1
|
Coons JC, Empey PE. Pharmacogenomics in the Management of Pulmonary Arterial Hypertension: Current Perspectives. Pharmgenomics Pers Med 2023; 16:729-737. [PMID: 37457231 PMCID: PMC10349598 DOI: 10.2147/pgpm.s361222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with heterogeneous causes that can lead to right ventricular (RV) failure and death if left untreated. There are currently 10 medications representative of five unique pharmacologic classes that are approved for treatment. These have led to significant improvements in overall clinical outcome. However, substantial variability in dosing requirements and treatment response is evident, leading to suboptimal outcome for many patients. Furthermore, dosing is empiric and iterative and can lead to delays in meeting treatment goals and burdensome adverse effects. Pharmacogenomic (PGx) associations have been reported with certain PAH medications, such as treprostinil and bosentan, and can explain some of the variability in response. Relevant genes associated with treprostinil include CYP2C8, CYP2C9, CAMK2D, and PFAS. CYP2C8 and CYP2C9 are the genes encoding the major metabolizing liver enzymes for treprostinil, and reduced function variants (*2, *3) with CYP2C9 were associated with lower treatment persistence. Additionally, a higher CYP2C9 activity score was associated with a significantly less risk of treatment discontinuation. Other genes of interest that have been explored with treprostinil include CAMK2D, which is associated with right ventricular dysfunction and significantly higher dose requirements. Similarly, PFAS is associated with lower concentrations of cyclic adenosine monophosphate and significantly higher dose requirements. Genes of interest with the endothelin receptor antagonist (ERA) class include GNG2 and CYP2C9. A genetic variant in GNG2 (rs11157866) was linked to a significantly increased rate of clinical improvement with ERAs. The *2 variant with CYP2C9 (encoding for the major metabolizing enzyme for bosentan) was significantly associated with a higher risk for elevations in hepatic aminotransferases and liver injury. In summary, this article reviews the relevant pharmacogenes that have been associated to date with dosing and outcome among patients who received PAH medications.
Collapse
Affiliation(s)
- James C Coons
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Pharmacy, UPMC Presbyterian-Shadyside Hospital, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Li J, Yang ZY, Wang S, Yuan P, Zhao QH, Gong SG, Qiu HL, Luo CJ, Li HT, Zhang R, Wu WH, Liu JM, Wang L, Liu SS, Jiang R. Efficacy and safety of switching from bosentan or ambrisentan to macitentan in pulmonary arterial hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:977110. [PMID: 36568539 PMCID: PMC9767980 DOI: 10.3389/fcvm.2022.977110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Background There is little evidence of the effectiveness of switching from the endothelin receptor antagonists (ERAs) bosentan and ambrisentan to a novel ERA, macitentan, in patients with pulmonary arterial hypertension (PAH). Therefore, a systematic review and meta-analysis was performed to evaluate the efficacy and safety of patients with PAH switching from other ERAs to macitentan. Methods We retrieved the relevant literature published before January 2022 for the meta-analysis from the PubMed, EMBASE, and Cochrane Library databases. Efficacy included changes in the 6-min walk distance (6MWD), World Health Organization functional class (WHO-FC), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, hemodynamics, echocardiography and survival. Results Nine studies, consisting of 408 PAH patients, that met the inclusion criteria were included. The switch from bosentan or ambrisentan to macitentan effectively increased the 6MWD by 20.71 m (95% CI: 10.35-31.07, P < 0.00001, I 2 = 0%). Six months after conversion, the tricuspid annular plane systolic excursion was found to improve from 19.0 ± 4.0 to 21.0 ± 5.0 mm in adults and from 16.00 ± 5.0 to 18.25 ± 4.8 mm in children. Ordinal logistic regression showed that the WHO-FC significantly improved by 0.412 (95% CI: 0.187-0.908, P = 0.028). The switch did not show significant improvement in NT-proBNP levels. In addition, the switch was well tolerated. Conclusion The switch from bosentan or ambrisentan to macitentan significantly increased the 6MWD in PAH patients, improved the WHO-FC, and exerted safety benefits. The effects of the switch on NT-proBNP levels, hemodynamics, and echocardiography still need to be further confirmed. Systematic review registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021292554].
Collapse
Affiliation(s)
- Jie Li
- Department of School of Medicine, Tongji University, Shanghai, China
| | - Zu-Yuan Yang
- Department of School of Medicine, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Ting Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Shan Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China,Shan-Shan Liu,
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Rong Jiang, ,
| |
Collapse
|
3
|
Lattanzio M, Ferrari M, Martini S, Ceriani F, Imporzani A, Marino F, De Ponti R, Cosentino M. Pharmacological counseling in hepatotoxicity induced by macitentan and selexipag: a case report. J Med Case Rep 2022; 16:385. [PMID: 36258237 PMCID: PMC9578229 DOI: 10.1186/s13256-022-03571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pulmonary arterial hypertension is a progressive, debilitating condition characterized by increased resistance in the pulmonary arterial circulation. Current treatments for pulmonary arterial hypertension include endothelin receptor antagonists such as bosentan, sitaxentan, ambrisentan, macitentan, and oral prostacyclin receptor agonists such as selexipag. Endothelin receptor antagonists have been associated with liver injury, while hepatotoxicity was not reported for selexipag. Although genetic variability has been indisputably associated with variability in drug response, no study has been designed until now to assess its effects on the pharmacokinetics of endothelin receptor antagonists or selexipag. Case presentation We report the case of a 58-year-old female Caucasian patient with a dramatic increase in plasma levels of transaminases after treatment with macitentan and selexipag, drugs whose risk of causing liver injury has so far been considered limited. After therapy discontinuation, plasma levels of transaminases returned to baseline, thus suggesting a role of these drugs in the observed hepatotoxicity. After pharmacological counseling, we decided to introduce ambrisentan for the patient’s treatment. After 7 months of treatment, no liver injury has been reported. To evaluate the role of genetic factors in the observed hepatotoxicity, we genotyped the patient for single-nucleotide polymorphisms previously associated with macitentan, ambrisentan, or selexipag metabolism. We found a genetic profile associated with a poor metabolizer (PM) phenotype for CYP2C8 and CYP2C9, key enzymes for elimination of both macitentan and selexipag. The reported results suggest that an allelic profile associated with low activity for CYP2C8 and CYP2C9 enzyme could be a potential risk factor for macitentan and selexipag-induced liver injury and could provide a possible marker for early identification of subjects at higher risk of developing hepatotoxicity. Conclusions A multidisciplinary approach based on clinical evaluation, as well as pharmacological counseling and evaluation of the patient’s genetic profile, might be useful for identification of patients with a high chance of drug-induced liver injury, avoiding unnecessary risks in therapy selection and prescription.
