1
|
Lee S, Dohlman TH, Dana R. Immunology in corneal transplantation-From homeostasis to graft rejection. Transplant Rev (Orlando) 2025; 39:100909. [PMID: 39798206 DOI: 10.1016/j.trre.2025.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Immunology depends on maintaining a delicate balance within the human body, and disruptions can result in conditions such as autoimmune diseases, immunodeficiencies, and hypersensitivity reactions. This balance is especially crucial in transplantation immunology, where one of the primary challenges is preventing graft rejection. Such rejection can lead to organ failure, increased patient mortality, and higher healthcare costs due to the limited availability of donor tissues relative to patient needs. Xenotransplantation, like using porcine corneas for human transplants, offers a potential solution to the donor tissue shortage but faces substantial immunological rejection issues. To prevent rejection in both allo- and xenotransplantation, a deep understanding of how the body maintains immunological balance is essential, particularly since achieving tolerance to non-self tissues is considered the "holy grail" of the field. The cornea, the most frequently transplanted solid organ, has a high acceptance rate due to its immune-privileged status and serves as an ideal model for studying graft rejection mechanisms that disrupt tolerance. However, multiple immune pathways complicate our understanding of these mechanisms. This review examines the rejection mechanisms in corneal transplantation, identifying key cells involved and potential therapeutic strategies to induce and maintain immunological tolerance in both allo- and xenografts across various transplants.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Peterson L, Yacoub MH, Ayares D, Yamada K, Eisenson D, Griffith BP, Mohiuddin MM, Eyestone W, Venter JC, Smolenski RT, Rothblatt M. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev 2024; 104:1409-1459. [PMID: 38517040 PMCID: PMC11390123 DOI: 10.1152/physrev.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.
Collapse
Affiliation(s)
- Leigh Peterson
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | | | - David Ayares
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - Kazuhiko Yamada
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Daniel Eisenson
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Bartley P Griffith
- University of Maryland Medical Center, Baltimore, Maryland, United States
| | | | - Willard Eyestone
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - J Craig Venter
- J. Craig Venter Institute, Rockville, Maryland, United States
| | | | - Martine Rothblatt
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| |
Collapse
|
3
|
Turan A, Tarique M, Zhang L, Kazmi S, Ulker V, Tedla MG, Badal D, Yolcu ES, Shirwan H. Engineering Pancreatic Islets to Transiently Codisplay on Their Surface Thrombomodulin and CD47 Immunomodulatory Proteins as a Means of Mitigating Instant Blood-Mediated Inflammatory Reaction following Intraportal Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1971-1980. [PMID: 38709159 PMCID: PMC11160431 DOI: 10.4049/jimmunol.2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1β, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mohammad Tarique
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Lei Zhang
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Shadab Kazmi
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Vahap Ulker
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mebrahtu G Tedla
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Darshan Badal
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Esma S Yolcu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Haval Shirwan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
4
|
Zhang Z, Sun G, Wang Y, Wang N, Lu Y, Chen Y, Xia F. Integrated Bioinformatics Analysis Revealed Immune Checkpoint Genes Relevant to Type 2 Diabetes. Diabetes Metab Syndr Obes 2024; 17:2385-2401. [PMID: 38881696 PMCID: PMC11179640 DOI: 10.2147/dmso.s458030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Chronic low-grade inflammation of the pancreatic islets is the characteristic of type 2 diabetes (T2D), and some of the immune checkpoints may play important roles in the pancreatic islet inflammation. Thus, we aim to explore the immune checkpoint genes (ICGs) associated with T2D, thereby revealing the role of ICGs in the pathogenesis of T2D based on bioinformatic analyses. Methods Differentially expressed genes (DEGs) and immune checkpoint genes (ICGs) of islets between T2D and control group were screened from datasets of the Gene Expression Omnibus (GEO). A risk model was built based on the coefficients of ICGs calculated by ridge regression. Functional enrichment analysis and immune cell infiltration estimation were conducted. Correlations between ICGs and hub genes, T2D-related disease genes, insulin secretion genes, and beta cell function-related genes were analyzed. Finally, we conducted RT-PCR to verify the expression of these ICGs. Results In total, pancreatic islets from 19 cases of T2D and 84 healthy subjects were included. We identified 458 DEGs. Six significantly upregulated ICGs (CD44, CD47, HAVCR2, SIRPA, TNFSF9, and VTCN1) in T2D were screened out. These ICGs were significantly correlated with several hub genes and T2D-related genes; furthermore, they were correlated with insulin secretion and β cell function-related genes. The analysis of immune infiltration showed that the concentrations of eosinophils, T cells CD4 naive, and T cells regulatory (Tregs) were significantly higher, but CD4 memory resting T cells and monocytes were lower in islets of T2D patients. The infiltrated immune cells in T2D pancreatic islet were associated with these six ICGs. Finally, the expression levels of four ICGs were confirmed by RT-PCR, and three ICGs were validated in another independent dataset. Conclusion In conclusion, the identified ICGs may play an important role in T2D. Identification of these differential genes may provide new clues for the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoting Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Wu F, Pang H, Li F, Hua M, Song C, Tang J. Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 2024; 27:256. [PMID: 38646501 PMCID: PMC11027102 DOI: 10.3892/ol.2024.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin-1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP-AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T-cells, CAR macrophages and nanotechnology-based delivery systems, which are essential for future clinical research on targeting CD47.
