CGT product development that typically don't progress beyond phase 1/2. However, by keeping abreast of current regulatory framework and building upon FDA's supportive infrastructure, an investigator can be well-positioned to advance innovative scientific discoveries towards early stage clinical assessments.
Collapse
Affiliation(s)
| | - Kristen Herzegh
- Marcus Center for Pediatric Cellular Therapies, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA USA
| | - Christopher Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA USA
| | - Eric Day
- Expression Manufacturing LLC, West Chester, OH USA
| | | |
Collapse
|
28
|
Mutlu M, Tekin C, Ak Aksoy S, Taskapilioglu MO, Kaya S, Balcin RN, Ocak PE, Kocaeli H, Bekar A, Tolunay S, Tunca B. Long non-coding RNAs as a predictive markers of group 3 medulloblastomas. Neurol Res 2021; 44:232-241. [PMID: 34533098 DOI: 10.1080/01616412.2021.1975223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ObjectiveThe appropriate treatments for the different molecular subgroups of medulloblastomas are challenging to determine. Hence, this study aimed to examine the expression profiles of long non-coding RNAs (LncRNAs) to determine a marker that may be important for treatment selection in these subgroups.MethodsChanges in the expression of LncRNAs in the tissues of patients with medulloblastoma, which are classified into four subgroups according to their clinical characteristics and gene expression profiles, were examined via reverse transcription polymerase chain reaction. Moreover, there association with patient prognosis was evaluated.ResultsThe expression levels of MALAT1 and SNGH16 were significantly higher in patients with group 3 medulloblastoma than in those with other subtypes. Patients with high expression levels of MALAT1 and SNGH16 had a relatively shorter overall survival than those with low expression levels.ConclusionsPatients with group 3 medulloblastoma have a high MALAT1 level, which is associated with poor prognosis. Therefore, MALAT1 can be a new therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | | | - Seckin Kaya
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rabia Nur Balcin
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pınar Eser Ocak
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
29
|
Ravula V, Lo YL, Wang LF, Patri SV. Gemini Lipopeptide Bearing an Ultrashort Peptide for Enhanced Transfection Efficiency and Cancer-Cell-Specific Cytotoxicity. ACS OMEGA 2021; 6:22955-22968. [PMID: 34514266 PMCID: PMC8427783 DOI: 10.1021/acsomega.1c03620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Cationic gemini lipopeptides are a relatively new class of amphiphilic compounds to be used for gene delivery. Through the possibility of incorporating short peptides with cell-penetrating functionalities, these lipopeptides may be advantageous over traditional cationic lipids. Herein, we report the design, synthesis, and application of a novel cationic gemini lipopeptide for gene delivery. An ultrashort peptide, containing four amino acids, arginine-cysteine-cysteine-arginine, serves as a cationic head group, and two α-tocopherol moieties act as hydrophobic anchoring groups. The new lipopeptide (ATTA) is incorporated into the conventional liposomes, containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), at different molar ratios. The formulated liposomes are characterized and screened for better transfection efficiency. Transfection activity in multiple human cell lines from cancerous and noncancerous origins indicates that the inclusion of an optimal ratio of ATTA in the liposomes substantially enhances the transfection efficiency, superior to that of a traditional liposome, DOTAP-DOPE. Cytotoxicity of ATTA-containing formulations against multiple cell lines indicates potentially distinct activity between cancer and noncancer cell lines. Furthermore, lipoplexes of the ATTA-containing formulations with anticancer therapeutic gene, plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL), induce obviously more cytotoxicity than conventional formulations. The results indicate that arginine-rich cationic lipopeptide appears to be a promising ingredient in gene delivery vector formulations to enhance transfection efficiency and cell-selective cytotoxicity.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
| |
Collapse
|
30
|
Yu JL, Liao HY. Piezo-type mechanosensitive ion channel component 1 (Piezo1) in human cancer. Biomed Pharmacother 2021; 140:111692. [PMID: 34004511 DOI: 10.1016/j.biopha.2021.111692] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 02/09/2023] Open
Abstract
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanosensitive ion channel protein that is evolutionarily conserved and multifunctional. It plays an important role as an oncogenic mediator in several malignant tumors. It mediates the proliferation, migration, and invasion of a variety of cancer cells through various mechanisms. Multiple studies have shown that the expression of Piezo1 is related to the clinical characteristics of senescence and cancer patients, making Piezo1 useful as a new biomarker for the diagnosis and prognosis of a variety of human cancers. Manipulating the expression or function of Piezo1 is a potential therapeutic strategy for different diseases. Piezo1 may be a promising tumor biomarker and therapeutic target. Here we review the biological function, mechanism of action, and potential clinical significance of Piezo1 in oncogenesis and progression.