Collapse
Affiliation(s)
- Mariangela Lattanzio
- Pulmonary Hypertension Unit, Department of Heart and Vessels, Ospedale di Circolo and Fondazione Macchi, University of Insubria, Varese, Italy
| | - Marco Ferrari
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy.
| | - Stefano Martini
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Francesca Ceriani
- Pulmonary Hypertension Unit, Department of Heart and Vessels, Ospedale di Circolo and Fondazione Macchi, University of Insubria, Varese, Italy
| | - Andrea Imporzani
- Pulmonary Hypertension Unit, Department of Heart and Vessels, Ospedale di Circolo and Fondazione Macchi, University of Insubria, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Roberto De Ponti
- Pulmonary Hypertension Unit, Department of Heart and Vessels, Ospedale di Circolo and Fondazione Macchi, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| |
Collapse
|
4
|
Chen Y, Luo J, Chen J, Kotlyar E, Li Z, Chen W, Li J. The Transition From Ambrisentan to Macitentan in Patients With Pulmonary Arterial Hypertension: A Real-word Prospective Study. Front Pharmacol 2022. [PMID: 35095523 DOI: 10.3389/fphar.2021.811700)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: In a long-term event-driven trial, macitentan has demonstrated beneficial time to clinical worsening in patients with pulmonary arterial hypertension (PAH) and reduced PAH-related hospitalization rates compared with placebo. Macitentan is the most recently approved endothelin receptor antagonist (ERA) and is the first ERA that has shown efficacy for morbidity and mortality in PAH patients; therefore, patients and physicians may consider converting treatment from ambrisentan to macitentan. Our study evaluated the safety, efficacy, and quality of life in PAH patients transitioning from ambrisentan to macitentan. Methods: This was a real-world, prospective study with a 12-month follow-up. PAH patients who had received stable doses of ambrisentan for over 3 months, were within the World Health Organization Functional Class II/III, and 6-min walk distance ≥ of 250 m were enrolled. The study included a screening period, followed by a transition phase, after which patients entered the long-term follow-up. Clinical data and treatment satisfaction outcomes were collected to assess and monitor the safety and efficacy of the transition. The trial was registered at the Chinese Clinical Trial Registry (www.chictr.org.cn; No. ChiCTR2000034898). Results: One hundred and fifty-seven enrolled PAH patients completed the transition. All criteria for continuous treatment transition were met by 145 patients (92.4%). Results showed improvements in exercise capacity, cardiac function, and hemodynamics compared with baseline. During the process, 4 patients discontinued macitentan due to adverse events. There was no statistical difference in the overall incidence of adverse events before and after the transition. Conclusion: Transition to macitentan from ambrisentan was successful and well-tolerated by PAH patients, and was associated with greater efficacy and satisfaction.
Collapse
Affiliation(s)
- Yusi Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Zilu Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjie Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiang Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Chen Y, Luo J, Chen J, Kotlyar E, Li Z, Chen W, Li J. The Transition From Ambrisentan to Macitentan in Patients With Pulmonary Arterial Hypertension: A Real-word Prospective Study. Front Pharmacol 2022; 12:811700. [PMID: 35095523 PMCID: PMC8790043 DOI: 10.3389/fphar.2021.811700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background: In a long-term event-driven trial, macitentan has demonstrated beneficial time to clinical worsening in patients with pulmonary arterial hypertension (PAH) and reduced PAH-related hospitalization rates compared with placebo. Macitentan is the most recently approved endothelin receptor antagonist (ERA) and is the first ERA that has shown efficacy for morbidity and mortality in PAH patients; therefore, patients and physicians may consider converting treatment from ambrisentan to macitentan. Our study evaluated the safety, efficacy, and quality of life in PAH patients transitioning from ambrisentan to macitentan. Methods: This was a real-world, prospective study with a 12-month follow-up. PAH patients who had received stable doses of ambrisentan for over 3 months, were within the World Health Organization Functional Class II/III, and 6-min walk distance ≥ of 250 m were enrolled. The study included a screening period, followed by a transition phase, after which patients entered the long-term follow-up. Clinical data and treatment satisfaction outcomes were collected to assess and monitor the safety and efficacy of the transition. The trial was registered at the Chinese Clinical Trial Registry (www.chictr.org.cn; No. ChiCTR2000034898). Results: One hundred and fifty-seven enrolled PAH patients completed the transition. All criteria for continuous treatment transition were met by 145 patients (92.4%). Results showed improvements in exercise capacity, cardiac function, and hemodynamics compared with baseline. During the process, 4 patients discontinued macitentan due to adverse events. There was no statistical difference in the overall incidence of adverse events before and after the transition. Conclusion: Transition to macitentan from ambrisentan was successful and well-tolerated by PAH patients, and was associated with greater efficacy and satisfaction.
Collapse
Affiliation(s)
- Yusi Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Zilu Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjie Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiang Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jiang Li, , orcid.org/0000-0003-4904-6635
| |
Collapse
|
6
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Caiazza C, Parisi S, Caiazzo M. Liver Organoids: Updates on Disease Modeling and Biomedical Applications. BIOLOGY 2021; 10:835. [PMID: 34571712 PMCID: PMC8470787 DOI: 10.3390/biology10090835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Liver organoids are stem cell-derived 3D structures that are generated by liver differentiation signals in the presence of a supporting extracellular matrix. Liver organoids overcome low complexity grade of bidimensional culture and high costs of in vivo models thus representing a turning point for studying liver disease modeling. Liver organoids can be established from different sources as induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), hepatoblasts and tissue-derived cells. This novel in vitro system represents an innovative tool to deeper understand the physiology and pathological mechanisms affecting the liver. In this review, we discuss the current advances in the field focusing on their application in modeling diseases, regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy;
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
8
|
Oorts M, Van Brantegem P, Deferm N, Chatterjee S, Dreesen E, Cooreman A, Vinken M, Richert L, Annaert P. Bosentan Alters Endo- and Exogenous Bile Salt Disposition in Sandwich-Cultured Human Hepatocytes. J Pharmacol Exp Ther 2021; 379:20-32. [PMID: 34349015 DOI: 10.1124/jpet.121.000695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Bosentan, a well-known cholestatic agent, was not identified as cholestatic at concentrations up to 200 µM based on the drug-induced cholestasis (DIC) index value, determined in a sandwich-cultured human hepatocyte (SCHH)-based DIC assay. To obtain further quantitative insights into the effects of bosentan on cellular bile salt handling by human hepatocytes, the present study determined the effect of 2.5-25 µM bosentan on endogenous bile salt levels and on the disposition of 10 µM chenodeoxycholic acid (CDCA) added to the medium in SCHHs. Bosentan reduced intracellular as well as extracellular concentrations of both endogenous glycochenodeoxycholic acid (GCDCA) and glycocholic acid in a concentration-dependent manner. When exposed to 10 µM CDCA, bosentan caused a shift from canalicular efflux to sinusoidal efflux of GCDCA. CDCA levels were not affected. Our mechanistic model confirmed the inhibitory effect of bosentan on canalicular GCDCA clearance. Moreover, our results in SCHHs also indicated reduced GCDCA formation. We confirmed the direct inhibitory effect of bosentan on CDCA conjugation with glycine in incubations with liver S9 fraction. SIGNIFICANCE STATEMENT: Bosentan was evaluated at therapeutically relevant concentrations (2.5-25 µM) in sandwich-cultured human hepatocytes. It altered bile salt disposition and inhibited canalicular secretion of glycochenodeoxycholic acid (GCDCA). Within 24 hours, bosentan caused a shift from canalicular to sinusoidal efflux of GCDCA. These results also indicated reduced GCDCA formation. This study confirmed a direct effect of bosentan on chenodeoxycholic acid conjugation with glycine in liver S9 fraction.