Collapse
Affiliation(s)
- Fan Wu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hongyuan Pang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fan Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengqing Hua
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Tang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
6
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
7
|
Wang X, Chen M, Hu L, Tan C, Li X, Xue P, Jiang Y, Bao P, Yu T, Li F, Xiao Y, Ran Q, Li Z, Chen L. Humanized mouse models for inherited thrombocytopenia studies. Platelets 2023; 34:2267676. [PMID: 37849076 DOI: 10.1080/09537104.2023.2267676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Inherited thrombocytopenia (IT) is a group of hereditary disorders characterized by a reduced platelet count as the main clinical manifestation, and often with abnormal platelet function, which can subsequently lead to impaired hemostasis. In the past decades, humanized mouse models (HMMs), that are mice engrafted with human cells or genes, have been widely used in different research areas including immunology, oncology, and virology. With advances of the development of immunodeficient mice, the engraftment, and reconstitution of functional human platelets in HMM permit studies of occurrence and development of platelet disorders including IT and treatment strategies. This article mainly reviews the development of humanized mice models, the construction methods, research status, and problems of using humanized mice for the in vivo study of human thrombopoiesis.
Collapse
Affiliation(s)
- Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoliang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Peipei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yangzhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Cross-Najafi AA, Farag K, Isidan A, Li W, Zhang W, Lin Z, Walsh JR, Lopez K, Park Y, Higgins NG, Cooper DK, Ekser B, Li P. Co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells attenuates human NK cell-mediated degranulation. Front Immunol 2023; 14:1217809. [PMID: 37529053 PMCID: PMC10387534 DOI: 10.3389/fimmu.2023.1217809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Natural killer (NK) cells play an important role in immune rejection in solid organ transplantation. To mitigate human NK cell activation in xenotransplantation, introducing inhibitory ligands on xenografts via genetic engineering of pigs may protect the graft from human NK cell-mediated cytotoxicity and ultimately improve xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-G were introduced in an immortalized porcine liver endothelial cell line with disruption of five genes (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin) encoding three major carbohydrate xenoantigens (αGal, Neu5Gc, and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance HLA-E expression on transfected pig cells. We found that co-expression of HLA-E and HLA-G on porcine cells led to a significant reduction in human NK cell activation compared to the cells expressing HLA-E or HLA-G alone and the parental cell line. NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+ population gated from human peripheral blood mononuclear cells. CD107a is a sensitive marker of NK cell activation and correlates with NK cell degranulation and cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells provided a superior inhibition in human xenoreactive NK cells, which may guide further genetic engineering of pigs to prevent human NK cell mediated rejection.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kristine Farag
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zhansong Lin
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Julia R. Walsh
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nancy G. Higgins
- Transplant Immunology, Indiana University Health, Indianapolis, IN, United States
| | - David K.C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA, United States
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Washburn RL, Dufour JM. Complementing Testicular Immune Regulation: The Relationship between Sertoli Cells, Complement, and the Immune Response. Int J Mol Sci 2023; 24:ijms24043371. [PMID: 36834786 PMCID: PMC9965741 DOI: 10.3390/ijms24043371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Sertoli cells within the testis are instrumental in providing an environment for spermatogenesis and protecting the developing germ cells from detrimental immune responses which could affect fertility. Though these immune responses consist of many immune processes, this review focuses on the understudied complement system. Complement consists of 50+ proteins including regulatory proteins, immune receptors, and a cascade of proteolytic cleavages resulting in target cell destruction. In the testis, Sertoli cells protect the germ cells from autoimmune destruction by creating an immunoregulatory environment. Most studies on Sertoli cells and complement have been conducted in transplantation models, which are effective in studying immune regulation during robust rejection responses. In grafts, Sertoli cells survive activated complement, have decreased deposition of complement fragments, and express many complement inhibitors. Moreover, the grafts have delayed infiltration of immune cells and contain increased infiltration of immunosuppressive regulatory T cells as compared to rejecting grafts. Additionally, anti-sperm antibodies and lymphocyte infiltration have been detected in up to 50% and 30% of infertile testes, respectively. This review seeks to provide an updated overview of the complement system, describe its relationship with immune cells, and explain how Sertoli cells may regulate complement in immunoprotection. Identifying the mechanism Sertoli cells use to protect themselves and germ cells against complement and immune destruction is relevant for male reproduction, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Rachel L Washburn
- Immunology and Infectious Diseases, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
11
|
Delgado-Coello B, Navarro-Alvarez N, Mas-Oliva J. The Influence of Interdisciplinary Work towards Advancing Knowledge on Human Liver Physiology. Cells 2022; 11:cells11223696. [PMID: 36429123 PMCID: PMC9688355 DOI: 10.3390/cells11223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
The knowledge accumulated throughout the years about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health. Here, we provide a brief history of the milestones that have advanced liver surgery, and review some of the new insights offered by the interdisciplinary work using animals, in vitro models, tissue engineering, or mathematical models to help advance the knowledge on liver regeneration. We also present several of the main approaches currently available aiming at providing liver support and overcoming organ shortage and we conclude with some of the challenges found in clinical practice and the ethical issues that have concomitantly emerged with the use of those approaches.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence:
| | - Nalu Navarro-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Departament of Molecular Biology, Universidad Panamericana School of Medicine, Mexico City 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Jaime Mas-Oliva
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
Deng J, Yang L, Wang Z, Ouyang H, Yu H, Yuan H, Pang D. Advance of genetically modified pigs in xeno-transplantation. Front Cell Dev Biol 2022; 10:1033197. [PMID: 36299485 PMCID: PMC9590650 DOI: 10.3389/fcell.2022.1033197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the standard of living improves, chronic diseases and end-stage organ failure have been a regular occurrence in human beings. Organ transplantation has become one of the hopes in the fight against chronic diseases and end-stage organ failure. However, organs available for transplantation are far from sufficient to meet the demand, leading to a major organ shortage crisis. To solve this problem, researchers have turned to pigs as their target since pigs have many advantages as xenograft donors. Pigs are considered the ideal organ donor for human xenotransplantation, but direct transplantation of porcine organs to humans faces many obstacles, such as hyperacute rejection, acute humoral xenograft rejection, coagulation dysregulation, inflammatory response, coagulation dysregulation, and endogenous porcine retroviral infection. Many transgenic strategies have been developed to overcome these obstacles. This review provides an overview of current advances in genetically modified pigs for xenotransplantation. Future genetic engineering-based delivery of safe and effective organs and tissues for xenotransplantation remains our goal.
