1
|
Woillard J, Benoist C, Destere A, Labriffe M, Marchello G, Josse J, Marquet P. To be or not to be, when synthetic data meet clinical pharmacology: A focused study on pharmacogenetics. CPT Pharmacometrics Syst Pharmacol 2025; 14:82-94. [PMID: 39412034 PMCID: PMC11706419 DOI: 10.1002/psp4.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 01/11/2025] Open
Abstract
The use of synthetic data in pharmacology research has gained significant attention due to its potential to address privacy concerns and promote open science. In this study, we implemented and compared three synthetic data generation methods, CT-GAN, TVAE, and a simplified implementation of Avatar, for a previously published pharmacogenetic dataset of 253 patients with one measurement per patient (non-longitudinal). The aim of this study was to evaluate the performance of these methods in terms of data utility and privacy trade off. Our results showed that CT-GAN and Avatar used with k = 10 (number of patients used to create the local model of generation) had the best overall performance in terms of data utility and privacy preservation. However, the TVAE method showed a relatively lower level of performance in these aspects. In terms of Hazard ratio estimation, Avatar with k = 10 produced HR estimates closest to the original data, whereas CT-GAN slightly underestimated the HR and TVAE showed the most significant deviation from the original HR. We also investigated the effect of applying the algorithms multiple times to improve results stability in terms of HR estimation. Our findings suggested that this approach could be beneficial, especially in the case of small datasets, to achieve more reliable and robust results. In conclusion, our study provides valuable insights into the performance of CT-GAN, TVAE, and Avatar methods for synthetic data generation in pharmacogenetic research. The application to other type of data and analyses (data driven) used in pharmacology should be further investigated.
Collapse
Affiliation(s)
- Jean‐Baptiste Woillard
- Pharmacology & ToxicologyInserm, U 1248, University of Limoges, CHU LimogesLimogesFrance
- Service de PharmacologieToxicologie et Pharmacovigilance, CHU DupuytrenLimogesFrance
| | - Clément Benoist
- Pharmacology & ToxicologyInserm, U 1248, University of Limoges, CHU LimogesLimogesFrance
- Service de PharmacologieToxicologie et Pharmacovigilance, CHU DupuytrenLimogesFrance
| | - Alexandre Destere
- Department of Pharmacology and Pharmacovigilance CenterUniversité Côte d'Azur Medical CentreNiceFrance
- Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai TeamUniversité Côte d'AzurNiceFrance
| | - Marc Labriffe
- Pharmacology & ToxicologyInserm, U 1248, University of Limoges, CHU LimogesLimogesFrance
- Service de PharmacologieToxicologie et Pharmacovigilance, CHU DupuytrenLimogesFrance
| | - Giulia Marchello
- Inria, PreMeDICaL TeamUniversity of MontpellierMontpellierFrance
| | - Julie Josse
- Inria, PreMeDICaL TeamUniversity of MontpellierMontpellierFrance
| | - Pierre Marquet
- Pharmacology & ToxicologyInserm, U 1248, University of Limoges, CHU LimogesLimogesFrance
- Service de PharmacologieToxicologie et Pharmacovigilance, CHU DupuytrenLimogesFrance
| |
Collapse
|
2
|
Marquet P, Anglicheau D, Humeau A, Adrouche S, Saada L, Bisiaux J, Guillemin S, Lardy-Cléaud A, Rostaing L. Tacrolimus Dose Requirement in De Novo Adult Kidney Transplant Patients Treated With Adoport ® Can Be Anticipated. Transpl Int 2024; 37:13495. [PMID: 39469664 PMCID: PMC11513580 DOI: 10.3389/ti.2024.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
All the factors potentially influencing tacrolimus dose requirement and combinations thereof have never been thoroughly investigated, precluding accurate prediction of tacrolimus starting dose. This prospective, non-interventional, multicenter study in de novo adult kidney transplant recipients over the first year after transplantation aimed to investigate the factors influencing tacrolimus dose-standardized trough blood concentration (C0/D) over the first week post-transplant (D4-D7, primary objective), D8-M3 and M3-M12 (secondary objectives). Statistical analysis employed mixed linear models with repeated measures. Eighteen sites enrolled 440 patients and followed them up for 9.5 ± 4.1 months. Age at baseline (p = 0.0144), end-stage renal disease (p = 0.0092), CYP3A phenotype (p < 0.0001), dyslipidemia at baseline (p = 0.0031), hematocrit (p = 0.0026), total bilirubin (p = 0.0261) and plasma creatinine (p = 0.0484) independently increased with log(C0/D) over D4-D7, explaining together 72.3% of the interindividual variability, and representing a robust model to estimate tacrolimus initial dose. Donor age and CYP3A phenotype were also influential over D8-M3 and M3-12, in addition to recipient age. Corticosteroids, diabetes at baseline, and ASAT yielded inconstant results between D8-M3 and M3-M12. We found no ethnicity effect when CYP3A phenotype was accounted for, and no food effect. Intra-individual variability over M3-M12 was moderate, and significantly lower in patients with chronic hepatic disorder (p = 0.0196) or cancer (p = 0.0132).
Collapse
Affiliation(s)
- Pierre Marquet
- Department of Pharmacology, Toxicology and Pharmacovigilance, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Pharmacology and Transplantation, UMR1248 Inserm Université de Limoges, Limoges, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Université Paris Cité, Paris, France
| | - Antoine Humeau
- Pharmacology and Transplantation, UMR1248 Inserm Université de Limoges, Limoges, France
| | | | - Lakhdar Saada
- Medical Department, SANDOZ S.A.S, Levallois-Perret, France
| | | | | | | | - Lionel Rostaing
- Department of Nephrology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
3
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Vandewiele S, Herman J, van den Heuvel L, Knops N. A longitudinal study of long-term renal outcome after pediatric liver transplantation in relation to CNI exposure. Pediatr Transplant 2024; 28:e14677. [PMID: 38149466 DOI: 10.1111/petr.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/08/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is reported in 20%-30% of children after liver transplantation (LT). One of the proposed underlying causes is the long-term exposure to tacrolimus, a calcineurin inhibitor (CNI), which is the main immunosuppressive drug used after LT. Variation in tacrolimus absolute exposure and relative dose requirements are believed to be important risk factors for developing CNI-associated nephrotoxicity. AIM To describe the long-term renal outcome of pediatric LT recipients and determine the effects of tacrolimus exposure on renal outcome parameters. METHODS Retrospective single center study of renal function (GFR, proteinuria) and pharmacokinetic parameters (C0 , AUC0-12h ) obtained during annual follow-up in children after liver transplantation, between 1998 and 2019. Relevant pharmacogenetic variants for tacrolimus disposition (CYP3A5 and ABCB1) were determined in recipients and donors. The evolution of individual renal function and tacrolimus exposure was evaluated using linear mixed models for repeated measurements. RESULTS Twenty-six children were included (mean follow-up: 10.4 years (range 2-18.9)). Mean estimated GFR was 109.3 (SE: 7.4), vs. measured: 91.3 mL/min/1.73 m2 (SE: 6.3), which remained stable during follow-up. CKD stage ≥2 was observed in 32.8% of the visits based on eGFR versus 50.0% on mGFR. CKD stage ≥3 was uncommon (4.1% and 6.2% resp.). Mean tacrolimus C0 was 5.3 ng/mL (SE: 2.5) with a AUC0-12h of 72.7 ng*h/mL (SE: 30.3), which demonstrated a small decrease during follow-up. There was a negative correlation between C0 and mGFR (rS = -0.3; p < .001). We found no correlation between GFR and tacrolimus dose requirements ((ng/mL)/(mg/kg)) or pharmacogenetic background. CONCLUSION Renal function during long-term follow-up after pediatric LT remained stable for the majority of our cohort. However, mild CKD was relatively common, warranting follow-up into adulthood. Although absolute tacrolimus exposure has a small depressing effect on concurrent GFR, there is no progressive deterioration of GFR due to long-term exposure, dose requirements or genetic background under the current target levels. These findings should be confirmed in a larger sample set, ideally including data from multiple centers.