Collapse
Affiliation(s)
- Jia-Lin Yu
- The 947th Army Hospital of the Chinese People's Liberation Army, 13 Kuona Bazha Road, XinJiang 844200, PR China
| | - Hai-Yang Liao
- The Fist Affiliated Hospital of Gannan Medical College, 23 Youth Road, Jiangxi 342800, PR China
| |
Collapse
|
31
|
Alhakamy NA, Curiel DT, Berkland CJ. The era of gene therapy: From preclinical development to clinical application. Drug Discov Today 2021; 26:1602-1619. [PMID: 33781953 DOI: 10.1016/j.drudis.2021.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Three decades of promise have culminated in the development of gene therapies that can be applied to a broad range of human diseases. After a brief history, we provide an overview of gene therapy types and delivery methods, gene editing technologies, regulatory affairs, clinical trials, approved products, ongoing challenges, and future goals. Information on clinical trials of candidates and on approved products for gene therapy developed between 1988 and 2020 is systematically collated. To obtain this global information, we scanned and reviewed more than 46,000 records of clinical trials from 17 clinical trial database providers. The medical benefits of transformative gene therapies are gradually being accepted by payors, and a significant increase in the number of gene therapy clinical trials and approved gene therapy products has resulted.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David T Curiel
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
32
|
Liao HY, Liao B, Zhang HH. CISD2 plays a role in age-related diseases and cancer. Biomed Pharmacother 2021; 138:111472. [PMID: 33752060 DOI: 10.1016/j.biopha.2021.111472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
CDGSH iron-sulfur domain 2 (Cisd2) is an evolutionarily conserved protein that plays an important regulatory role in aging-related diseases and cancers. Since its discovery, Cisd2 has been identified as a regulatory factor for the aging of the human body and the regulation of mammalian lifespan. Cisd2 is also an oncoprotein that regulates the occurrence and development of cancer. Cisd2 mediates the occurrence of diseases related to human aging and the proliferation, differentiation, metastasis, and invasion of various cancer cells through various mechanisms. Multiple studies have shown that Cisd2 expression is related to the clinical characteristics of aging-related diseases and patients with cancer, and its expression profile is a novel diagnostic and prognostic biomarker for a variety of human diseases. Modulating the expression or function of Cisd2 may be a potential treatment strategy for different diseases. In this review, we summarize the role of Cisd2 in human aging-related diseases and various cancers, as well as the biological functions, underlying mechanisms, and potential clinical significance.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Bei Liao
- Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China; The First Clinical Medical College of Lanzhou University, 1 Donggang Road, Lanzhou 730000, PR China.
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
33
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
34
|
Pasvenskaite A, Liutkeviciene R, Gedvilaite G, Vilkeviciute A, Liutkevicius V, Uloza V. Impact of IL-10 Promoter Polymorphisms and IL-10 Serum Levels on Advanced Laryngeal Squamous Cell Carcinoma and Survival Rate. Cancer Genomics Proteomics 2021; 18:53-65. [PMID: 33419896 DOI: 10.21873/cgp.20241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIM Prognosis of advanced stages of laryngeal squamous cell carcinoma (LSCC) remains poor. To clarify therapeutic targets and improve survival rate, identification of new specific and prognostic biomarkers of LSCC is required. The study aimed to evaluate the impact of IL-10:rs1800871, rs1800872, rs1800896 single nucleotide polymorphisms (SNPs), and IL-10 serum levels on LSCC development and determine associations of selected SNPs with patient survival rate. PATIENTS AND METHODS A total of 300 LSCC patients and 533 controls were included in the study. Genotyping was carried out using RT-PCR; IL-10 serum levels were analyzed by ELISA. RESULTS Significant associations were identified between IL-10 rs1800871 variants and advanced stage of LSCC patient group in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733; p=0.037). Significant variants of IL-10 rs1800872 were determined in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733, p=0.037). The distribution of IL-10 SNPs genotypes did not impact LSCC patient survival rate (respectively, p=0.952; p=0.952; p=0.991). CONCLUSION IL-10:rs1800871 and rs1800872 SNPs are associated with advanced stage of LSCC. The genotypic distribution of IL-10 SNPs does not influence the survival rate of LSCC patients.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
35
|
Huang X, Hou Y, Weng X, Pang W, Hou L, Liang Y, Wang Y, Du L, Wu T, Yao M, Wang J, Meng X. Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis 2021; 10:4. [PMID: 33419984 PMCID: PMC7794448 DOI: 10.1038/s41389-020-00295-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Exploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yichao Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Xiaoling Weng
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Wenjing Pang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Leilei Du
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Tianqi Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Mengfei Yao
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Jianhua Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, 200011, Shanghai, China.