Collapse
Affiliation(s)
- Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ziru Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| |
Collapse
|
13
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
14
|
Miura S, Habibabady ZA, Pollok F, Connolly M, Pratts S, Dandro A, Sorrells L, Karavi K, Phelps C, Eyestone W, Ayares D, Burdorf L, Azimzadeh A, Pierson RN. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood. Xenotransplantation 2022; 29:e12725. [PMID: 35234315 PMCID: PMC10207735 DOI: 10.1111/xen.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Zahra A. Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Margaret Connolly
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Lars Burdorf
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Agnes Azimzadeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hess NJ, S Bharadwaj N, Bobeck EA, McDougal CE, Ma S, Sauer JD, Hudson AW, Gumperz JE. iNKT cells coordinate immune pathways to enable engraftment in nonconditioned hosts. Life Sci Alliance 2021; 4:e202000999. [PMID: 34112724 PMCID: PMC8200291 DOI: 10.26508/lsa.202000999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that interact with key antigen-presenting cells to modulate adaptive T-cell responses in ways that can either promote protective immunity, or limit pathological immune activation. Understanding the immunological networks engaged by iNKT cells to mediate these opposing functions is a key pre-requisite to effectively using iNKT cells for therapeutic applications. Using a human umbilical cord blood xenotransplantation model, we show here that co-transplanted allogeneic CD4+ iNKT cells interact with monocytes and T cells in the graft to coordinate pro-hematopoietic and immunoregulatory pathways. The nexus of iNKT cells, monocytes, and cord blood T cells led to the release of cytokines (IL-3, GM-CSF) that enhance hematopoietic stem and progenitor cell activity, and concurrently induced PGE2-mediated suppression of T-cell inflammatory responses that limit hematopoietic stem and progenitor cell engraftment. This resulted in successful long-term hematopoietic engraftment without pretransplant conditioning, including multi-lineage human chimerism and colonization of the spleen by antibody-producing human B cells. These results highlight the potential for using iNKT cellular immunotherapy to improve rates of hematopoietic engraftment independently of pretransplant conditioning.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nikhila S Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Elizabeth A Bobeck
- Department of Animal Science, 201F Kildee Hall, Iowa State University, Ames, IA, USA
| | - Courtney E McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shidong Ma
- QLB Biotherapeutics, Inc., Boston, MA, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
16
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
17
|
CD47 Potentiates Inflammatory Response in Systemic Lupus Erythematosus. Cells 2021; 10:cells10051151. [PMID: 34068752 PMCID: PMC8151692 DOI: 10.3390/cells10051151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023] Open
Abstract
Background: To investigate the role of CD47 in inflammatory responses in systemic lupus erythematosus (SLE). Methods: Expression of CD47 and signal regulatory protein alpha (SIRPα) by peripheral blood mononuclear cells (PBMCs) and changes in CD47 expression after exposure to SLE serum, healthy control (HC) serum, recombinant interferon (IFN)-α, or tumor necrosis factor (TNF)-α were examined. Human monocytes and THP1 cells were incubated with lipopolysaccharide (LPS), an anti-CD47 antibody, or both. TNF-α production was examined. Sera from SLE patients and HCs were screened to detect autoantibodies specific for CD47. Results: Twenty-five SLE patients and sixteen HCs were enrolled. CD47 expression by monocytes from SLE patients was higher than those from HCs (mean fluorescence intensity ± SD: 815.9 ± 269.4 vs. 511.5 ± 199.4, respectively; p < 0.001). CD47 expression by monocytes correlated with SLE disease activity (Spearman’s rho = 0.467, p = 0.019). IFN-α but not TNF-α, increased CD47 expression. Exposing monocytes to an anti-CD47 antibody plus LPS increased TNF-α production by 21.0 ± 10.9-fold (compared with 7.3 ± 5.5-fold for LPS alone). Finally, levels of autoantibodies against CD47 were higher in SLE patients than in HCs (21.4 ± 7.1 ng/mL vs. 16.1 ± 3.1 ng/mL, respectively; p = 0.02). Anti-CD47 antibody levels did not correlate with disease activity (Spearman’s rho = −0.11, p = 0.759) or CD47 expression on CD14 monocytes (Spearman’s rho = 0.079, p = 0.838) in patients. Conclusions: CD47 expression by monocytes is upregulated in SLE and correlates with disease activity. CD47 contributes to augmented inflammatory responses in SLE. Targeting CD47 might be a novel treatment for SLE.