Collapse
Affiliation(s)
- Simon Vandewiele
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jean Herman
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Catholic University Leuven, Leuven, Belgium
| | - Lambert van den Heuvel
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Catholic University Leuven, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, The Netherlands
| |
Collapse
|
5
|
Yu J, Wei X, Gao J, Wang C, Wei W. Role of cyclosporin A in the treatment of kidney disease and nephrotoxicity. Toxicology 2023; 492:153544. [PMID: 37164250 DOI: 10.1016/j.tox.2023.153544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The clinical use of cyclosporin A (CsA) has led to significant advances and achievements in the field of transplantation and immune diseases. However, the nephrotoxicity of CsA is a major concern in current immunosuppression regimens. CsA causes abnormal kidney function while treating kidney disease, causing problems for clinicians and patients. Evidence of CsA nephrotoxicity is almost always present in transplant recipients after long-term CsA administration (up to 10 years), and similar phenomena occur with other calcineurin inhibitors. In this review, we summarize the mechanisms and influencing factors of CsA for the treatment of primary nephrotic syndrome. The mechanisms of CsA nephrotoxicity, clinical-pathological features, diagnosis, prevention strategies, and risk factors are summarized. We discuss the correlates and mechanisms of the switch between kidney disease prevention and nephrotoxicity of CsA to better understand the function of CsA in the kidney and to provide a basis for the prevention and treatment of CsA nephrotoxicity.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Mdicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Xiao Wei
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; Blood Purification Center, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Mdicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Mdicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Mdicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Zhang D, Ye Y, Hu X. A non-invasive piTreg-related gene signature for spontaneous tolerance in renal transplantation. Gene X 2023; 848:146901. [DOI: 10.1016/j.gene.2022.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
|
7
|
Islam F, Islam MR, Nafady MH, Faysal M, Khan SL, Zehravi M, Emran TB, Rahman MH. Pharmacogenomics of immunosuppressants. Pharmacogenomics 2023:323-344. [DOI: 10.1016/b978-0-443-15336-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
8
|
Knops N, Ramazani Y, De Loor H, Goldschmeding R, Nguyen TQ, van den Heuvel LP, Levtchenko E, Kuypers DJ. Tacrolimus induces a pro-fibrotic response in donor-derived human proximal tubule cells dependent on common variants of the CYP3A5 and ABCB1 genes. Nephrol Dial Transplant 2022; 38:599-609. [PMID: 35945682 PMCID: PMC9976759 DOI: 10.1093/ndt/gfac237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Common genetic variants of the enzymes and efflux pump involved in tacrolimus disposition have been associated with calcineurin inhibitor nephrotoxicity, but their importance is unclear because of the multifactorial background of renal fibrosis. This study explores the pro-fibrotic response of tacrolimus exposure in relation to the differential capacity for tacrolimus metabolism in proximal tubule cells (PTCs) with a variable (pharmaco)genetic background. METHODS PTCs were obtained from protocol allograft biopsies with different combinations of CYP3A5 and ABCB1 variants and were incubated with tacrolimus within the concentration range found in vivo. Gene and protein expression, CYP3A5 and P-glycoprotein function, and tacrolimus metabolites were measured in PTC. Connective tissue growth factor (CTGF) expression was assessed in protocol biopsies of kidney allograft recipients. RESULTS PTCs produce CTGF in response to escalating tacrolimus exposure, which is approximately 2-fold higher in cells with the CYP3A5*1 and ABCB1 TT combination in vitro. Increasing tacrolimus exposure results in relative higher generation of the main tacrolimus metabolite {13-O-desmethyl tacrolimus [M1]} in cells with this same genetic background. Protocol biopsies show a larger increase in in vivo CTGF tissue expression over time in TT vs. CC/CT but was not affected by the CYP3A5 genotype. CONCLUSIONS Tacrolimus exposure induces a pro-fibrotic response in a PTC model in function of the donor pharmacogenetic background associated with tacrolimus metabolism. This finding provides a mechanistic insight into the nephrotoxicity associated with tacrolimus treatment and offers opportunities for a tailored immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | - Henriëtte De Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambert P van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium,Translational Metabolic Laboratory and Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, University Hospitals Leuven, Leuven, Belgium,Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
| | - Dirk J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Ramazani Y, Knops N, Berlingerio SP, Adebayo OC, Lismont C, Kuypers DJ, Levtchenko E, van den Heuvel LP, Fransen M. Therapeutic concentrations of calcineurin inhibitors do not deregulate glutathione redox balance in human renal proximal tubule cells. PLoS One 2021; 16:e0250996. [PMID: 33930094 PMCID: PMC8087105 DOI: 10.1371/journal.pone.0250996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/18/2021] [Indexed: 12/16/2022] Open
Abstract
The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.
Collapse
Affiliation(s)
- Yasaman Ramazani
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
| | - Noël Knops
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
| | | | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Dirk J. Kuypers
- Department of Nephrology and Renal Transplantation and Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Lambert P. van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
- Translational Metabolic Laboratory and Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
10
|
Zaorska K, Zawierucha P, Świerczewska M, Ostalska-Nowicka D, Zachwieja J, Nowicki M. Prediction of steroid resistance and steroid dependence in nephrotic syndrome children. J Transl Med 2021; 19:130. [PMID: 33785019 PMCID: PMC8011118 DOI: 10.1186/s12967-021-02790-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background Steroid resistant (SR) nephrotic syndrome (NS) affects up to 30% of children and is responsible for fast progression to end stage renal disease. Currently there is no early prognostic marker of SR and studied candidate variants and parameters differ highly between distinct ethnic cohorts. Methods Here, we analyzed 11polymorphic variants, 6 mutations, SOCS3 promoter methylation and biochemical parameters as prognostic markers in a group of 124 Polish NS children (53 steroid resistant, 71 steroid sensitive including 31 steroid dependent) and 55 controls. We used single marker and multiple logistic regression analysis, accompanied by prediction modeling using neural network approach. Results We achieved 92% (AUC = 0.778) SR prediction for binomial and 63% for multinomial calculations, with the strongest predictors ABCB1 rs1922240, rs1045642 and rs2235048, CD73 rs9444348 and rs4431401, serum creatinine and unmethylated SOCS3 promoter region. Next, we achieved 80% (AUC = 0.720) in binomial and 63% in multinomial prediction of SD, with the strongest predictors ABCB1 rs1045642 and rs2235048. Haplotype analysis revealed CD73_AG to be associated with SR while ABCB1_AGT was associated with SR, SD and membranoproliferative pattern of kidney injury regardless the steroid response. Conclusions We achieved prediction of steroid resistance and, as a novelty, steroid dependence, based on early markers in NS children. Such predictions, prior to drug administration, could facilitate decision on a proper treatment and avoid diverse effects of high steroid doses. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02790-w.
Collapse
Affiliation(s)
- Katarzyna Zaorska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland.
| | - Piotr Zawierucha
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Zygmunta Noskowskiego St 12/14, 61-704, Poznan, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Jacek Zachwieja
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| |
Collapse
|
11
|
Sallustio BC, Noll BD, Hu R, Barratt DT, Tuke J, Coller JK, Russ GR, Somogyi AA. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients. Br J Clin Pharmacol 2021; 87:3901-3909. [PMID: 33646566 DOI: 10.1111/bcp.14806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Long-term use of the immunosuppressant tacrolimus is limited by nephrotoxicity. Following renal transplantation, the risk of nephrotoxicity may be determined more by allograft than by blood tacrolimus concentrations, and thus may be affected by donor CYP3A5 and ABCB1 genetics. Little is known regarding factors that determine tacrolimus intrarenal exposure. METHODS This study investigated the relationship between trough blood (C0Blood ) and allograft (CGraft ) tacrolimus concentrations and tacrolimus dose, haematocrit, genetics, acute nephrotoxicity, rejection status, delayed graft function, and time post-transplant. C0Blood and CGraft were quantified in 132 renal transplant recipients together with recipient and donor CYP3A5 (rs776746) and ABCB1 3435 (rs1045642) genotypes. RESULTS C0Blood ranged from 2.6 to 52.3 ng/mL and CGraft from 33 to 828 pg/mg tissue. Adjusting for dose, recipients who were CYP3A5 expressors had lower C0Blood compared to nonexpressors, whilst delayed graft function was associated with higher C0Blood . Linear regression showed that the significant predictors of CGraft were C0Blood (point-wise P = 7 × 10-10 ), dose (P = .004) acute nephrotoxicity (P = .002) and an interaction between C0Blood and acute tacrolimus nephrotoxicity (P = .0002), with an adjusted r2 = 0.35 and no contribution from donor or recipient CYP3A5 or ABCB1 genotype. The association between CGraft and acute nephrotoxicity depended on one very high CGraft (828 pg/mg tissue). CONCLUSIONS Recipient and donor CYP3A5 and ABCB1 3435C>T genotypes are not determinants of allograft tacrolimus exposure in kidney transplant recipients. However, tacrolimus dose and C0Blood were significant predictors of CGraft , and the relationship between C0Blood and CGraft appeared to differ in the presence or absence of acute nephrotoxicity.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA, 5011, Australia.,Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Benjamin D Noll
- School of Pharmacy and Medical Sciences, University of South Australia, Australia, Adelaide, SA, 5000, Australia
| | - Rong Hu
- Department of Pharmacy, Guangzhou Women's and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Daniel T Barratt
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jonathan Tuke
- ARC Centre for Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Adelaide, SA, 5000, Australia.,School of Mathematical Sciences, Adelaide, SA, 5000, Australia
| | - Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Graeme R Russ
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
12
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
13
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SDQ, Cerda A, Hirata MH, Herrero MJ, Aliño SF, Hirata RDC. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020; 21:7-21. [PMID: 31849280 DOI: 10.2217/pgs-2019-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The influence of variants in pharmacokinetics-related genes on long-term exposure to tacrolimus (TAC)-based therapy and clinical outcomes was investigated. Patients & methods: Brazilian kidney recipients were treated with TAC combined with everolimus (n = 178) or mycophenolate sodium (n = 97). The variants in CYP2C8, CYP2J2, CYP3A4, CYP3A5, POR, ABCB1, ABCC2, ABCG2, SLCO1B1 and SLCO2B1 were analyzed. Main results: CYP3A5*3/*3 genotype influenced increase in TAC concentration from week 1 to month 6 post-transplantation (p < 0.05). The living donor and CYP2C8*3 variant were associated with reduced risk for delayed graft function (OR = 0.07; 95% CI = 0.03-0.18 and OR = 0.45; 95% CI = 0.20-0.99, respectively, p < 0.05). Conclusion: The CYP3A5*3 variant is associated with increased early exposure to TAC. Living donor and CYP2C8*3 variant seem to be protective factors for delayed graft function in kidney recipients.