Collapse
Affiliation(s)
- Marlies Oorts
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Van Brantegem
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Neel Deferm
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Sagnik Chatterjee
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Erwin Dreesen
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Axelle Cooreman
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Mathieu Vinken
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Lysiane Richert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| |
Collapse
|
9
|
Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, Koike H, Maezawa M, Zhang RR, Dunn A, Ferguson A, Togo S, Lewis K, Thompson W, Asai A, Takebe T. High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell-Derived Organoids. Gastroenterology 2021; 160:831-846.e10. [PMID: 33039464 PMCID: PMC7878295 DOI: 10.1053/j.gastro.2020.10.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Preclinical identification of compounds at risk of causing drug induced liver injury (DILI) remains a significant challenge in drug development, highlighting a need for a predictive human system to study complicated DILI mechanism and susceptibility to individual drug. Here, we established a human liver organoid (HLO)-based screening model for analyzing DILI pathology at organoid resolution. METHODS We first developed a reproducible method to generate HLO from storable foregut progenitors from pluripotent stem cell (PSC) lines with reproducible bile transport function. The qRT-PCR and single cell RNA-seq determined hepatocyte transcriptomic state in cells of HLO relative to primary hepatocytes. Histological and ultrastructural analyses were performed to evaluate micro-anatomical architecture. HLO based drug-induced liver injury assays were transformed into a 384 well based high-speed live imaging platform. RESULTS HLO, generated from 10 different pluripotent stem cell lines, contain polarized immature hepatocytes with bile canaliculi-like architecture, establishing the unidirectional bile acid transport pathway. Single cell RNA-seq profiling identified diverse and zonal hepatocytic populations that in part emulate primary adult hepatocytes. The accumulation of fluorescent bile acid into organoid was impaired by CRISPR-Cas9-based gene editing and transporter inhibitor treatment with BSEP. Furthermore, we successfully developed an organoid based assay with multiplexed readouts measuring viability, cholestatic and/or mitochondrial toxicity with high predictive values for 238 marketed drugs at 4 different concentrations (Sensitivity: 88.7%, Specificity: 88.9%). LoT positively predicts genomic predisposition (CYP2C9∗2) for Bosentan-induced cholestasis. CONCLUSIONS Liver organoid-based Toxicity screen (LoT) is a potential assay system for liver toxicology studies, facilitating compound optimization, mechanistic study, and precision medicine as well as drug screening applications.
Collapse
Affiliation(s)
- Tadahiro Shinozawa
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rie Ouchi
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hiroyuki Koike
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mari Maezawa
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ran-Ran Zhang
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Dunn
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Autumn Ferguson
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Shodai Togo
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kyle Lewis
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Wendy Thompson
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Akihiro Asai
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan.
| |
Collapse
|
10
|
Khetani SR. Pluripotent Stem Cell-Derived Human Liver Organoids Enter the Realm of High-Throughput Drug Screening. Gastroenterology 2021; 160:653-655. [PMID: 33307027 DOI: 10.1053/j.gastro.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/21/2022]
|
11
|
Lee HJ, Kwon YB, Kang JH, Oh DW, Park ES, Rhee YS, Kim JY, Shin DH, Kim DW, Park CW. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J Control Release 2021; 329:468-481. [PMID: 32871206 DOI: 10.1016/j.jconrel.2020.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
The conventional treatment of pulmonary arterial hypertension (PAH) with oral bosentan hydrate has limitations related to the lack of pulmonary selectivity. In this study, we verified the hypothesis of the feasibility of dry powder inhalation of bosentan as an alternative to oral bosentan hydrate for the treatment of PAH. Inhalable bosentan microparticles with the capability of delivery to the peripheral region of the lungs and enhanced bioavailability have been formulated for PAH. The bosentan microparticles were prepared by the co-spray-drying method with bosentan hydrate and mannitol at different weight ratios. The bosentan microparticles were then characterized for their physicochemical properties, in vitro dissolution behavior, and in vitro aerodynamic performance. The in vivo pharmacokinetics and pathological characteristics were evaluated in a monocrotaline-induced rat model of PAH after intratracheal powder administration of bosentan microparticles, in comparison to orally administered bosentan hydrate. The highest performance bosentan microparticles, named SDBM 1:1, had irregular and porous shape. These microparticles had not only the significantly highest aerosol performance (MMAD of 1.91 μm and FPF of 51.68%) in the formulations, but also significantly increased dissolution rate, compared with the raw bosentan hydrate. This treatment to the lungs was also safe, as evidenced by the cytotoxicity assay. Intratracheally administered SDBM 1:1 elicited a significantly higher Cmax and AUC0-t that were over 10 times higher, compared with those of the raw bosentan hydrate administered orally in the same dose. It also exhibited ameliorative effects on monocrotaline-induced pulmonary arterial remodeling, and right ventricular hypertrophy. The survival rate of the group administrated SDBM1:1 intratracheally was 0.92 at the end of study (Positive control and orally administrated groups were 0.58 and 0.38, respectively). In conclusion, SDBM 1:1 showed promising in vitro and in vivo results with the dry powder inhalation. The inhaled bosentan microparticles can be considered as a potential alternative to oral bosentan hydrate for the treatment of PAH.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yong-Bin Kwon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Won Oh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun-Seok Rhee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Republic of Korea
| | - Dae-Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea.