Collapse
|
18
|
Gawish RIAR, El Aggan HAM, Mahmoud SAH, Mortada SAM. A novel biomarker of chronic allograft dysfunction in renal transplant recipients (serum calreticulin and CD47). THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020. [DOI: 10.1186/s43162-020-00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic allograft dysfunction (CAD) is considered the leading cause of late allograft loss. The cluster of differentiation 47 (CD47) and calreticulin (CRT) are involved in many and diverse cellular processes. The present study was designed to study the role of the pro-phagocytic CRT and anti-phagocytic CD47 signals in patients with renal transplantation in relation to graft function.
Thirty renal transplantation recipients (RTR) for more than 6 months [15 with stable renal function and 15 with chronic allograft dysfunction (CAD)] and 15 healthy controls were enrolled in the study. Quantification of CRT, CD47, and high-sensitivity C-reactive protein (hsCRP) levels in serum was done using standardized enzyme-linked immunosorbent assay (ELISA) kits. Measurement of renal function and urinary alkaline phosphatase (U.ALP) was done. Renal interstitial fibrosis (IF) was graded in renal biopsies of CAD.
Results
Serum CRT and urinary ALP levels were statistically significant higher (P < 0.001) while serum CD47 level was statistically significant lower (P < 0.001) in patients with CAD than patients with stable graft function and controls. There was statistically insignificant difference between controls and patients with stable graft function. Serum CRT and serum CD47 levels were positively correlated with each other and with worsening renal and tubular function, serum hsCRP in RTR and with degree of renal IF in patients with CAD (P < 0.05).
Conclusions
The activation and dysregulation of CRT and CD47 could play a role in the development of CAD and could be a potential biomarker for renal allograft dysfunction.
Collapse
|
19
|
Shrestha P, Batra L, Tariq Malik M, Tan M, Yolcu ES, Shirwan H. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation. Am J Transplant 2020; 20:2703-2714. [PMID: 32342638 DOI: 10.1111/ajt.15958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
Instant blood-mediated inflammatory reaction (IBMIR) causes significant destruction of islets transplanted intraportally. Myeloid cells are a major culprit of IBMIR. Given the critical role of CD47 as a negative checkpoint for myeloid cells, we hypothesized that the presence of CD47 on islets will minimize graft loss by mitigating IBMIR. We herein report the generation of a chimeric construct, SA-CD47, encompassing the extracellular domain of CD47 modified to include core streptavidin (SA). SA-CD47 protein was expressed in insect cells and efficiently displayed on biotin-modified mouse islet surface without a negative impact on their viability and function. Rat cells engineered with SA-CD47 were refractory to phagocytosis by mouse macrophages. SA-CD47-engineered islets showed intact structure and minimal infiltration by CD11b+ granulocytes/macrophages as compared with SA-engineered controls in an in vitro loop assay mitigating IBMIR. In a syngeneic marginal mass model of intraportal transplantation, SA-CD47-engineered islets showed better engraftment and function as compared with the SA-control group (87.5% vs 14.3%). Engraftment was associated with low levels of intrahepatic inflammatory cells and mediators of islet destruction, including high-mobility group box-1, tissue factor, and IL-1β. These findings support the use of CD47 as an innate immune checkpoint to mitigate IBMIR for enhanced islet engraftment with translational potential.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Lalit Batra
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Min Tan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
21
|
Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW, Pereira DS. Development of AO-176, a Next-Generation Humanized Anti-CD47 Antibody with Novel Anticancer Properties and Negligible Red Blood Cell Binding. Mol Cancer Ther 2019; 19:835-846. [PMID: 31879362 DOI: 10.1158/1535-7163.mct-19-1079] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Inhibitors of adaptive immune checkpoints have shown promise as cancer treatments. CD47 is an innate immune checkpoint receptor broadly expressed on normal tissues and overexpressed on many tumors. Binding of tumor CD47 to signal regulatory protein alpha (SIRPα) on macrophages and dendritic cells triggers a "don't eat me" signal that inhibits phagocytosis enabling escape of innate immune surveillance. Blocking CD47/SIRPα interaction promotes phagocytosis reducing tumor burden in numerous xenograft and syngeneic animal models. We have developed a next-generation humanized anti-CD47 antibody, AO-176, that not only blocks the CD47/SIRPα interaction to induce tumor cell phagocytosis, but also induces tumor cytotoxicity in hematologic and solid human tumor cell lines, but not normal noncancerous cells, by a cell autonomous mechanism (not ADCC). AO-176 also binds preferentially to tumor versus many normal cell types. In particular, AO-176 binds negligibly to RBCs in contrast to tumor cells, even at high concentrations up to 200 μg/mL and does not agglutinate RBCs up to 1 mg/mL in vitro These properties are expected not only to decrease the antigen sink, but also to minimize on-target clinical adverse effects observed following treatment with other reported RBC-binding anti-CD47 antibodies. When tested in cynomolgus monkeys, AO-176 was well tolerated with no adverse effects. Finally, we show that AO-176 demonstrates dose-dependent antitumor activity in tumor xenograft models. Taken together, the unique properties and antitumor activity of our next-generation anti-CD47 antibody, AO-176, distinguishes it from other CD47/SIRPα axis targeting agents in clinical development.