Collapse
Affiliation(s)
- Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Antony Brayan Campos-Salazar
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Bioinformatics & Pharmacogenetics Laboratory, METOSMOD Research Group, School of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sonia de Quateli Doi
- Nephrology Research Laboratory, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - María José Herrero
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Salvador Francisco Aliño
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
16
|
Abdel-Kahaar E, Winter S, Tremmel R, Schaeffeler E, Olbricht CJ, Wieland E, Schwab M, Shipkova M, Jaeger SU. The Impact of CYP3A4*22 on Tacrolimus Pharmacokinetics and Outcome in Clinical Practice at a Single Kidney Transplant Center. Front Genet 2019; 10:871. [PMID: 31616470 PMCID: PMC6775237 DOI: 10.3389/fgene.2019.00871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Although there is evidence that the CYP3A4*22 variant should be considered in tacrolimus dosing in renal transplantation, its impact beyond tacrolimus dose requirements remains controversial. Methods: In a cohort of 121 kidney transplant recipients, we analyzed the CYP3A4*1B, CYP3A4*22, and CYP3A5*3 alleles and the ABCB1 variants 1236C>T, 2677G>T/A, and 3435C>T for their impact on exposure and dose requirement. Relevant clinical outcome measures such as acute rejection within the first year after transplantation, delayed graft function, and renal function at discharge (estimated glomerular filtration rate) were evaluated. Results: Extensive metabolizer (n = 17, CYP3A4*1/*1 carriers with at least one CYP3A5*1 allele) showed significantly higher tacrolimus dose requirement (P = 0.004) compared with both intermediate metabolizer (IM, n = 93, CYP3A5*3/*3 plus CYP3A4*1/*1 or CYP3A4*22 carriers plus one CYP3A5*1 allele), and poor metabolizer (n = 11, CYP3A4*22 allele in combination with CYP3A5*3/*3) after onset of therapy. Significantly higher dose requirement was observed in CYP3A5 expressers (P = 0.046) compared with non-expressers again at onset of therapy. Using the log additive genetic model, the area under the curve for the total observation period up to 16 days was significantly associated with the CYP3A5*3 genotype (P = 3.34 × 10-4) as well as with the IM or extensive metabolizer phenotype (P = 1.54 × 10-4), even after adjustment for multiple testing. Heterozygous carriers for CYP3A4*22 showed significantly higher areas under the curve than the CYP3A4*1/*1 genotype in the second week post-transplantation (adjusted P = 0.016). Regarding clinical outcomes, acute rejection was significantly associated with human leukocyte antigen mismatch (≥3 alleles; OR = 12.14, 95% CI 1.76, 525.21, P = 0.019 after correction for multiple testing). Graft recipients from deceased donors showed higher incidende of delayed graft function (OR 7.15, 95% CI 2.23, 30.46, adjusted P = 0.0008) and a lower estimated glomerular filtration rate at discharge (P = 0.0001). Tested CYP3A4 or CYP3A5 variants did not show any effects on clinical outcome parameters. ABCB1 variants did neither impact on pharmacokinetics nor on clinical endpoints. Conclusion: At our transplantation center, both CYP3A5*3 and, to a lesser extent, CYP3A4*22 affect tacrolimus pharmacokinetics early after onset of therapy with consequences for steady-state treatment in routine clinical practice.
Collapse
Affiliation(s)
- Emaad Abdel-Kahaar
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
- Department of Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | | | - Eberhard Wieland
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Maria Shipkova
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Simon U. Jaeger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Sallustio BC, Noll BD, Coller JK, Tuke J, Russ G, Somogyi AA. Relationship between allograft cyclosporin concentrations and P-glycoprotein expression in the 1st month following renal transplantation. Br J Clin Pharmacol 2019; 85:1015-1020. [PMID: 30690767 DOI: 10.1111/bcp.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 01/02/2023] Open
Abstract
The immunosuppressant cyclosporin is a P-glycoprotein (P-gp) substrate whose impaired function has been associated with an increased risk of cyclosporin-induced nephrotoxicity following renal transplantation. This study investigated the relationship between blood and allograft cyclosporin concentration, and the effect of P-gp expression. Fifty biopsy samples were obtained from 39 renal transplant recipients who received cyclosporin as part of maintenance immunosuppression. Blood cyclosporin concentrations (2 hours postdose) were obtained from clinical records, matching allograft cyclosporin concentrations were measured in frozen biopsy tissue by liquid chromatography-tandem mass spectrometry, and allograft P-gp expression was assessed by immunohistochemistry. Blood and allograft cyclosporin concentrations in the 1st month post-transplantation ranged from 505-2005 μg/L and 0.01-16.7 ng/mg tissue, respectively. Dose was the only significant predictor of allograft cyclosporin concentrations (adjusted R2 = .24, F-statistic = 11.52, P = .0019), with no effect of P-gp expression or blood cyclosporin concentrations. P-gp expression is not the major determinant of allograft cyclosporin concentrations.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA, 5011, Australia.,Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Benjamin D Noll
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jonathan Tuke
- ARC Centre for Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Adelaide, SA, 5000, Australia.,School of Mathematical Sciences, Adelaide, SA, 5000, Australia
| | - Graeme Russ
- Central Northern Adelaide Renal and Transplantation Services, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
18
|
Woillard JB, Gatault P, Picard N, Arnion H, Anglicheau D, Marquet P. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant 2018; 18:2905-2913. [PMID: 29689130 DOI: 10.1111/ajt.14894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023]
Abstract
This work investigated, in two large cohorts of French renal transplants treated with tacrolimus, the influence of donor and recipient ABCB1, CYP3A4, and CYP3A5 genotypes on the risk of allograft loss. A discovery and a replication population of 330 and 369 adult renal transplant patients, each from a different transplantation center and all receiving a tacrolimus-based immunosuppressive regimen, were retrospectively genotyped. The influence of genetic factors and other known risk factors on allograft loss was investigated using multivariate Cox proportional hazard analyses. The existence of previous transplantations (per unit HR = 1.89 [1.10-3.26] P = .0216) and the donor ABCB1 c.1199GA/AA genotype (GA/AAvs GG: HR = 3.22 [1.14-9.09], P = .0288) were associated with an increased risk of allograft loss in the discovery cohort and with graft loss due to humoral rejection in the replication cohort (per unit HR = 2.26 [1.34-3.81], P = .00229; GA/AAvs GG HR = 3.42 [1.28-9.16], P = .0142). Genotyping the donor for the ABCB1 c.1199 G>A (exon 11, rs2229109) allele may be of interest before prescribing tacrolimus to the recipient, although this polymorphism is rather rare and its effect may be limited to certain mechanisms of graft loss.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Philippe Gatault
- CHRU Bretonneau, Service de néphrologie et Immunologie Clinique, Tours, France.,Université de Tours, Tours, France
| | - Nicolas Picard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Hélène Arnion
- INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation, Adulte Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| |
Collapse
|
19
|
Hernandez‐Fuentes MP, Franklin C, Rebollo‐Mesa I, Mollon J, Delaney F, Perucha E, Stapleton C, Borrows R, Byrne C, Cavalleri G, Clarke B, Clatworthy M, Feehally J, Fuggle S, Gagliano SA, Griffin S, Hammad A, Higgins R, Jardine A, Keogan M, Leach T, MacPhee I, Mark PB, Marsh J, Maxwell P, McKane W, McLean A, Newstead C, Augustine T, Phelan P, Powis S, Rowe P, Sheerin N, Solomon E, Stephens H, Thuraisingham R, Trembath R, Topham P, Vaughan R, Sacks SH, Conlon P, Opelz G, Soranzo N, Weale ME, Lord GM. Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study. Am J Transplant 2018; 18:1370-1379. [PMID: 29392897 PMCID: PMC6001640 DOI: 10.1111/ajt.14594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 01/25/2023]
Abstract
Improvements in immunosuppression have modified short-term survival of deceased-donor allografts, but not their rate of long-term failure. Mismatches between donor and recipient HLA play an important role in the acute and chronic allogeneic immune response against the graft. Perfect matching at clinically relevant HLA loci does not obviate the need for immunosuppression, suggesting that additional genetic variation plays a critical role in both short- and long-term graft outcomes. By combining patient data and samples from supranational cohorts across the United Kingdom and European Union, we performed the first large-scale genome-wide association study analyzing both donor and recipient DNA in 2094 complete renal transplant-pairs with replication in 5866 complete pairs. We studied deceased-donor grafts allocated on the basis of preferential HLA matching, which provided some control for HLA genetic effects. No strong donor or recipient genetic effects contributing to long- or short-term allograft survival were found outside the HLA region. We discuss the implications for future research and clinical application.