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
12
|
Coons JC, Crisamore K, Adams S, Modany A, Simon MA, Zhao W, Shaik IH, Venkataramanan R, Empey PE. A pilot study of oral treprostinil pharmacogenomics and treatment persistence in patients with pulmonary arterial hypertension. Ther Adv Respir Dis 2021; 15:17534666211013688. [PMID: 33929912 PMCID: PMC8111525 DOI: 10.1177/17534666211013688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIMS Treprostinil is a prostacyclin analog used to treat pulmonary arterial hypertension. Dosing is empiric and based on tolerability. Adverse effects are common and can affect treatment persistence. Pharmacogenomic variants that may affect treprostinil metabolism and transport have not been well-characterized. We aimed to investigate the pharmacogenomic sources of variability in treatment persistence and dosing. METHODS Patients were prospectively recruited from an IRB approved biobank registry at a single pulmonary hypertension center. A cohort of patients who received oral treprostinil were screened for participation. Pharmacogenomic analysis was for variants in CYP2C8, CYP2C9, and ABCC4. A retrospective review was conducted for demographics, clinical status, dosing, and response. Fisher's exact test was used for categorical data and Kruskal-Wallis test or Wilcoxon rank sum were used for continuous data. RESULTS A total of 15 patients received oral treprostinil and were consented. Their median age was 53 years, 73% were female, and 93% were White. The median total daily dose was 22.5 mg (13.5, 41) at last clinical observation. 40% of patients discontinued treatment with a majority due to adverse effects. Approximately 27% of patients had a loss-of-function variant in CYP2C8 (*1/*3 or *1/*4), whereas 47% of patients had a loss-of-function variant in CYP2C9 (*1/*2, *1/*3, or *2/*2). Minor allele frequencies for ABCC4 (rs1751034 and rs3742106) were 0.17 and 0.43, respectively. Survival analysis showed that increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation [hazard ratio (HR): 0.13; 95% confidence interval (CI): 0.02, 0.91; p = 0.04]. Genetic variants were not significantly associated with dosing. CONCLUSION Genetic variants responsible for the metabolism and transport of oral treprostinil were common. Increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation. However, dosing was not associated with genetic variants in metabolizing enzymes for treprostinil. Our findings suggest significant variability in treatment persistence to oral treprostinil, with pharmacogenomics being a potentially important contributor.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- James C. Coons
- University of Pittsburgh School of Pharmacy, Clinical Pharmacist, Cardiology, UPMC Presbyterian Hospital, Salk Hall, Room 727, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Karryn Crisamore
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | | | | | - Marc A. Simon
- Bioengineering, and Clinical Translational Science, Department of Medicine/Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Heart and Vascular Institute, Heart Failure Research, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Imam H. Shaik
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Philip E. Empey
- Pharmacogenomics Center of Excellence, Institute for Personalized Medicine, Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical and Translational Science Institute, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Zhang W, Wu YE, Yang XY, Shi J, van den Anker J, Song LL, Zhao W. Oral drugs used to treat persistent pulmonary hypertension of the newborn. Expert Rev Clin Pharmacol 2020; 13:1295-1308. [PMID: 33180564 DOI: 10.1080/17512433.2020.1850257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction:Persistent Pulmonary Hypertension of the Newborn (PPHN) is a life-threatening neonatal condition, mostly treated with inhaled nitric oxide (iNO), intravenous prostaglandins, oral bosentan, sildenafil and tadalafil. However, the utility of non-oral agents is limited in PPHN for their side effects and inconvenient deliveries. Therefore, oral agents such as bosentan, sildenafil and tadalafil are becoming appealing for their satisfactory efficacy, easy mode of administration and acceptable side effects. Areas covered: We conducted a comprehensive search on Pubmed, Scopus, Web of Sciences concerning the use of bosentan, sildenafil and tadalafil to treat PPHN and summarized their efficacy, safety and pharmacokinetics. Expert opinion: Current randomized controlled trials (RCTs) have demonstrated the favorable responses and tolerable side effects of bosentan and sildenafil. Nevertheless, those RCTs are small and only one study has described the pharmacokinetics of sildenafil in neonates. Accordingly, bosentan, sildenafil and tadalafil remain off-label in clinical use. More well-designed RCTs with large samples and long-term follow-up and pharmacometrics studies are needed to demonstrate the efficacy, safety and pharmacokinetics of bosentan, sildenafil and tadalafil in PPHN.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Xiao-Yan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, China
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital , Washington, DC, USA.,Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, The George Washington University School of Medicine and Health Sciences , Washington, DC, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital , Basel, Switzerland
| | - Lin-Lin Song
- Department of Clinical Pharmacy, Clinical Trial Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China.,Department of Clinical Pharmacy, Clinical Trial Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University , Jinan, China
| |
Collapse
|
14
|
Teschke R, Danan G. Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993-Mid 2020: A Comprehensive Analysis. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E62. [PMID: 33003400 PMCID: PMC7600114 DOI: 10.3390/medicines7100062] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 04/12/2023]
Abstract
Background: A large number of idiosyncratic drug induced liver injury (iDILI) and herb induced liver injury(HILI) cases of variable quality has been published but some are a matter of concern if the cases were not evaluated for causality using a robust causality assessment method (CAM) such as RUCAM (Roussel Uclaf Causality Assessment Method) as diagnostiinjuryc algorithm. The purpose of this analysis was to evaluate the worldwide use of RUCAM in iDILI and HILI cases. Methods: The PubMed database (1993-30 June 2020) was searched for articles by using the following key terms: Roussel Uclaf Causality Assessment Method; RUCAM; Idiosyncratic drug induced liver injury; iDILI; Herb induced liver injury; HILI. Results: Considering reports published worldwide since 1993, our analysis showed the use of RUCAM for causality assessment in 95,885 cases of liver injury including 81,856 cases of idiosyncratic DILI and 14,029 cases of HILI. Among the top countries providing RUCAM based DILI cases were, in decreasing order, China, the US, Germany, Korea, and Italy, with China, Korea, Germany, India, and the US as the top countries for HILI. Conclusion: Since 1993 RUCAM is certainly the most widely used method to assess causality in IDILI and HILI. This should encourage practitioner, experts, and regulatory agencies to use it in order to reinforce their diagnosis and to take sound decisions.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-60590 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
15
|
Chen M, Zhang X, Chen Y, Sun W, Wang Z, Huang C, Hu G, Chen R. Comparison of the inhibitory effect of ketoconazole, voriconazole, fluconazole, and itraconazole on the pharmacokinetics of bosentan and its corresponding active metabolite hydroxy bosentan in rats. Xenobiotica 2019; 50:280-287. [PMID: 31199171 DOI: 10.1080/00498254.2019.1628321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mengchun Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xufei Zhang