Collapse
|
22
|
Xenotransplantation tolerance: applications for recent advances in modified swine. Curr Opin Organ Transplant 2019; 23:642-648. [PMID: 30379724 DOI: 10.1097/mot.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to review the recent progress in xenotransplantation achieved through genetic engineering and discuss the potential of tolerance induction to overcome remaining barriers to extended xenograft survival. RECENT FINDINGS The success of life-saving allotransplantation has created a demand for organ transplantation that cannot be met by the supply of human organs. Xenotransplantation is one possible solution that would allow for a nearly unlimited supply of organs. Recent genetic engineering of swine has decreased the reactivity of preformed antibodies to some, but not all, potential human recipients. Experiments using genetically modified swine organs have now resulted in survival of life-supporting kidneys for over a year. However, the grafts show evidence of antibody-mediated rejection on histology, suggesting additional measures will be required for further extension of graft survival. Tolerance induction through mixed chimerism or thymic transplantation across xenogeneic barriers would be well suited for patients with a positive crossmatch to genetically modified swine or relatively negative crossmatches to genetically modified swine, respectively. SUMMARY This review highlights the current understanding of the immunologic processes in xenotransplantation and describes the development and application of strategies designed to overcome them from the genetic modification of the source animal to the induction of tolerance to xenografts.
Collapse
|
23
|
Chen J, Zheng DX, Yu XJ, Sun HW, Xu YT, Zhang YJ, Xu J. Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients. Oncoimmunology 2019; 8:e1652540. [PMID: 31646099 DOI: 10.1080/2162402x.2019.1652540] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
CD47 is known to be involved in phagocyte-mediated tumor clearance; however, its expression, clinical significance, and regulatory mechanism in hepatocellular carcinoma (HCC) remain poorly understood. In the present study, we found that upregulation of CD47 expression on tumor cells was correlated with poor overall survival and recurrence-free survival in patients with HCC. Abundance of macrophages (Mϕs) infiltration was found in CD47+ tumor tissues. Mechanistic studies revealed that IL-6 derived from tumor-infiltrating Mϕs could upregulate CD47 expression on hepatoma cells through activation of the STAT3 pathway. Neutralization of CD47 or disruption of the IL-6-STAT3 axis reduced the ability of tumor cells to escape phagocytosis. Moreover, CD47 blockade could enhance Mϕ-mediated phagocytosis in the presence of chemotherapeutic drugs, and HCC patients with lower CD47 expression were more likely to benefit from adjuvant transcatheter arterial chemoembolization (TACE) treatment. These findings revealed that Mϕ-derived IL-6 was responsible for CD47 expression on hepatoma cells, which might be served as a potential prognostic marker and a predictor for patients who might benefit from adjuvant TACE treatment.
Collapse
Affiliation(s)
- Jing Chen
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China
| | - Dan-Xue Zheng
- Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China
| | - Hong-Wei Sun
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China
| | - Yi-Tuo Xu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State key Laboratory of Oncology in South China, Guangzhou, P. R. China
| |
Collapse
|
24
|
Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019; 8:E889. [PMID: 31412684 PMCID: PMC6721637 DOI: 10.3390/cells8080889] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor-immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients' clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan.
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
25
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 2019; 26:e12516. [PMID: 30989742 PMCID: PMC10154075 DOI: 10.1111/xen.12516] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Xenotransplantation research has made considerable progress in recent years, largely through the increasing availability of pigs with multiple genetic modifications. We suggest that a pig with nine genetic modifications (ie, currently available) will provide organs (initially kidneys and hearts) that would function for a clinically valuable period of time, for example, >12 months, after transplantation into patients with end-stage organ failure. The national regulatory authorities, however, will likely require evidence, based on in vitro and/or in vivo experimental data, to justify the inclusion of each individual genetic modification in the pig. We provide data both from our own experience and that of others on the advantages of pigs in which (a) all three known carbohydrate xenoantigens have been deleted (triple-knockout pigs), (b) two human complement-regulatory proteins (CD46, CD55) and two human coagulation-regulatory proteins (thrombomodulin, endothelial cell protein C receptor) are expressed, (c) the anti-apoptotic and "anti-inflammatory" molecule, human hemeoxygenase-1 is expressed, and (d) human CD47 is expressed to suppress elements of the macrophage and T-cell responses. Although many alternative genetic modifications could be made to an organ-source pig, we suggest that the genetic manipulations we identify above will all contribute to the success of the initial clinical pig kidney or heart transplants, and that the beneficial contribution of each individual manipulation is supported by considerable experimental evidence.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elena Federzoni
- Exponential Biotherapeutic Engineering, United Therapeutics, LaJolla, California
| | | | | |
Collapse
|
26
|
Smood B, Hara H, Schoel LJ, Cooper DKC. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome? Blood Rev 2019; 35:7-17. [PMID: 30711308 DOI: 10.1016/j.blre.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, particularly in situations of massive acute blood loss (where availability and compatibility are limited) or chronic hematologic diseases requiring frequent transfusions (resulting in alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a promising alternative due to their several similarities with human RBCs, and our increasing ability to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of xenotransfusion, the progress that has been made in recent years, and the remaining barriers. These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of exogenous immunosuppressive therapy). Although techniques of genetic engineering have advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not have nuclei) will need to be developed before clinical trials can be initiated.