Collapse
Affiliation(s)
| | | | | | - Jennifer Mollon
- King's College LondonMRC Centre for TransplantationLondonUK,Department of HaematologyUniversity of Cambridge, Cambridge, UK
| | - Florence Delaney
- King's College LondonMRC Centre for TransplantationLondonUK,NIHR Biomedical Research Centre at Guy's and St Thomas’NHS Foundation Trust and King's College LondonLondonUK
| | | | | | - Richard Borrows
- Renal Institute of BirminghamDepartment of Nephrology and TransplantationBirminghamUK
| | - Catherine Byrne
- Nottingham Renal and Transplant UnitNottingham University Hospitals NHS TrustNottinghamUK
| | | | - Brendan Clarke
- Transplant and Cellular ImmunologyLeeds Teaching Hospitals NHS TrustLeedsUK
| | | | | | - Susan Fuggle
- Transplant Immunology & ImmunogeneticsChurchill HospitalOxfordUK
| | - Sarah A. Gagliano
- Center for Statistical GeneticsDepartment of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | - Sian Griffin
- Cardiff & Vale University Health BoardCardiff UniversityCardiffUK
| | - Abdul Hammad
- The Royal Liverpool and Broadgreen University HospitalsLiverpoolUK
| | - Robert Higgins
- University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Alan Jardine
- School of MedicineDentistry and NursingUniversity of GlasgowGlasgowUK
| | | | | | | | - Patrick B. Mark
- School of MedicineDentistry and NursingUniversity of GlasgowGlasgowUK
| | - James Marsh
- Epsom and St Helier University Hospitals TrustCarshaltonUK
| | - Peter Maxwell
- School of MedicineDentistry and Biomedical SciencesQueens University BelfastBelfastUK
| | - William McKane
- Sheffield Kidney InstituteSheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
| | - Adam McLean
- Kidney and TransplantImperial College Healthcare NHS TrustLondonUK
| | | | - Titus Augustine
- Central Manchester University Hospitals NHS TrustManchesterUK
| | | | - Steve Powis
- Division of MedicineUniversity College LondonLondonUK
| | | | - Neil Sheerin
- The Medical SchoolNewcastle University NewcastleNewcastle upon TyneUK
| | - Ellen Solomon
- Division of Genetics& Molecular MedicineKing's College LondonLondonUK
| | | | | | - Richard Trembath
- Division of Genetics& Molecular MedicineKing's College LondonLondonUK
| | | | - Robert Vaughan
- Clinical Transplantation Laboratory at Guy's HospitalGuy's and St Thomas’ NHS TrustLondonUK
| | - Steven H. Sacks
- King's College LondonMRC Centre for TransplantationLondonUK,NIHR Biomedical Research Centre at Guy's and St Thomas’NHS Foundation Trust and King's College LondonLondonUK
| | - Peter Conlon
- Royal College of Surgeons in IrelandDublinIreland,Beaumont HospitalDublinIreland
| | - Gerhard Opelz
- University of HeidelbergTransplantation ImmunologyHeidelbergGermany
| | - Nicole Soranzo
- Welcome Trust Sanger InstituteHuman GeneticsCambridgeUK,Department of HaematologyUniversity of Cambridge, Cambridge, UK
| | - Michael E. Weale
- Division of Genetics& Molecular MedicineKing's College LondonLondonUK,Present address:
Genomics plcOxfordUK
| | - Graham M. Lord
- King's College LondonMRC Centre for TransplantationLondonUK,NIHR Biomedical Research Centre at Guy's and St Thomas’NHS Foundation Trust and King's College LondonLondonUK
| | | |
Collapse
|
20
|
Cascorbi I. The Pharmacogenetics of Immune-Modulating Therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:275-296. [PMID: 29801578 DOI: 10.1016/bs.apha.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppressive drugs are a prerequisite in organ transplantation to prevent rejection and are also widely used in inflammatory diseases such as inflammatory bowel disease (IBD) or also in some hematologic malignancies-depending on the mode of action. For thiopurine analogs the polymorphic thiopurine S-methyltransferase (TPMT) was early detected to be associated with thiopurine-induced leukopenia; recent studies identified also NUDT15 to be related to this severe side effect. For drugs like methotrexate and mycophenolate mofetil a number of ADME genes like UDP-glucuronosyltransferases (UGTs) and ABC efflux transporters were investigated, however, with partly contradicting results. For calcineurin inhibitors like cyclosporine and in particular tacrolimus however, cytochrome P450 3A4 and 3A5 variants were found to significantly affect the pharmacokinetics. Genetic variants in genes encoding relevant pharmacodynamic proteins, however, lacked compelling evidence to affect the clinical outcome. This chapter reviews the current evidence on the association of pharmacogenetic traits to dose finding and clinical outcome of small-molecule immunosuppressants. Moreover this chapter critically summarizes suitability to apply pharmacogenetics in clinical practice in order to optimize immunosuppressant therapy.
Collapse
Affiliation(s)
- Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
21
|
The influence of living donor SHROOM3 and ABCB1 genetic variants on renal function after kidney transplantation. Pharmacogenet Genomics 2017; 27:19-26. [PMID: 27779570 DOI: 10.1097/fpc.0000000000000251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE A genome-wide association study has identified several gene polymorphisms associated with loss of renal function. The effect of these variants on renal function in kidney transplant recipients receiving immunosuppressive treatment is unknown. MATERIALS AND METHODS A cohort of 189 kidney transplant recipients and their living donors were recruited from West China Hospital of Sichuan University, on whom we assessed the association of five single nucleotide polymorphisms with renal function after kidney transplantation. RESULTS Glomerular filtration rate estimated by serum creatinine was significantly higher in recipients carrying allograft with the A allele at rs17319721 in SHROOM3 (shroom family member 3) than those in the group with the GG genotype from month 1 to month 6 after transplantation (P=0.020). Covariate adjustment analysis showed that the variant at rs17319721 in SHROOM3 was an independent risk factor for renal dysfunction after the first month after transplantation (P=0.022). The estimated glomerular filtration rate was the lowest in recipients with allograft carrying both the A allele at rs17319721 in SHROOM3 and the CC genotype at rs1045642 in ABCB1 (P<0.05). CONCLUSION The genetic variants in SHROOM3 and ABCB1 in donors were associated closely with renal function after kidney transplantation.
Collapse
|
22
|
Donor Genotype and Intragraft Expression of CYP3A5 Reflect the Response to Steroid Treatment During Acute Renal Allograft Rejection. Transplantation 2017; 101:2017-2025. [PMID: 27926596 DOI: 10.1097/tp.0000000000001584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Glucocorticoid (GC)-refractory acute rejection (AR) is a risk factor for inferior renal allograft outcome. We investigated genetic predisposition to the response to steroid treatment of acute allograft rejection. METHODS Single nucleotide polymorphisms of genes involved in GC signaling (GR, GLCCI1) and drug metabolism and transport (CYP3A5, ABCB1, and PXR) were analyzed in kidney transplant recipients (1995-2005, Leiden cohort, n = 153) treated with methylprednisolone. Significant associations were verified in a second cohort (Berlin cohort, n = 66). RESULTS Patients who received a CYP3A5*1 allele expressing allograft had a lower risk of resistance to methylprednisolone during AR (odds ratio, 0.29; 95% confidence interval, 0.11-0.79; P = 0.016 in combined cohorts analysis). No differences were observed for GC signaling or other drug metabolism/transport-related genes. Both before transplantation (n = 69) and at time of AR (n = 88), tissue CYP3A5 mRNA expression was significantly higher in CYP3A5*1 allele expressing donor kidneys than in CYP3A5*3/*3 allografts (P < 0.00001). Moreover, steroid-responsive patients (n = 64) expressed significantly higher intragraft CYP3A5 mRNA levels compared to steroid-refractory patients (n = 42) in AR (P = 0.006). CONCLUSIONS CYP3A5 protein expression was detected in tubular epithelial cells and inflammatory cells within the grafts. Our findings show that steroid resistance during AR is associated with donor genotype and intragraft expression levels of CYP3A5.