- Laboratory of Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengke Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoxin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Zhang YJ, Wang N, Gu ZC, Wei AH, Cheng AN, Fang SS, Du HL, Wang LZ, Zhang GQ. A network meta-analysis for safety of endothelin receptor antagonists in pulmonary arterial hypertension. Cardiovasc Diagn Ther 2019; 9:239-249. [PMID: 31275814 DOI: 10.21037/cdt.2019.03.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Currently, direct comparative safety between endothelin receptor antagonists (ERAs) in pulmonary arterial hypertension (PAH) is limited. Thus, a systematic review with network analysis was conducted. Methods An electronic search was performed for randomized controlled trials (RCTs) that reported the interested safety data (abnormal liver function, peripheral edema, and anemia) of ERAs in PAH. Risk ratios (RRs) with their confidence intervals (CIs) and the surface under the cumulative ranking curve (SUCRA) were calculated using a network analysis. Results Ten RCTs involving 2,288 patients were included. Compared with placebo, bosentan (RR, 2.93; 95% CI, 1.78-4.84) significantly increased the risk of abnormal liver function, ambrisentan (RR, 1.62; 95% CI, 1.23-2.13) significantly increased the risk of peripheral edema, and macitentan (RR, 3.42; 95% CI, 1.65-7.07) significantly increased the risk of anemia. SUCRA analysis suggested that bosentan 125 mg twice daily had the highest risk of abnormal liver function; ambrisentan 10 mg once daily had the highest risk of peripheral edema; macitentan 10 mg once daily had the highest risk of anemia. Conclusions Abnormal liver function (bosentan), peripheral edema (ambrisentan), and anemia (macitentan) were the safety indicators of ERAs in patients with PAH. Different monitoring parameters should be considered for individual ERA.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhi-Chun Gu
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - An-Hua Wei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Ni Cheng
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Sha-Sha Fang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hong-Li Du
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lin-Zhao Wang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Aleo MD, Aubrecht J, D Bonin P, Burt DA, Colangelo J, Luo L, Schomaker S, Swiss R, Kirby S, C Rigdon G, Dua P. Phase I study of PF‐04895162, a Kv7 channel opener, reveals unexpected hepatotoxicity in healthy subjects, but not rats or monkeys: clinical evidence of disrupted bile acid homeostasis. Pharmacol Res Perspect 2019; 7:e00467. [PMID: 30784208 PMCID: PMC6370995 DOI: 10.1002/prp2.467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
During a randomized Phase 1 clinical trial the drug candidate, PF‐04895162 (ICA‐105665), caused transaminase elevations (≥grade 1) in six of eight healthy subjects treated at 300 mg twice daily for 2‐weeks (NCT01691274). This was unexpected since studies in rats (<6 months) and cynomolgus monkeys (<9 months) treated up to 100 mg/kg/day did not identify the liver as a target organ. Mechanistic studies showed PF‐04895162 had low cytotoxic potential in human hepatocytes, but inhibited liver mitochondrial function and bile salt export protein (BSEP) transport. Clinical relevance of these postulated mechanisms of liver injury was explored in three treated subjects that consented to analysis of residual pharmacokinetic plasma samples. Compared to a nonresponder, two subjects with transaminase elevations displayed higher levels of miRNA122 and total/conjugated bile acid species, whereas one demonstrated impaired postprandial clearance of systemic bile acids. Elevated taurine and glycine conjugated to unconjugated bile acid ratios were observed in two subjects, one before the onset of elevated transaminases. Based on the affinity of conjugated bile acid species for transport by BSEP, the profile of plasma conjugated/unconjugated bile acid species was consistent with inhibition of BSEP. These data collectively suggest that the human liver injury by PF‐04895162 was due to alterations in bile acid handling driven by dual BSEP/mitochondrial inhibition, two important risk factors associated with drug‐induced liver injury in humans. Alterations in systemic bile acid composition were more important than total bile acids in the manifestation of clinical liver injury and may be a very early biomarker of BSEP inhibition.
Collapse
Affiliation(s)
- Michael D Aleo
- Investigative Toxicology, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jiri Aubrecht
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Paul D Bonin
- Medicine Design, Primary Pharmacology Group, Pfizer Inc., Groton, Connecticut
| | - Deborah A Burt
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jennifer Colangelo
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Lina Luo
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Shelli Schomaker
- Safety Biomarkers, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Rachel Swiss
- Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer Inc., Groton, Connecticut
| | - Simon Kirby
- Global Biometrics and Data Management, Pfizer Inc., Cambridge, UK
| | - Greg C Rigdon
- Neusentis Research Unit, Pfizer Inc., Durham, North Carolina
| | - Pinky Dua
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, UK
| |
Collapse
|
18
|
Abstract
Drug-induced liver injury (DILI) is a major clinical and regulatory challenge. As a result, interest in DILI biomarkers is growing. So far, considerable progress has been made in identification of biomarkers for diagnosis (acetaminophen-cysteine protein adducts), prediction (genetic biomarkers), and prognosis (microRNA-122, high mobility group box 1 protein, keratin-18, glutamate dehydrogenase, mitochondrial DNA). Many of those biomarkers also provide mechanistic insight. The purpose of this chapter is to review major advances in DILI biomarker research over the last decade, and to highlight some of the challenges involved in implementation. Although much work has been done, more liver-specific biomarkers, more DILI-specific biomarkers, and better prognostic biomarkers for survival are all still needed. Furthermore, more work is needed to define reference intervals and medical decision limits.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
19
|
Cook JC, Wu H, Aleo MD, Adkins K. Principles of precision medicine and its application in toxicology. J Toxicol Sci 2018; 43:565-577. [PMID: 30298845 DOI: 10.2131/jts.43.565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precision medicine is an approach to developing drugs that focuses on employing biomarkers to stratify patients in clinical trials with the goal of improving efficacy and/or safety outcomes, ultimately increasing the odds of clinical success and drug approval. Precision medicine is an important tool for toxicologists to utilize, because its principles can be used to decide whether to pursue a drug target, to understand interindividual differences in response to drugs in both nonclinical and clinical settings, to aid in selecting doses that optimize efficacy or reduce adverse events, and to facilitate understanding of a drug's mode-of-action. Nonclinical models such as the mouse and non-human primate can be used to understand genetic variation and its potential translation to humans, and are available for toxicologists to employ in advance of drugs moving into clinical development. Understanding interindividual differences in response to drugs and how these differences can influence the drug's risk-benefit profile and lead to the identification of biomarkers that enhance patient efficacy and safety is of critical importance for toxicologists today, and in the future, as the fields of pharmacogenomics and genetics continue to advance.