| |
Collapse
|
36
|
Liu R, Lin J, Li P. Design considerations for phase I/II dose finding clinical trials in Immuno-oncology and cell therapy. Contemp Clin Trials 2020; 96:106083. [DOI: 10.1016/j.cct.2020.106083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
37
|
Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J 2020; 3:253-275. [PMID: 32833535 PMCID: PMC7469700 DOI: 10.1089/crispr.2020.0025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.
Collapse
Affiliation(s)
- Lavina Sierra Tay
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Wei Leong Chew
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
38
|
Bhagat S, Singh S. Co-delivery of AKT3 siRNA and PTEN Plasmid by Antioxidant Nanoliposomes for Enhanced Antiproliferation of Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:3999-4011. [PMID: 35025475 DOI: 10.1021/acsabm.9b01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Globally, prostate cancer is the fifth major cancer type and the second leading cause of cancer-related death in men. In 2018, about 1.3 million prostate cancer cases were reported worldwide. It is reported that loss of PTEN (tumor suppressor gene) expression leads to hyperactivation of the PI3K/AKT pathway and thus induces uncontrolled cell proliferation. Loss or mutation in regular PTEN expression is reported to occur in ∼30% of primary prostate cancer cases and ∼65% of metastatic cancer cases. Restoring the PTEN expression could inhibit the PI3K/AKT/mTOR signaling pathway, thus avoid the growth of prostate cancer cells. In this work, we have synthesized a multifunctional nanoliposomal formulation incorporating PTEN plasmid, AKT3 siRNA, and antioxidant cerium oxide nanoparticles (CeNPs). The nanoliposomes were able to successfully internalize in prostate cancer (PC-3) cells, restore the expression of PTEN protein, and knock down AKT3 mRNA. Further, the multifunctional nanoliposomes induce DNA damage and apoptosis in prostate cancer cells. The investigation of the PI3K/AKT/mTOR signaling pathway revealed that PTEN protein and apoptosis-specific proteins are overexpressed, leading to the inhibition of oncoproteins and, thus, prostate cancer.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
39
|
Santry LA, Jacquemart R, Vandersluis M, Zhao M, Domm JM, McAusland TM, Shang X, Major PM, Stout JG, Wootton SK. Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification. BMC Biotechnol 2020; 20:32. [PMID: 32552807 PMCID: PMC7301511 DOI: 10.1186/s12896-020-00627-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited—in quantity, quality, and timeliness—by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. Results Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. Conclusions When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Renaud Jacquemart
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | | | - Mochao Zhao
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Jake M Domm
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Xiaojiao Shang
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Pierre M Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - James G Stout
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
40
|
Layer by layer surface engineering of poly(lactide‐
co
‐glycolide) nanoparticles for plasmid
DNA
delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Long non-coding RNA TP73-AS1 in cancers. Clin Chim Acta 2020; 503:151-156. [DOI: 10.1016/j.cca.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
42
|
Tian Y, Liu Z, Tan H, Hou J, Wen X, Yang F, Cheng W. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine 2020; 15:401-418. [PMID: 32021187 PMCID: PMC6982438 DOI: 10.2147/ijn.s201208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of therapeutic materials based on ultrasound, shows great potential in biomedical applications. By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high concentration aggregation. In this paper we introduced recent advances in ultrasound contrast agents and applications in tumor therapy. Ultrasound contrast agents were categorized by their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound contrast agents. The various applications of UMTD in tumor treatment were summarized as follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunotherapy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immunotherapy, and so on. In the end, we elaborated on the current challenges and provided perspectives of UMTD for clinical applications.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Jiahui Hou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Fan Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| |
Collapse
|
43
|
Role of SNHG16 in human cancer. Clin Chim Acta 2019; 503:175-180. [PMID: 31901482 DOI: 10.1016/j.cca.2019.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023]
Abstract
A growing body of evidence suggests that long non-coding RNAs (lncRNAs), a novel class of non-coding endogenous single-stranded RNA, play a key role in multiple physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Furthermore, many studies have shown that lncRNAs-as oncogenes or tumour suppressors-play an important role in the occurrence and development of human cancers. Small nucleolar RNA host gene 16 (SNHG16) was initially identified as an oncogenic lncRNA in neuroblastoma, and has since been identified as a carcinogenic regulator of various malignant tumours. Overexpression of SNHG16 is associated with clinical and pathological characteristics of cancer patients, and regulates cell proliferation, apoptosis, invasion and metastasis through a variety of potential mechanisms. Therefore, SNHG16 may be a promising biomarker and therapeutic target for cancers. In this review, we summarize the biological function, related mechanisms and potential clinical significance of SNHG16 in multiple human cancers.