Collapse
|
23
|
Pharmacogénétique des immunosuppresseurs : état des connaissances et des pratiques – recommandations du Réseau national de pharmacogénétique (RNPGx). Therapie 2017; 72:269-284. [DOI: 10.1016/j.therap.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
24
|
Woillard JB, Chouchana L, Picard N, Loriot MA. Pharmacogenetics of immunosuppressants: State of the art and clinical implementation - recommendations from the French National Network of Pharmacogenetics (RNPGx). Therapie 2017; 72:285-299. [PMID: 28318610 DOI: 10.1016/j.therap.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Therapeutic drug monitoring is already widely used for immunosuppressive drugs due to their narrow therapeutic index. This article summarizes evidence reported in the literature regarding the pharmacogenetics of (i) immunosuppressive drugs used in transplantation and (ii) azathioprine used in chronic inflammatory bowel disease. The conditions of use of currently available major pharmacogenetic tests are detailed and recommendations are provided based on a scale established by the RNPGx scoring tests as "essential", "advisable" and "potentially useful". Other applications for which the level of evidence is still debated are also discussed.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé, CHU de Limoges, 87042 Limoges, France; Université de Limoges UMR_S850, 87000 Limoges, France.
| | - Laurent Chouchana
- Service de pharmacologie, hôpital Cochin, Assistance publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France
| | - Nicolas Picard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé, CHU de Limoges, 87042 Limoges, France; Université de Limoges UMR_S850, 87000 Limoges, France
| | - Marie-Anne Loriot
- Inserm UMR_S1147, centre universitaire des Saints-Pères, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Service de biochimie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | |
Collapse
|
25
|
Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S1-20. [PMID: 26977997 DOI: 10.1097/ftd.0000000000000287] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With current treatment regimens, a relatively high proportion of transplant recipients experience underimmunosuppression or overimmunosuppression. Recently, several promising biomarkers have been identified for determining patient alloreactivity, which help in assessing the risk of rejection and personal response to the drug; others correlate with graft dysfunction and clinical outcome, offering a realistic opportunity for personalized immunosuppression. This consensus document aims to help tailor immunosuppression to the needs of the individual patient. It examines current knowledge on biomarkers associated with patient risk stratification and immunosuppression requirements that have been generally accepted as promising. It is based on a comprehensive review of the literature and the expert opinion of the Biomarker Working Group of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. The quality of evidence was systematically weighted, and the strength of recommendations was rated according to the GRADE system. Three types of biomarkers are discussed: (1) those associated with the risk of rejection (alloreactivity/tolerance), (2) those reflecting individual response to immunosuppressants, and (3) those associated with graft dysfunction. Analytical aspects of biomarker measurement and novel pharmacokinetic-pharmacodynamic models accessible to the transplant community are also addressed. Conventional pharmacokinetic biomarkers may be used in combination with those discussed in this article to achieve better outcomes and improve long-term graft survival. Our group of experts has made recommendations for the most appropriate analysis of a proposed panel of preliminary biomarkers, most of which are currently under clinical evaluation in ongoing multicentre clinical trials. A section of Next Steps was also included, in which the Expert Committee is committed to sharing this knowledge with the Transplant Community in the form of triennial updates.
Collapse
|
26
|
Moes DJAR, Press RR, Ackaert O, Ploeger BA, Bemelman FJ, Diack C, Wessels JAM, van der Straaten T, Danhof M, Sanders JSF, Homan van der Heide JJ, Guchelaar HJ, de Fijter JW. Exploring genetic and non-genetic risk factors for delayed graft function, acute and subclinical rejection in renal transplant recipients. Br J Clin Pharmacol 2016; 82:227-37. [PMID: 27334415 DOI: 10.1111/bcp.12946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/05/2023] Open
Abstract
AIMS This study aimed at identifying pharmacological factors such as pharmacogenetics and drug exposure as new predictive biomarkers for delayed graft function (DGF), acute rejection (AR) and/or subclinical rejection (SCR). METHODS Adult renal transplant recipients (n = 361) on cyclosporine-based immunosuppression were followed for the first 6 months after transplantation. The incidence of DGF and AR were documented as well as the prevalence of SCR at 6 months in surveillance biopsies. Demographic, transplant-related factors, pharmacological and pharmacogenetic factors (ABCB1, CYP3A5, CYP3A4, CYP2C8, NR1I2, PPP3CA and PPP3CB) were analysed in a combined approach in relation to the occurrence of DGF, AR and prevalence of SCR at month 6 using a proportional odds model and time to event model. RESULTS Fourteen per cent of the patients experienced at least one clinical rejection episode and only DGF showed a significant effect on the time to AR. The incidence of DGF correlated with a deceased donor kidney transplant (27% vs. 0.6% of living donors). Pharmacogenetic factors were not associated with risk for DGF, AR or SCR. A deceased donor kidney and acute rejection history were the most important determinants for SCR, resulting in a 52% risk of SCR at 6 months (vs. 11% average). In a sub-analysis of the patients with AR, those treated with rejection treatment including ATG, significantly less frequent SCR was found in the 6-month biopsy (13% vs. 50%). CONCLUSIONS Transplant-related factors remain the most important determinants of DGF, AR and SCR. Furthermore, rejection treatment with depleting antibodies effectively prevented SCR in 6-month surveillance biopsies.
Collapse
Affiliation(s)
- Dirk Jan A R Moes
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rogier R Press
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oliver Ackaert
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P Consultants BV), Leiden, The Netherlands
| | - Bart A Ploeger
- Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands.,Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P Consultants BV), Leiden, The Netherlands
| | | | - Cheikh Diack
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P Consultants BV), Leiden, The Netherlands
| | - Judith A M Wessels
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tahar van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meindert Danhof
- Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands
| | | | | | - Henk Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs. Ther Drug Monit 2016; 38 Suppl 1:S57-69. [DOI: 10.1097/ftd.0000000000000255] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Chiu KW, Nakano T, Chen KD, Hsu LW, Lai CY, Huang CY, Cheng YF, Goto S, Chen CL. Cytochrome P450 in living donor liver transplantation. J Biomed Sci 2015; 22:32. [PMID: 25975271 PMCID: PMC4432787 DOI: 10.1186/s12929-015-0140-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 01/10/2023] Open
Abstract
Cytochrome P450 metabolizes many drugs in the liver. Three genotypes of CYP2C19 with extensive, intermediate, and poor metabolizing activity, respectively, have been identified in peripheral blood of transplant recipients and new liver grafts in living donor liver transplantation (LDLT). The expression of the final genotype in liver graft biopsies depends on the donor, whereas the expression in peripheral blood mononuclear cells depends on the recipient. The metabolizing isoenzyme of the major anti-rejection agents passes through CYP3A4, CYP3A5 and MDR1, which have also been identified to have similar biological characteristics as genotype of CYP2C19 in liver tissue. Recently, pyrosequencing has been used to investigate the expressions of different genotypes in liver grafts in LDLT. This review focuses on recent findings regarding the biological expressions of the CYP2C19, CYP3A4, CYP3A5 and MRD1 genotypes in liver grafts before and after LDLT. The application of pyrosequencing may be beneficial in further research on liver transplantation. Laser capture microdissection of hepatocytes in liver grafts may be a direction for future research.
Collapse
Affiliation(s)
- King-Wah Chiu
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan.
| | - Toshiaki Nakano
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Kuang-Den Chen
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Li-Wen Hsu
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Chia-Yun Lai
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Ching-Yin Huang
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Yu-Fan Cheng
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Shigeru Goto
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Chao-Long Chen
- Liver transplantation program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| |
Collapse
|
30
|
Ma J, Divers J, Palmer ND, Julian BA, Israni AK, Schladt D, Pastan SO, Chattrabhuti K, Gautreaux MD, Hauptfeld V, Bray RA, Kirk AD, Brown WM, Gaston RS, Rogers J, Farney AC, Orlando G, Stratta RJ, Guan M, Palanisamy A, Reeves-Daniel AM, Bowden DW, Langefeld CD, Hicks PJ, Ma L, Freedman BI. Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation. Kidney Int 2015; 88:584-92. [PMID: 25853335 PMCID: PMC4556550 DOI: 10.1038/ki.2015.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Abstract
Variants in donor multidrug resistance protein 1 (ABCB1) and caveolin 1 (CAV1) genes are associated with renal allograft failure after transplantation in Europeans. Here we assessed transplantation outcomes of kidneys from 368 African American (AA) and 314 European American (EA) deceased donors based on 38 single nucleotide polymorphisms (SNPs) spanning ABCB1 and 16 SNPs spanning CAV1, including previously associated index and haplotype-tagging SNPs. Tests for association with time to allograft failure were performed for the 1,233 resultant kidney transplantations, adjusting for recipient age, sex, ethnicity, cold ischemia time, PRA, HLA match, expanded-criteria donation, and APOL1- nephropathy variants in AA donors. Interaction analyses between APOL1 with ABCB1 and CAV1 were performed. In a meta-analysis of all transplantations, ABCB1 index SNP rs1045642 was associated with time to allograft failure and other ABCB1 SNPs were nominally associated, but not CAV1 SNPs. ABCB1 SNP rs1045642 showed consistent effects with the 558 transplantations from EA donors, but not with the 675 transplantations from AA donors. ABCB1 SNP rs956825 and CAV1 SNP rs6466583 interacted with APOL1 in transplants from AA donors. Thus, the T allele at ABCB1 rs1045642 is associated with shorter renal allograft survival for kidneys from American donors. Interactions between ABCB1 and CAV1 with APOL1 may influence allograft failure for transplanted kidneys from AA donors.