Collapse
Affiliation(s)
- Benjamin Smood
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah J Schoel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Watanabe H, Sahara H, Nomura S, Tanabe T, Ekanayake-Alper DK, Boyd LK, Louras NJ, Asfour A, Danton MA, Ho SH, Arn JS, Hawley RJ, Shimizu A, Nagayasu T, Ayares D, Lorber MI, Sykes M, Sachs DH, Yamada K. GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels. Xenotransplantation 2018; 25:e12391. [PMID: 29527745 PMCID: PMC6135720 DOI: 10.1111/xen.12391] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite recent progress in survival times of xenografts in non-human primates, there are no reports of survival beyond 5 days of histologically well-aerated porcine lung grafts in baboons. Here, we report our initial results of pig-to-baboon xeno-lung transplantation (XLTx). METHODS Eleven baboons received genetically modified porcine left lungs from either GalT-KO alone (n = 3), GalT-KO/humanCD47(hCD47)/hCD55 (n = 3), GalT-KO/hD47/hCD46 (n = 4), or GalT-KO/hCD39/hCD46/hCD55/TBM/EPCR (n = 1) swine. The first 2 XLTx procedures were performed under a non-survival protocol that allowed a 72-hour follow-up of the recipients with general anesthesia, while the remaining 9 underwent a survival protocol with the intention of weaning from ventilation. RESULTS Lung graft survivals in the 2 non-survival animals were 48 and >72 hours, while survivals in the other 9 were 25 and 28 hours, at 5, 5, 6, 7, >7, 9, and 10 days. One baboon with graft survival >7 days, whose entire lung graft remained well aerated, was euthanized on POD 7 due to malfunction of femoral catheters. hCD47 expression of donor lungs was detected in both alveoli and vessels only in the 3 grafts surviving >7, 9, and 10 days. All other grafts lacked hCD47 expression in endothelial cells and were completely rejected with diffuse hemorrhagic changes and antibody/complement deposition detected in association with early graft loss. CONCLUSIONS To our knowledge, this is the first evidence of histologically viable porcine lung grafts beyond 7 days in baboons. Our results indicate that GalT-KO pig lungs are highly susceptible to acute humoral rejection and that this may be mitigated by transgenic expression of hCD47.
Collapse
Affiliation(s)
- Hironosuke Watanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Hisashi Sahara
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Shunichiro Nomura
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | | | - Lennan K. Boyd
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Nathan J. Louras
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Arsenoi Asfour
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Makenzie A. Danton
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - J. Scott Arn
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Hawley
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - David H. Sachs
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| |
Collapse
|
28
|
Remaining Physiological Barriers in Porcine Kidney Xenotransplantation: Potential Pathways behind Proteinuria as well as Factors Related to Growth Discrepancies following Pig-to-Kidney Xenotransplantation. J Immunol Res 2018; 2018:6413012. [PMID: 29687010 PMCID: PMC5857301 DOI: 10.1155/2018/6413012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
Considerable shortages in the supply of available organs continue to plague the field of solid organ transplantation. Despite changes in allocation, as well as the utilization of extended criteria and living donors, the number of patients waiting for organs continues to grow at an alarming pace. Xenotransplantation, cross-species solid organ transplantation, offers one potential solution to this dilemma. Previous extensive research dedicated to this field has allowed for resolution of xenograft failure due to acute rejection, leaving new areas of unresolved challenges as barriers to success in large animal models. Specific to kidney xenotransplantation, recent data seems to indicate that graft compromise can occur due to discrepancies in growth between breeds of donors and significant proteinuria leading to nephrotic syndrome in the recipient. Given these potential limitations, herein, we review potential pathways behind proteinuria, as well as potential causative factors related to growth discrepancies. Control of both of these has the potential to allow xenotransplantation to become clinically applicable in an effort to resolve this organ shortage crisis.
Collapse
|
29
|
Cooper M, Li XC, Adams AB. What's hot, what's new: Report from the American Transplant Congress 2017. Am J Transplant 2018; 18:308-320. [PMID: 29265693 DOI: 10.1111/ajt.14628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023]
Abstract
Significant advances in clinical practice as well as basic and translational science were presented at the American Transplant Congress this year. Topics included innovative clinical trials to recent advances in our basic understanding of the scientific underpinnings of transplant immunology. Key areas of interest included the following: clinical trials utilizing hepatitis C virus-positive (HCV+ ) donors for HCV- recipients, the impact of the new allocation policies, normothermic perfusion, novel treatments for desensitization, attempts at precision medicine, advances in xenotransplantation, the role of mitochondria and exosomes in rejection, nanomedicine, and the impact of the microbiota on transplant outcomes. This review highlights some of the most interesting and noteworthy presentations from the meeting.