Collapse
Affiliation(s)
- Jon C Cook
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Hong Wu
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Michael D Aleo
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Karissa Adkins
- Pfizer Worldwide Research and Development, Groton, CT 06340
| |
Collapse
|
20
|
McGill MR, Jaeschke H. Biomarkers of drug-induced liver injury: progress and utility in research, medicine, and regulation. Expert Rev Mol Diagn 2018; 18:797-807. [PMID: 30080986 DOI: 10.1080/14737159.2018.1508998] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The difficulty of understanding and diagnosing drug-induced liver injury (DILI) has led to proliferation of serum and genetic biomarkers. Many applications of these biomarkers have been proposed, including investigation of mechanisms, prediction of DILI during early trials or before initiation of therapy in patients, and diagnosis of DILI during therapy. Areas covered: We review the definition and categories of DILI, describe recent developments in DILI biomarker development, and provide guidance for future directions in DILI biomarker research. Expert commentary: There are major obstacles to DILI biomarker development and implementation, including the low prevalence of idiosyncratic DILI (IDILI), weak associations of IDILI with genetic variants, and lack of specificity of many biomarkers for the liver. Certain serum biomarkers, like miR-122, may have clinical utility in early-presenting patients with either intrinsic or idiosyncratic DILI in the future, while others likely will not find use. Future research should focus on implementation of biomarkers to predict later injury and outcome in early presenters with intrinsic DILI, and on development of biomarkers of adaptation and repair in the liver that can be used to determine if a liver test abnormality is likely to be clinically significant in IDILI.
Collapse
Affiliation(s)
- Mitchell R McGill
- a Department of Environmental and Occupational Health , Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,b Department of Pharmacology and Toxicology , College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Hartmut Jaeschke
- c Department of Pharmacology, Toxicology and Therapeutics , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
21
|
Parmentier C, Hendriks DFG, Heyd B, Bachellier P, Ingelman-Sundberg M, Richert L. Inter-individual differences in the susceptibility of primary human hepatocytes towards drug-induced cholestasis are compound and time dependent. Toxicol Lett 2018; 295:187-194. [PMID: 29913214 DOI: 10.1016/j.toxlet.2018.06.1069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023]
Abstract
Cholestasis represents a major subtype of drug-induced liver injury and novel preclinical models for its prediction are needed. Here we used primary human hepatocytes (PHH) from different donors in 2D-sandwich (2D-sw) and/or 3D-spheroid cultures to study inter-individual differences in the response towards cholestatic hepatotoxins after short-term (48-72 hours) and long-term repeated exposures (14 days). The cholestatic liabilities of drugs were determined by comparing cell viability upon exposure to the highest non-cytotoxic drug concentration in the presence and absence of a non-cytotoxic concentrated bile acid mixture. In 2D-sw culture, cyclosporine A and amiodarone presented clear cholestatic liabilities in all four PHH donors tested, whereas differences in the susceptibility of the various PHH donors towards the cholestatic toxicity of bosentan, chlorpromazine and troglitazone were observed. In PHH from one donor, the cholestatic liabilities of chlorpromazine and troglitazone could only be detected after long-term repeated exposures when maintained in 3D-spheroid culture, but not after short-term exposures in either 2D-sw or 3D-spheroid culture, suggesting that cholestatic hepatotoxicity may require time to develop. In conclusion, inter-individual susceptibility exists towards drug-induced cholestasis, which depends on the compound as well as the exposure time.
Collapse
Affiliation(s)
| | - Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Bruno Heyd
- Hôpital Jean Minjoz, 3 Boulevard Alexandre Fleming 25000 Besançon, France; Université de Bourgogne Franche-Comté, EA 4267 PEPITE, France
| | | | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France; Université de Bourgogne Franche-Comté, EA 4267 PEPITE, France.
| |
Collapse
|
22
|
Teschke R, Danan G. Causality Assessment Methods in Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
24
|
Alempijevic T, Zec S, Milosavljevic T. Drug-induced liver injury: Do we know everything? World J Hepatol 2017; 9:491-502. [PMID: 28443154 PMCID: PMC5387361 DOI: 10.4254/wjh.v9.i10.491] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Interest in drug-induced liver injury (DILI) has dramatically increased over the past decade, and it has become a hot topic for clinicians, academics, pharmaceutical companies and regulatory bodies. By investigating the current state of the art, the latest scientific findings, controversies, and guidelines, this review will attempt to answer the question: Do we know everything? Since the first descriptions of hepatotoxicity over 70 years ago, more than 1000 drugs have been identified to date, however, much of our knowledge of diagnostic and pathophysiologic principles remains unchanged. Clinically ranging from asymptomatic transaminitis and acute or chronic hepatitis, to acute liver failure, DILI remains a leading causes of emergent liver transplant. The consumption of unregulated herbal and dietary supplements has introduced new challenges in epidemiological assessment and clinician management. As such, numerous registries have been created, including the United States Drug-Induced Liver Injury Network, to further our understanding of all aspects of DILI. The launch of LiverTox and other online hepatotoxicity resources has increased our awareness of DILI. In 2013, the first guidelines for the diagnosis and management of DILI, were offered by the Practice Parameters Committee of the American College of Gastroenterology, and along with the identification of risk factors and predictors of injury, novel mechanisms of injury, refined causality assessment tools, and targeted treatment options have come to define the current state of the art, however, gaps in our knowledge still undoubtedly remain.