Collapse
Affiliation(s)
- Jun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jasmin Divers
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D Palmer
- Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruce A Julian
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ajay K Israni
- Department of Medicine, Division of Nephrology, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.,Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA
| | - David Schladt
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA
| | - Stephen O Pastan
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kryt Chattrabhuti
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Gautreaux
- General Surgery & HLA Immunogenetics Lab, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Vera Hauptfeld
- Alabama Regional Histocompatibility Laboratory at UAB, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Robert A Bray
- Department of Pathology & Lab Medicine; Emory School of Medicine, Atlanta, Georgia, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - W Mark Brown
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert S Gaston
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jeffrey Rogers
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alan C Farney
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert J Stratta
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Meijian Guan
- Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Amudha Palanisamy
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Amber M Reeves-Daniel
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Donald W Bowden
- Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pamela J Hicks
- Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
31
|
Genetic variance in ABCB1 and CYP3A5 does not contribute toward the development of chronic kidney disease after liver transplantation. Pharmacogenet Genomics 2015; 24:427-35. [PMID: 25014506 DOI: 10.1097/fpc.0000000000000063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) after liver transplantation (LT) is a major clinical problem that appears to be associated with nongenetic as well as genetic determinants. Calcineurin inhibitor (CNI) use is considered to play a major role in the development of CKD after LT. We studied the influence of single-nucleotide polymorphisms (SNPs) in the genes of the donor and recipient CNI-metabolizing enzyme CYP3A5 and the CNI-transporting ABCB1 on the development of CKD after LT. MATERIALS AND METHODS Tacrolimus (Tac) predose concentrations at different time-points after transplantation and the CYP3A5 6986A>G and ABCB1 3435C>T SNPs were determined in 125 LT recipients and their respective donors to study the influence of Tac predose levels and genetics on the development of CKD. RESULTS After a median follow-up of 5.7±2.9 years, CKD developed in 47 patients (36%). The Tac predose levels were not correlated with the development of CKD. Neither did we find a correlation between the investigated SNPs in either donor or recipient ABCB1 and CYP3A5 genes (or combinations thereof) and the development of CKD. These genetic variations did not relate to Tac predose blood concentrations in our study. CONCLUSION An individual's risk of developing CKD after LT is not associated with genetic variation in either recipient or donor CYP3A5 or ABCB1 genotype status.
Collapse
|
32
|
Zununi Vahed S, Ardalan M, Samadi N, Omidi Y. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients. BIOIMPACTS : BI 2015; 5:45-54. [PMID: 25901296 PMCID: PMC4401167 DOI: 10.15171/bi.2015.12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The advent of calcineurin inhibitors (CNIs), as the leading immunosuppressive agents, not only has revolutionized the transplant medicine but also made it a better therapeutic intervention that guarantees the graft outcome and improves the survival rate of patients. However, genetic polymorphism(s) in the CNIs metabolic substrates genes (CYP3A4, CYP3A5) and their transporter such as P-glycoprotein (P-gp) can influence the CNIs metabolism and elicit some possible systemic and intra-renal exposures to drugs and/or metabolites with differential risk of nephrotoxicity, jeopardizing the transplantation. METHODS In the current study, we review the recent literatures to evaluate the effects of genetic polymorphisms of the genes involved in development of chronic calcineurin nephrotoxicity and progression of chronic allograft dysfunction (CAD) providing an extensive overview on their clinical impacts. RESULTS Identifying the inherited genetic basis for the inter-individual differences in terms of drug responses and determining the risk of calcineurin-mediated nephrotoxicity and CAD allow optimized personalized administration of these agents whith minimal adverse effects. CONCLUSION Pharmacogenetics characteristics of CYP isoforms (CYP3A) and efflux transporters (P-gp and MRP), involved in metabolism and extracellular transportation of the immunosuppressive CNIs, can be of pivotal information in the pharmacotherapy of the renal-transplant recipients. Such information can be used for the successes clinical interventions to attain an improved drug administration strategy with reduced rates of rejection and toxicity.
Collapse
Affiliation(s)
- Sepideh Zununi Vahed
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Chronic Kidney Disease Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ardalan
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Chronic Kidney Disease Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Personalization of the immunosuppressive treatment in renal transplant recipients: the great challenge in "omics" medicine. Int J Mol Sci 2015; 16:4281-305. [PMID: 25690039 PMCID: PMC4346957 DOI: 10.3390/ijms16024281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
Renal transplantation represents the most favorable treatment for patients with advanced renal failure and it is followed, in most cases, by a significant enhancement in patients’ quality of life. Significant improvements in one-year renal allograft and patients’ survival rates have been achieved over the last 10 years primarily as a result of newer immunosuppressive regimens. Despite these notable achievements in the short-term outcome, long-term graft function and survival rates remain less than optimal. Death with a functioning graft and chronic allograft dysfunction result in an annual rate of 3%–5%. In this context, drug toxicity and long-term chronic adverse effects of immunosuppressive medications have a pivotal role. Unfortunately, at the moment, except for the evaluation of trough drug levels, no clinically useful tools are available to correctly manage immunosuppressive therapy. The proper use of these drugs could potentiate therapeutic effects minimizing adverse drug reactions. For this purpose, in the future, “omics” techniques could represent powerful tools that may be employed in clinical practice to routinely aid the personalization of drug treatment according to each patient’s genetic makeup. However, it is unquestionable that additional studies and technological advances are needed to standardize and simplify these methodologies.
Collapse
|
34
|
The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients. J Hum Genet 2015; 60:273-6. [DOI: 10.1038/jhg.2015.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/28/2023]
|
35
|
Knops N, van den Heuvel LP, Masereeuw R, Bongaers I, de Loor H, Levtchenko E, Kuypers D. The Functional Implications of Common Genetic Variation in CYP3A5 and ABCB1 in Human Proximal Tubule Cells. Mol Pharm 2015; 12:758-68. [DOI: 10.1021/mp500590s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Inge Bongaers
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Henriëtte de Loor
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk Kuypers
- Department of Pediatric Nephrology and Solid Organ Transplantation and ‡Department of Nephrology
and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Laboratory for Pediatrics, Department of Development & Regeneration and ⊥Laboratory of Nephrology, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Genetic, Endocrine, and Metabolic Disorders and ∥Department of Pharmacology
and Toxicology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
36
|
Elens L, Bouamar R, Shuker N, Hesselink DA, van Gelder T, van Schaik RHN. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. Br J Clin Pharmacol 2014; 77:715-28. [PMID: 24118098 DOI: 10.1111/bcp.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics has generated many expectations for its potential to individualize therapy proactively and improve medical care. However, despite the huge amount of reported genetic associations with either pharmacokinetics or pharmacodynamics of drugs, the translation into patient care is still slow. In fact, strong evidence for a substantial clinical benefit of pharmacogenetic testing is still limited, with a few exceptions. In kidney transplantation, established pharmacogenetic discoveries are being investigated for application in the clinic to improve efficacy and to limit toxicity associated with the use of immunosuppressive drugs, especially the frequently used calcineurin inhibitors (CNIs) tacrolimus and ciclosporin. The purpose of the present review is to picture the current status of CNI pharmacogenetics and to discuss the most promising leads that have been followed so far.