Collapse
|
44
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
He G, Feng J, Zhang A, Zhou L, Wen R, Wu J, Yang C, Yang J, Li C, Chen D, Wang J, Hu N, Xie X. Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells. NANO LETTERS 2019; 19:7201-7209. [PMID: 31557044 DOI: 10.1021/acs.nanolett.9b02790] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gen He
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jianming Feng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Lingfei Zhou
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Rui Wen
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jiangming Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | - Chunwei Li
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Demeng Chen
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
46
|
Son B, Lee S, Kim H, Kang H, Jeon J, Jo S, Seong KM, Lee SJ, Youn H, Youn B. Decreased FBP1 expression rewires metabolic processes affecting aggressiveness of glioblastoma. Oncogene 2019; 39:36-49. [PMID: 31444412 DOI: 10.1038/s41388-019-0974-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Radiotherapy is a standard treatment option for patients with glioblastoma (GBM). Although it has high therapeutic efficacy, some proportion of the tumor cells that survive after radiotherapy may cause side effects. In this study, we found that fructose 1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was downregulated upon treatment with ionizing radiation (IR). Ets1, which was found to be overexpressed in IR-induced infiltrating GBM, was suggested to be a transcriptional repressor of FBP1. Furthermore, glucose uptake and extracellular acidification rates were increased upon FBP1 downregulation, which indicated an elevated glycolysis level. We found that emodin, an inhibitor of phosphoglycerate mutase 1 derived from natural substances, significantly suppressed the glycolysis rate and IR-induced GBM migration in in vivo orthotopic xenograft mouse models. We propose that the reduced FBP1 level reprogrammed the metabolic state of GBM cells, and thus, FBP1 is a potential therapeutic target regulating GBM metabolism following radiotherapy.
Collapse
Affiliation(s)
- Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.,Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, 48108, Republic of Korea
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, 48108, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
47
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
48
|
Recent trends and advances in microbe-based drug delivery systems. ACTA ACUST UNITED AC 2019; 27:799-809. [PMID: 31376116 DOI: 10.1007/s40199-019-00291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Since more than a decade, pharmaceutical researchers endeavor to develop an effective, safe and target-specific drug delivery system to potentiate the therapeutic actions and reduce the side effects. The conventional drug delivery systems (DDSs) show the improvement in the lifestyle of the patients suffering from non-communicable diseases, autoimmune diseases but sometimes, drug resistance developed during the treatment is a major concern for clinicians to find an alternative and more advanced transport systems. Advancements in drug delivery facilitate the development of active carrier for targeted action with improved pharmacokinetic behavior. This review article focuses on microbe-based drug delivery systems to provide safe, non-toxic, site-specific targeted action with lesser side effects. Pharmaceutical researchers play a vital part in microbe-based drug delivery systems as a therapeutic agent and carrier. The properties of microorganisms like self-propulsion, in-situ production of therapeutics, penetration into the tumor cells, increase in immunity, etc. are of interest for development of highly effective delivery carrier. Lactococcus lactis is therapeutically helpful in Inflammatory Bowel Disease (IBD) and is under investigation of phase I clinical trial. Moreover, bacteria, anti-cancer oncolytic viruses, viral vectors (gene therapy) and viral immunotherapy are the attractive areas of biotechnological research. Virus acts as a distinctive candidate for imaging of tumor and accumulation of active in tumor. Graphical abstract Classification of microbe-based drug delivery system.
Collapse
|
49
|
An effective and biocompatible polyethylenimine based vaginal suppository for gene delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101994. [DOI: 10.1016/j.nano.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
|
50
|
Smith ES, Porterfield JE, Kannan RM. Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Adv Drug Deliv Rev 2019; 148:181-203. [PMID: 30844410 PMCID: PMC7043366 DOI: 10.1016/j.addr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|