Collapse
Affiliation(s)
- Tamara Alempijevic
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| | - Simon Zec
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| | - Tomica Milosavljevic
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Riede J, Poller B, Huwyler J, Camenisch G. Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations. Drug Metab Dispos 2017; 45:523-531. [DOI: 10.1124/dmd.116.074179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
|
26
|
Lepri S, Goracci L, Valeri A, Cruciani G. Metabolism study and biological evaluation of bosentan derivatives. Eur J Med Chem 2016; 121:658-670. [DOI: 10.1016/j.ejmech.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022]
|
27
|
Danan G, Teschke R. RUCAM in Drug and Herb Induced Liver Injury: The Update. Int J Mol Sci 2015; 17:E14. [PMID: 26712744 PMCID: PMC4730261 DOI: 10.3390/ijms17010014] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI). Historical background and the original work confirm the use of RUCAM as single term for future cases, dismissing now the term CIOMS for reasons of simplicity and clarity. RUCAM represents a structured, standardized, validated, and hepatotoxicity specific diagnostic approach that attributes scores to individual key items, providing final quantitative gradings of causality for each suspect drug/herb in a case report. Experts from Europe and the United States had previously established in consensus meetings the first criteria of RUCAM to meet the requirements of clinicians and practitioners in care for their patients with suspected DILI and HILI. RUCAM was completed by additional criteria and validated, assisting to establish the timely diagnosis with a high degree of certainty. In many countries and for more than two decades, physicians, regulatory agencies, case report authors, and pharmaceutical companies successfully applied RUCAM for suspected DILI and HILI. Their practical experience, emerging new data on DILI and HILI characteristics, and few ambiguous questions in domains such alcohol use and exclusions of non-drug causes led to the present update of RUCAM. The aim was to reduce interobserver and intraobserver variability, to provide accurately defined, objective core elements, and to simplify the handling of the items. We now present the update of the well accepted original RUCAM scale and recommend its use for clinical, regulatory, publication, and expert purposes to validly establish causality in cases of suspected DILI and HILI, facilitating a straightforward application and an internationally harmonized approach of causality assessment as a common basic tool.
Collapse
Affiliation(s)
- Gaby Danan
- Pharmacovigilance Consultancy, rue des Ormeaux, 75020 Paris, France.
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt am Main, D-63450 Hanau, Germany.
| |
Collapse
|
28
|
Lewis JH. The Art and Science of Diagnosing and Managing Drug-induced Liver Injury in 2015 and Beyond. Clin Gastroenterol Hepatol 2015; 13:2173-89.e8. [PMID: 26116527 DOI: 10.1016/j.cgh.2015.06.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) remains a leading reason why new compounds are dropped from further study or are the subject of product warnings and regulatory actions. Hy's Law of drug-induced hepatocellular jaundice causing a case-fatality rate or need for transplant of 10% or higher has been validated in several large national registries, including the ongoing, prospective U.S. Drug-Induced Liver Injury Network. It serves as the basis for stopping rules in clinical trials and in clinical practice. Because DILI can mimic all known causes of acute and chronic liver disease, establishing causality can be difficult. Histopathologic findings are often nonspecific and rarely, if ever, considered pathognomonic. A daily drug dose >50-100 mg is more likely to be hepatotoxic than does <10 mg, especially if the compound is highly lipophilic or undergoes extensive hepatic metabolism. The quest for a predictive biomarker to replace alanine aminotransferase is ongoing. Markers of necrosis and apoptosis such as microRNA-122 and keratin 18 may prove useful in identifying patients at risk for severe injury when they initially present with a suspected acetaminophen overdose. Although a number of drugs causing idiosyncratic DILI have HLA associations that may allow for pre-prescription testing to prevent hepatotoxicity, the cost and relatively low frequency of injury among affected patients limit the current usefulness of such genome-wide association studies. Alanine aminotransferase monitoring is often recommended but has rarely been shown to be an effective method to prevent serious DILI. Guidelines on the diagnosis and management of DILI have recently been published, although specific therapies remain limited. The LiverTox Web site has been introduced as an interactive online virtual textbook that makes the latest information on more than 650 agents available to clinicians, regulators, and drug developers alike.
Collapse
Affiliation(s)
- James H Lewis
- Hepatology Section, Division of Gastroenterology, Georgetown University Hospital, Washington, District of Columbia.
| |
Collapse
|
29
|
Chaumais MC, Guignabert C, Savale L, Jaïs X, Boucly A, Montani D, Simonneau G, Humbert M, Sitbon O. Clinical pharmacology of endothelin receptor antagonists used in the treatment of pulmonary arterial hypertension. Am J Cardiovasc Drugs 2015; 15:13-26. [PMID: 25421754 DOI: 10.1007/s40256-014-0095-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating life-threatening disorder characterized by elevated pulmonary vascular resistance leading to elevated pulmonary arterial pressures, right ventricular failure, and ultimately death. Vascular endothelial cells mainly produce and secrete endothelin (ET-1) in vessels that lead to a potent and long-lasting vasoconstrictive effect in pulmonary arterial smooth muscle cells. Along with its strong vasoconstrictive action, ET-1 can promote smooth muscle cell proliferation. Thus, ET-1 blockers have attracted attention as an antihypertensive drug, and the ET-1 signaling system has paved a new therapeutic avenue for the treatment of PAH. We outline the current understanding of not only the pathogenic role played by ET-1 signaling systems in the pathogenesis of PH but also the clinical pharmacology of endothelin receptor antagonists (ERA) used in the treatment of PAH.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/adverse effects
- Antihypertensive Agents/pharmacokinetics
- Antihypertensive Agents/therapeutic use
- Drug Interactions
- Drug Therapy, Combination/adverse effects
- Endothelin Receptor Antagonists/adverse effects
- Endothelin Receptor Antagonists/pharmacokinetics
- Endothelin Receptor Antagonists/therapeutic use
- Endothelins/antagonists & inhibitors
- Endothelins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Models, Biological
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Practice Guidelines as Topic
- Pulmonary Circulation/drug effects
- Signal Transduction/drug effects
- Vasculitis/etiology
- Vasculitis/prevention & control
Collapse
|
30
|
Jiang J, Zhang X, Huo R, Li X, Yang Y, Gai Z, Xu M, Shen L, Cai L, Wan C, Li B, He L, Qin S. Association study of UGT1A9 promoter polymorphisms with DILI based on systematically regional variation screen in Chinese population. THE PHARMACOGENOMICS JOURNAL 2014; 15:326-31. [PMID: 25446781 DOI: 10.1038/tpj.2014.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/09/2014] [Accepted: 10/09/2014] [Indexed: 02/05/2023]
Abstract
Drug-induced liver injury (DILI) is caused by unpredictable adverse drug reaction due mainly to the accumulation of hepatotoxic compounds in the liver resulting in significant damage. Drug-metabolizing enzymes have been prime targets for molecular studies relevant to DILI. The gene UGT1A9 mainly expresses in the liver and has an important role in drug metabolism. The Han Chinese has a very long and complex demographic history, and the population stratification arising from the interplay of different geographic areas may influence the polymorphism pattern. We selected 260 healthy subjects in three different geographic areas (including Xian, Shanghai and Liuzhou) for systemic screening and analysis of single-nucleotide polymorphisms (SNPs) in the promoter region of UGT1A9. Eight SNPs were identified and no regional disparity exists among the three populations. Based on these results, 213 DILI patients from all over the Chinese mainland were further recruited to investigate possible association between UGT1A9 and DILI. We observed statistically significant associations between SNP rs2741045 and DILI at both allele and genotype levels (allele: P=0.032; genotype: P=0.029; after Bonferroni correction). Also, multivariate interaction analysis discovered the interaction between rs2741045 and age associated with DILI significantly. This is the first such screening study to investigate the association between UGT1A9 promoter polymorphisms and DILI in the Chinese population and it could provide the basis for further study of DILI mechanisms.