Collapse
Affiliation(s)
- Laure Elens
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium; Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam
| | | | | | | | | | | |
Collapse
|
37
|
Bloch J, Hazzan M, Van der Hauwaert C, Buob D, Savary G, Hertig A, Gnemmi V, Frimat M, Perrais M, Copin MC, Broly F, Noël C, Pottier N, Cauffiez C, Glowacki F. Donor ABCB1 genetic polymorphisms influence epithelial-to-mesenchyme transition in tacrolimus-treated kidney recipients. Pharmacogenomics 2014; 15:2011-24. [DOI: 10.2217/pgs.14.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: The contribution of epithelial–mesenchymal transition (EMT) has been suggested in renal transplant recipients receiving calcineurin inhibitors and developing nephrotoxicity. Materials & methods: We assessed whether interindividual variability in tacrolimus pharmacokinetics is associated with the occurrence in tubular cells of two EMT markers (vimentin, β-catenin) detected at 3‐month in 140 allograft biopsies. We investigated whether genetic polymorphisms affecting CYP3A5 and ABCB1 influence EMT and kidney fibrosis. Results: In univariate analysis, the donor CYP3A5*1 allele was significantly associated with a lower vimentin expression. In multivariate analysis, grafts carrying ABCB1 3435T allele(s) developed significantly less EMT and less interstitial fibrosis. Conclusion: Donor SNPs significantly influence the epithelial program in the context of kidney transplantation, and the epithelial metabolism of tacrolimus is one key to understand graft fibrogenesis.
Collapse
Affiliation(s)
- Julie Bloch
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
- Service de Néphrologie, Hôpital Huriez, CHRU, Lille, France
| | - Marc Hazzan
- Service de Néphrologie, Hôpital Huriez, CHRU, Lille, France
| | | | - David Buob
- Institut de Pathologie, Centre de Biologie Pathologie Génétique, CHRU, Lille, France
| | - Grégoire Savary
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
| | - Alexandre Hertig
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, AP-HP, Paris, France
| | - Viviane Gnemmi
- Institut de Pathologie, Centre de Biologie Pathologie Génétique, CHRU, Lille, France
| | - Marie Frimat
- Service de Néphrologie, Hôpital Huriez, CHRU, Lille, France
| | - Michaël Perrais
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 "Mucines, Différenciation et Cancérogenèse Épithéliales", Lille, France
| | - Marie-Christine Copin
- Institut de Pathologie, Centre de Biologie Pathologie Génétique, CHRU, Lille, France
| | - Franck Broly
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
| | - Christian Noël
- Service de Néphrologie, Hôpital Huriez, CHRU, Lille, France
| | - Nicolas Pottier
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
| | - Christelle Cauffiez
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
| | - François Glowacki
- EA4483, Faculté de Médecine H Warembourg, Pôle Recherche, Université de Lille, France
- Service de Néphrologie, Hôpital Huriez, CHRU, Lille, France
| |
Collapse
|
38
|
Hronová K, Šíma M, Světlík S, Matoušková O, Slanař O. Pharmacogenetics and immunosuppressive drugs. Expert Rev Clin Pharmacol 2014; 7:821-35. [PMID: 25301406 DOI: 10.1586/17512433.2014.966811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate genes have been proposed as potential biomarkers for altered pharmacodynamics or pharmacokinetics of immunosuppressive drugs. However, there is usually only limited clinical evidence substantiating the implementation of biomarkers into clinical practice. Testing for thiopurine-S-methyltransferase polymorphisms has been put into routine clinical use quite widely, while the other pharmacogenetic tests are much less frequently used. Relatively good evidence appeared for tacrolimus-related biomarkers; thus, their utilization may be envisaged in the near future. Although the biomarkers related to mycophenolate, sirolimus or other drugs in the therapeutic class may be promising, further research is necessary to provide more robust evidence. The present review focuses on immunosuppressive drugs, excluding biological treatment.
Collapse
Affiliation(s)
- Karolína Hronová
- Department of Pharmacology, First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Albertov 4, CZ-128 00 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Abstract
The transplantation literature includes numerous papers that report associations between polymorphisms in genes encoding metabolizing enzymes and drug transporters, and pharmacokinetic data on immunosuppressive drugs. Most of these studies are retrospective in design, and although a substantial number report significant associations, pharmacogenetic tests are hardly used in clinical practice. One of the reasons for this poor implementation is the current lack of evidence of improved clinical outcome with pharmacogenetic testing. Furthermore, with efficient therapeutic drug monitoring it is possible to rapidly correct for the effect of genotypic deviations on pharmacokinetics, thereby decreasing the utility of genotype-based dosing. The future of pharmacogenetics will be in treatment models in which patient characteristics are combined with data on polymorphisms in multiple genes. These models should focus on pharmacodynamic parameters, variations in the expression of drug transporter proteins, and predictors of toxicity. Such models will provide more information than the relatively small candidate gene studies performed so far. For implementation of these models into clinical practice, linkage of genotype data to medication prescription systems within electronic health records will be crucial.
Collapse
|
40
|
The impact of APOL1, CAV1, and ABCB1 gene variants on outcomes in kidney transplantation: donor and recipient effects. Pediatr Nephrol 2014; 29:1485-92. [PMID: 23748364 PMCID: PMC3809028 DOI: 10.1007/s00467-013-2531-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Dramatic improvements have been seen in short-term kidney allograft survival over recent decades with introduction of more potent immunosuppressant medications and regimens. Unfortunately, improvements in long-term graft survival have lagged behind. The genomics revolution is providing new insights regarding the potential impact of kidney donor genotypes on long-term graft survival. Variation in the donor apolipoprotein L1 (APOL1), caveolin 1 (CAV1), and multi-drug resistance 1 encoding P-glycoprotein genes (ABCB1) are all associated with graft survival after kidney transplantation. Although the precise mechanisms whereby these donor gene variants confer risk for graft loss have yet to be determined, these findings provide novel opportunities for modifying interactive environmental factors and optimizing kidney allocation with the ultimate goal of improving long-term graft survival rates.
Collapse
|
41
|
Old tracer for a new purpose: potential role for 99mTc-2-Methoxyisobutylisonitrile (99mTc-MIBI) in renal transplant care. Nucl Med Commun 2014; 35:1058-66. [PMID: 25025147 DOI: 10.1097/mnm.0000000000000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Calcineurin inhibitors are substrates for P-glycoprotein (P-gp), the expression of which is associated with ABCB1 C3435T polymorphism. Individual P-gp response to calcineurin inhibitor may be linked to nephrotoxicity or rejection. Tc-2-Methoxyisobutylisonitrile (Tc-MIBI) is also a P-gp substrate. The aim of this study, therefore, was to determine Tc-MIBI organ kinetics and compare them with ABCB1 genotype with a view to replacing Tc-mercaptoacetyltriglycine (Tc-MAG3) with Tc-MIBI in renal transplant care. METHODS Thirty prospective donors (13 male) were imaged for 20 min after administration of Tc-MIBI (400 MBq) intravenously. Posterior images of the abdomen were acquired at 30 and 120 min. Organ 30 min/peak count rate ratios and exponential two-point (30-120 min) rate constants (k, min) were calculated. Nineteen donors were genotyped for C3435T (exon 26), G2677T (exon 21), C1236T (exon 12), and G1199A (exon 11) ABCB1 polymorphisms using a PCR-based technique. RESULTS Tc-MIBI and Tc-MAG3 gave similar perfusion images. Although their patterns of renal elimination were different, differential renal function was not significantly different. There was a negative trend between the hepatic 30 min/peak ratio and C3435T genotype (CC: 0.8374 ± 0.0502; TC: 0.6806 ± 0.1300; TT: 0.6919 ± 0.1506; P=0.083). Renal k showed a negative trend with C3435T (CC: 0.0021 ± 0.0020; TC: 0.0037 ± 0.0013; TT: 0.0040 ± 0.0012 min; P=0.087) but with no other genotypes. There were no significant sex-related differences in Tc-MIBI kinetics. CONCLUSION Tc-MIBI can replace Tc-MAG3 for pretransplant workup. The ABCB1 C3435T polymorphism may influence Tc-MIBI kinetics and thus have a role in renal transplant care. Further prospective trials are required to establish the full potential of Tc-MIBI in renal transplant management.
Collapse
|
42
|
Murray B, Hawes E, Lee RA, Watson R, Roederer MW. Genes and beans: pharmacogenomics of renal transplant. Pharmacogenomics 2014; 14:783-98. [PMID: 23651025 DOI: 10.2217/pgs.13.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in the management of patients after solid organ transplantation have led to dramatic decreases in rates of acute rejection, but long-term graft and patient survival have remained unchanged. Individualized therapy after transplant will ideally provide adequate immunosuppression while limiting the adverse effects of drug therapy that significantly impact graft survival. Therapeutic drug monitoring represents the best approximation of individualized drug therapy in transplant at this time; however, obtaining pharmacogenomic data in transplant patients has the potential to enhance our current practice. Polymorphisms of target genes that impact pharmacokinetics have been identified for most immunosuppressants, including tacrolimus, cyclosporine, mycophenolate, azathioprine and sirolimus. In the future, pre-emptive assessment of a patient's genetic profile may inform drug selection and provide information on specific doses that will improve efficacy and limit toxicity.