Collapse
Affiliation(s)
- Matthew Cooper
- Medstar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Andrew B Adams
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, Vaught T, Horvath KA, Mohiuddin MM. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 2017; 24. [PMID: 28940570 DOI: 10.1111/xen.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Innovations in transgenic technology have facilitated improved xenograft survival. Additional gene expression appears to be necessary to overcome the remaining immune and biologic incompatibilities. We report for the first time the novel use of six-gene modifications within a pig-to-baboon cardiac xenotransplantation model. METHODS Baboons (8-15 kg) underwent heterotopic cardiac transplantation using xenografts obtained from genetically engineered pigs. Along with previously described modifications (GTKO, hCD46), additional expression of human transgenes for thromboregulation (endothelial protein C receptor, tissue factor pathway inhibitor, thrombomodulin), complement inhibition (decay accelerating factor), and cellular immune suppression (hCD39, hCD47) was used. Immunosuppression consisted of targeted T-cell and B-cell depletion and conventional anti-rejection agents. RESULTS Heterotopic cardiac transplantations were performed without complication. Flow cytometry and immunohistochemistry on donor biopsies confirmed transgenic phenotype. In contrast to the prior three-gene generation, significant coagulopathy or consumptive thrombocytopenia has not been observed in the six-gene cohort. As a result, these recipients have experienced decreased bleeding-related complications. Pro-inflammatory responses also appear to be mitigated based on cytokine analysis. Baboons survived the critical 30-day post-operative period when mortality has historically been highest, with no evidence of graft rejection. CONCLUSIONS The inclusion of additional human genes in genetically engineered pigs appears to confer superior xenograft outcomes. Introduction of these genes has not been associated with adverse outcomes. This multifactorial approach to genetic engineering furthers the prospect of long-term cardiac xenograft survival and subsequent clinical application.
Collapse
Affiliation(s)
- Joshua L Chan
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avneesh K Singh
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marvin L Thomas
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Billeta Gt Lewis
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Keith A Horvath
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
32
|
Majety M, Runza V, Lehmann C, Hoves S, Ries CH. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J 2017; 285:763-776. [PMID: 28941174 DOI: 10.1111/febs.14277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed.
Collapse
Affiliation(s)
- Meher Majety
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Valeria Runza
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Lehmann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Sabine Hoves
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H Ries
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
33
|
Fidyk W, Mitrus I, Ciomber A, Smagur A, Chwieduk A, Głowala-Kosińska M, Giebel S. Evaluation of proinflammatory and immunosuppressive cytokines in blood and bone marrow of healthy hematopoietic stem cell donors. Cytokine 2017; 102:181-186. [PMID: 28927758 DOI: 10.1016/j.cyto.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cytokine composition of bone marrow microenvironment in comparison to blood is poorly explored. The goal of this study was to investigate the levels of cytokines present in peripheral blood and bone marrow of healthy hematopoietic stem cells donors. The data obtained on this subject with addition to cytometric analysis can provide new insight into the hematopoietic stem cells microenvironment. METHODOLOGY Study consisted of cytokine concentration analysis performed by ELISA tests of peripheral blood of healthy peripheral blood stem cells donors and bone marrow of healthy bone marrow donors. Additionally we have tested the expression of CD47 and CD274 proteins on the surface of hematopoietic stem cells by the flow cytometry analysis. RESULTS The results has shown different composition of analyzed cytokines (IL-1 β, IL-2, IL-4, IL-6, IL-10, IL-17A, TGF-β1, IFN-γ and TNF-α) present in bone marrow and blood of stem cells donors. The hematopoietic stem cells in peripheral blood are subjected to higher levels of proinflammatory cytokines whilst the lower level of those cytokines in bone marrow with a very high level of TGF-β1 which possibly creates a more immunosuppressive environment. The IL-10 level was significantly higher in peripheral blood of PBSC donors after the administration of mobilizing factor (G-CSF). The percentage of CD47+HSCs was significantly higher in bone marrow compared to peripheral blood of mobilized donors.
Collapse
Affiliation(s)
- Wojciech Fidyk
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland.
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Agnieszka Ciomber
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Andrzej Smagur
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Agata Chwieduk
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Magdalena Głowala-Kosińska
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15 Street, Poland
| |
Collapse
|
34
|
|
35
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
36
|
Yamada K, Shah JA, Tanabe T, Lanaspa MA, Johnson RJ. Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. CURRENT TRANSPLANTATION REPORTS 2017; 4:101-109. [PMID: 28989853 DOI: 10.1007/s40472-017-0149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Inter-species transplantation, xenotransplantation, is becoming a realistic strategy to solve the organ shortage crisis. Here we focus on seminal publications that have driven research in xenotransplantation, as well as recently published literature and future endeavors. RECENT FINDINGS Advances in gene editing technology have allowed for the efficient production of multi-transgenic porcine donors leading improved xenograft survival in baboons, up to 2-years following heterotopic heart xenotransplantation and from weeks to several months following life-supporting kidney xenotransplanation. As technology evolves, additional challenges have arisen, including the development of proteinuria, early graft loss associated with porcine CMV, disparities in organ growth between donors and recipients as well as high-dose continuous immunosuppression requirements. To address these issues, our laboratory developed a tolerance-inducing protocol which has allowed for >6 months survival of a life-supporting kidney with further approaches currently underway to address the challenges mentioned above. SUMMARY Our recent findings, reviewed in this article, led us to develop methods to overcome obstacles, which, in conjunction with the work of others, are promising for future clinical applications of xenotransplantation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Laboratories, Massachusetts general Hospital, Harvard Medical School, Boston, MA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| |
Collapse
|
37
|
Jung SH, Hwang JH, Kim SE, Kim YK, Park HC, Lee HT. Human galectin-9 on the porcine cells affects the cytotoxic activity of M1-differentiated THP-1 cells through inducing a shift in M2-differentiated THP-1 cells. Xenotransplantation 2017; 24. [PMID: 28432704 DOI: 10.1111/xen.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. METHODS To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. RESULTS The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation of M2 program was enhanced in cells co-cultured with hGal-9. CONCLUSIONS These data suggested that hGal-9 has a reduction in M1-differentiated THP-1 cell cytotoxic activity-related acute immune rejection in pig-to-human xenotransplantation in addition to its role in lymphoid lineage immune cell regulation.