Collapse
Affiliation(s)
- J Jiang
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - X Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - R Huo
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - X Li
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - Y Yang
- General Hospital of Ningxia Medical University, YinChuan, China
| | - Z Gai
- Jinan Infectious Disease Hospital, Shandong University, Jinan, China
| | - M Xu
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - L Shen
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - L Cai
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - C Wan
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - B Li
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| | - L He
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China [3] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - S Qin
- 1] Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China [2] Shanghai Genome Pilot Institutes for Genomics and Human Health, Shanghai, China
| |
Collapse
|
31
|
Woodhead JL, Yang K, Siler SQ, Watkins PB, Brouwer KLR, Barton HA, Howell BA. Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Front Pharmacol 2014; 5:240. [PMID: 25426072 PMCID: PMC4224072 DOI: 10.3389/fphar.2014.00240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/22/2014] [Indexed: 01/15/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan, but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation in a simulated population of humans. The difference in hepatotoxic potential between bosentan and telmisartan is consistent with clinical observations. However, DILIsym® underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan will not cause toxicity in a simulated population of rats, and that the difference between the response to bosentan in rats and in humans is primarily due to the less toxic bile acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid accumulation and mitochondrial electron transport chain (ETC) inhibition in producing the observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play a role in the observed toxicity. Our work also compares the impact of competitive and noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive inhibition leads to much greater bile acid accumulation and potential toxicity. Our research demonstrates the potential for mechanistic modeling to contribute to the understanding of how bile acid transport inhibitors cause DILI.
Collapse
Affiliation(s)
- Jeffrey L Woodhead
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Kyunghee Yang
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Scott Q Siler
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Paul B Watkins
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC-Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Hugh A Barton
- Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer, Inc. Groton CT, USA
| | - Brett A Howell
- The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| |
Collapse
|
32
|
|
33
|
Qiu X, Zhao J, Wang Z, Xu Z, Xu RA. Simultaneous determination of bosentan and glimepiride in human plasma by ultra performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J Pharm Biomed Anal 2014; 95:207-12. [DOI: 10.1016/j.jpba.2014.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 01/11/2023]
|
34
|
Roustit M, Fonrose X, Montani D, Girerd B, Stanke-Labesque F, Gonnet N, Humbert M, Cracowski JL. CYP2C9, SLCO1B1, SLCO1B3, and ABCB11 Polymorphisms in Patients With Bosentan-Induced Liver Toxicity. Clin Pharmacol Ther 2014; 95:583-5. [DOI: 10.1038/clpt.2014.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Chalhoub WM, Sliman KD, Arumuganathan M, Lewis JH. Drug-induced liver injury: what was new in 2013? Expert Opin Drug Metab Toxicol 2014; 10:959-80. [PMID: 24746272 DOI: 10.1517/17425255.2014.909408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The year 2013 continued to highlight numerous aspects of drug-induced liver injury (DILI), with new information communicated via > 1500 publications. New reports of DILI were described and FDA warnings and alerts were issued for a number of products, emphasizing the risks related to hepatotoxicity. AREAS COVERED We provide a summary of the year's published reports of new causes of DILI, along with reviews and reports of established hepatotoxins, new and expanded DILI registries and the continuing emphasis placed on genetic and other risk factors. Several new analyses of data generated from the US DILI Network are included. EXPERT OPINION The clinical usefulness of pharmacogenetic testing remains to be determined; the number of patients who must be tested is large and the overall risk of DILI is quite small. The role that dose and hepatic metabolism play in causing idiosyncratic DILI was reviewed; daily doses > 50 - 100 mg of medications with high lipophilicity appear to be most predictive of severe DILI, but not in all cases. Restricting access to paracetamol in certain parts of the UK continues to demonstrate a successful reduction in the number of acute liver failure cases and patients listed for liver transplant.
Collapse
Affiliation(s)
- Walid M Chalhoub
- Georgetown University Hospital, Department of Medicine, Division of Gastroenterology, Hepatology Section , 3800 Reservoir Road, NW, Washington, DC 20007 , USA
| | | | | | | |
Collapse
|
36
|
Abstract
In clinical trials, bosentan was shown to cause significant drug-induced liver injury (DILI) in some patients. Because it is not possible to identify those at higher risk for DILI, all patients to be treated with bosentan must enroll in a program requiring documentation of liver blood testing before they can receive the drug. Because this program is costly and is perceived as onerous, a genetic test capable of identifying susceptible individuals would probably be rapidly adopted by physicians.
Collapse
|
37
|
Jarrar YB, Lee SJ. Molecular functionality of CYP2C9 polymorphisms and their influence on drug therapy. ACTA ACUST UNITED AC 2014; 29:211-20. [DOI: 10.1515/dmdi-2014-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/11/2023]
Abstract
Abstractmetabolizes approximately 20% of clinically used drugs, including the narrow therapeutic window drugs warfarin and phenytoin. More than 16,000 variants have been reported in the National Center for Biotechnology Information
Collapse
|
38
|
Markova SM, Schwartz JB, Kroetz DL. Response to “CYP2C9 Polymorphism is Not a Major Determinant of Bosentan Exposure in Healthy Volunteers”. Clin Pharmacol Ther 2013; 95:252. [DOI: 10.1038/clpt.2013.239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/14/2023]
|
39
|
CYP2C9 Polymorphism is not a Major Determinant of Bosentan Exposure in Healthy Volunteers. Clin Pharmacol Ther 2013; 95:250-1. [DOI: 10.1038/clpt.2013.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|