Collapse
Affiliation(s)
- Brian Murray
- Critical Care Clinical Specialist, UNC Hospitals & Clinics, 101 Manning Drive, CB #7600, Chapel Hill, NC 27599-7600, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Phelan PJ, Conlon PJ, Sparks MA. Genetic determinants of renal transplant outcome: where do we stand? J Nephrol 2014; 27:247-56. [DOI: 10.1007/s40620-014-0053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
|
45
|
Liu M, Li Y, Citterio L, Huang QF, Zeng WF, Sheng CS, Wei FF, Dong Q, Li GL, Kang YY, Zhang L, Xu TY, Li JJ, Song J, Manunta P, Wang JG. A functional common polymorphism of the ABCB1 gene is associated with chronic kidney disease and hypertension in Chinese. Am J Hypertens 2013; 26:1428-36. [PMID: 23926124 DOI: 10.1093/ajh/hpt126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Permeability glycoprotein is encoded by the ATP-binding cassette B1 gene (ABCB1) and is an extruder of toxic metabolites in the kidney. A functional common polymorphism (C3435T, rs1045642) in the human ABCB1 gene has been found to be associated with allograft outcome in kidney transplant patients. In this study, we investigated the association of the C3435T polymorphism with renal function and blood pressure (BP) in 2 Chinese populations. METHODS The discovery and replication populations were recruited from a mountainous area (Zhejiang Province) and a newly urbanized suburban area (Shanghai), respectively. We genotyped all subjects using the ABI SNapShot method. Chronic kidney disease (CKD) was defined as an estimated glomerular filtration rate <60 ml/min × 1.73 m(2) or 24-hour urinary albumin excretion ≥30 mg. RESULTS In the discovery population of 1,987 subjects, after adjustment for covariables, TT homozygosity (n = 217) was associated with a higher risk of CKD (n = 369; odds ratio (OR) = 1.73; P = 0.003) and with higher systolic BP (+3.1 mm Hg; P = 0.03) and pulse pressure (+3.4 mm Hg; P = 0.001). These associations were dependent on age (Pint ≤ 0.05). In subjects aged ≥60 years (n = 374), the corresponding OR or difference was 2.40 for CKD, 15.1 mm Hg for systolic BP, and 12.4 mm Hg for pulse pressure (P < 0.001). In similar adjusted analyses in the replication population of 2,427 elderly (≥60 years) subjects, TT homozygosity was also associated with a higher risk of CKD (OR = 1.39; P = 0.02) and an enhanced association of hypertension with CKD (OR = 1.50; P = 0.04). CONCLUSIONS The ABCB1 C3435T polymorphism might predict CKD, especially in the elderly.
Collapse
Affiliation(s)
- Ming Liu
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Lab of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2013; 53:123-39. [DOI: 10.1007/s40262-013-0120-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Brunet M, Millán O, Martorell J. Donor–recipient genetic diversity: the role of
pharmacogenomics in kidney transplantation. Pharmacogenomics 2013; 14:1369-72. [DOI: 10.2217/pgs.13.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mercè Brunet
- Farmacología y Toxicología, Centro de Diagnóstico Biomédico, IDIBAPS, CIBERehd, Hospital Clínico, Universidad de Barcelona, Spain
| | - Olga Millán
- Farmacología y Toxicología, Centro de Diagnóstico Biomédico, IDIBAPS, CIBERehd, Hospital Clínico, Universidad de Barcelona, Spain
| | - Jaume Martorell
- Immunología, Centro de Diagnóstico Biomédico, IDIBAPS, Hospital Clínico, Universidad de Barcelona, Spain
| |
Collapse
|
48
|
Kassogue Y, Dehbi H, Nassereddine S, Quachouh M, Nadifi S. Genotype variability and haplotype frequency of MDR1 (ABCB1) gene polymorphism in Morocco. DNA Cell Biol 2013; 32:582-8. [PMID: 23930592 DOI: 10.1089/dna.2013.2108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The multidrug resistance gene (MDR1) plays an important role in the transport of a wide range of drugs and elimination of xenobiotics from the body. Identification of polymorphisms and haplotypes in the MDR1 gene might not only help understand pharmacokinetics and pharmacodynamics of drugs, but also can help in the prediction of drug responses, toxicity, and side effects, especially, in the era of personalized medicine. We have analyzed the genotypic and haplotypic frequencies of the three most common single-nucleotide polymorphisms in the MDR1 gene in a sample of 100 unrelated healthy Moroccan subjects by polymerase chain reaction-restrictive fragment length polymorphism. The observed genotype frequencies were 43% for 1236CC, 49% for 1236CT, and 8% for 1236TT in exon 12; 49% for 2677GG, 47% for 2677GT, and 4% for 2677TT in exon 21; 39% for 3435CC, 51% 3435CT for 3435TT, and 10% for 3435TT in exon 26, respectively. We found that all polymorphisms were in Hardy-Weinberg equilibrium. Moderate linkage disequilibrium (LD) was observed between the three polymorphisms, the strongest LD in our study has been observed between C1236T and G2677T (D'=0.76; r(2)=0.45). We identified eight haplotypes, the most frequent were 1236C-2677G-3435C (53%), 1236T-2677T-3435T (21%), and 1236C-2677G-3435T (10%), respectively. Our findings might facilitate future studies on pharmacokinetics of P-glycoprotein substrate drugs and interindividual variability to drugs in Moroccan patients.
Collapse
Affiliation(s)
- Yaya Kassogue
- 1 Genetics and Molecular Pathology Laboratory, Medical School of Casablanca, University Hassan II , Casablanca, Morocco
| | | | | | | | | |
Collapse
|
49
|
Abstract
Arterial hypertension is prevalent among kidney transplant recipients. The multifactorial pathogenesis involves the interaction of the donor and the recipient's genetic backgrounds with several environmental parameters that may precede or follow the transplant procedure (eg, the nature of the renal disease, the duration of the chronic kidney disease phase and maintenance dialytic therapy, the commonly associated cardiovascular disease with atherosclerosis and arteriosclerosis, the renal mass at implantation, the immunosuppressive regimen used, life of the graft, and de novo medical and surgical complications that may occur after a transplant). Among calcineurin inhibitors, tacrolimus seems to have a better cardiovascular profile. Steroid-free protocols and calcineurin inhibitor-free regimens seem to be associated with better blood pressure control. Posttransplant hypertension is a major amplifier of the chronic kidney disease-cardiovascular disease continuum. Despite the adverse effects of hypertension on graft and patient survival, blood pressure control remains poor because of the high cardiovascular risk profile of the donor-recipient pair. Although the optimal blood pressure level remains unknown, it is recommended to maintain the blood pressure at < 130/80 mm Hg and < 125/75 mm Hg in the absence or presence of proteinuria.
Collapse
Affiliation(s)
- Antoine Barbari
- Renal Transplantation Unit, Rafik Hariri University Hospital, Bir Hassan, Beirut-Lebanon.
| |
Collapse
|
50
|
Association of CYP3A polymorphisms with the pharmacokinetics of cyclosporine A in early post-renal transplant recipients in China. Acta Pharmacol Sin 2012; 33:1563-70. [PMID: 23085740 DOI: 10.1038/aps.2012.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM To evaluate retrospectively the association of cytochrome P450 3A (CYP3A) and ATP-binding cassette sub-family B member 1 (ABCB1) gene polymorphisms with the pharmacokinetics of cyclosporine A (CsA) in Chinese renal transplant patients. METHODS One hundred and twenty-six renal transplant patients were recruited. Blood samples were collected, and corresponding clinical indices were recorded on the seventh day after the procedure. The patients were genotyped for CYP3A4*1G, CYP3A5*3C, ABCB1 1236 C>T, ABCB1 2677 G>T/A, and ABCB1 3435 C>T polymorphisms. Whole blood trough concentrations of CsA at time zero (C(0)) were measured before the drug administration. A multiple regression model was developed to analyze the effects of genetic factors on the CsA dose-adjusted C(0) (C(0)/dose) based on several clinical indices. RESULTS The CYP3A5*3C polymorphism influenced the C(0) and C(0)/dose of CsA, which were significantly higher in patients with the GG genotype than in patients with the AA or GA genotypes. No significant differences were detected for other SNPs (CYP3A4*1G, ABCB1 1236 C>T, ABCB1 2677 G>T/A, and ABCB1 3435 C>T). In a univariate analysis using Pearson's correlation test, age, hemoglobin, blood urea nitrogen and blood creatinine levels were significantly correlated with the log-transformed CsA C(0)/dose. In the multiple regression model, CYP3A5*3C, age, hemoglobin and blood creatinine level were associated with the log-transformed CsA C(0)/dose. CONCLUSION CYP3A5*3C correlates with the C(0)/dose of CsA on the seventh day after renal transplantation. The allele is a putative indicator for the optimal CsA dosage in the early phase of renal transplantation in the Chinese population.
Collapse
|