Collapse
Affiliation(s)
- Sung Han Jung
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Jeong Ho Hwang
- Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Sang Eun Kim
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Young Kyu Kim
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Hyo Chang Park
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| | - Hoon Taek Lee
- Department of Animal Science, Konkuk University, Gwangjin-Gu, Seoul, Korea
| |
Collapse
|
38
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
39
|
Housset M, Sennlaub F. Thrombospondin-1 and Pathogenesis of Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2015; 31:406-12. [DOI: 10.1089/jop.2015.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael Housset
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- INSERM, U968, Paris, France
| | - Florian Sennlaub
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- INSERM, U968, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
| |
Collapse
|
40
|
Progress towards inducing tolerance of pig-to-primate xenografts. Int J Surg 2015; 23:291-295. [PMID: 26296932 DOI: 10.1016/j.ijsu.2015.07.720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Xenotransplantation remains the best near-term solution to the shortage of transplantable organs that currently limits the field of transplantation. However, because the immune response to xenografts is considerably stronger than it is to allografts, the amount of non-specific immunosuppression required to avoid xenograft rejection may limit clinical applicability. For this reason, we consider it likely that the success of clinical xenotransplantation will depend on finding ways of safely inducing tolerance across xenogeneic barriers rather than relying entirely on non-specific immunosuppressive agents. In this laboratory, two approaches are being studied for the induction of pig-to-primate tolerance: a) the simultaneous transplantation of vascularized thymus and solid organs; and b) mixed hematopoietic chimerism. A summary of the development of these two approaches and their current status is the subject of this review.
Collapse
|
41
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
42
|
Bharti K, Rao M, Hull SC, Stroncek D, Brooks BP, Feigal E, van Meurs JC, Huang CA, Miller SS. Developing cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci 2014; 55:1191-202. [PMID: 24573369 DOI: 10.1167/iovs.13-13481] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biomedical advances in vision research have been greatly facilitated by the clinical accessibility of the visual system, its ease of experimental manipulation, and its ability to be functionally monitored in real time with noninvasive imaging techniques at the level of single cells and with quantitative end-point measures. A recent example is the development of stem cell-based therapies for degenerative eye diseases including AMD. Two phase I clinical trials using embryonic stem cell-derived RPE are already underway and several others using both pluripotent and multipotent adult stem cells are in earlier stages of development. These clinical trials will use a variety of cell types, including embryonic or induced pluripotent stem cell-derived RPE, bone marrow- or umbilical cord-derived mesenchymal stem cells, fetal neural or retinal progenitor cells, and adult RPE stem cells-derived RPE. Although quite distinct, these approaches, share common principles, concerns and issues across the clinical development pipeline. These considerations were a central part of the discussions at a recent National Eye Institute meeting on the development of cellular therapies for retinal degenerative disease. At this meeting, emphasis was placed on the general value of identifying and sharing information in the so-called "precompetitive space." The utility of this behavior was described in terms of how it could allow us to remove road blocks in the clinical development pipeline, and more efficiently and economically move stem cell-based therapies for retinal degenerative diseases toward the clinic. Many of the ocular stem cell approaches we discuss are also being used more broadly, for nonocular conditions and therefore the model we develop here, using the precompetitive space, should benefit the entire scientific community.
Collapse
Affiliation(s)
- Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dalmasso AP. On the intersections of basic and applied research in xenotransplantation. Xenotransplantation 2012; 19:137-43. [PMID: 22702465 DOI: 10.1111/j.1399-3089.2012.00703.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
I am very grateful to the Council and members of the International Xenotransplantation Association for this Honorary Membership. In accepting this prestigious award, I pay tribute to my mentors Antonio Oriol i Anguera, Carlos Martinez, Robert A. Good, and Hans Müller-Eberhard for their guidance and friendship as I was beginning my travels in biomedical research. I also thank the many gifted collaborators, students, and technical personnel, as well as the agencies and taxpayers, who funded our research and made our scientific contributions possible. Here I briefly mention some of these contributions, including early work on the immunobiology of the thymus, my short incursion in the immunology of Chagas disease, and what have been the dominant themes of my career: the mechanisms of complement injury, the role of complement in pathophysiology, and induction of cytoprotection in the vascular endothelium. I emphasize our contributions on the role of complement as related to understanding and overcoming xenograft injury, a work that has been personally very rewarding. Now it is exciting to see that the field of xenotransplantation research is moving forward vigorously, a time of great optimism suggesting that many potential clinical applications of xenotransplantation will come to fruition in the near future.
Collapse
Affiliation(s)
- Agustin P Dalmasso
- Departments of Surgery and of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, July-October 2011. Xenotransplantation 2012; 18:400-4. [PMID: 22168146 DOI: 10.1111/j.1399-3089.2011.00682.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
45
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The present review updates the current status of research regarding the immunologic responses of the recipient following xenotransplantation. Additionally, we present the recent progress with attempts to induce xenogeneic tolerance induction. RECENT FINDINGS There continues to be great interest in xenotransplantation. Recently, descriptions of the mechanisms responsible for attempted T-cell xenogeneic tolerance in both large and small animal models have improved xenogeneic graft survivals. Additionally, the cellular signaling mechanisms, such as those involving CD39, CD44, and CD47, are proving to be highly important. Using the mixed chimerism approach to tolerance in xenogeneic model may be encouraging, especially given the recent clarification of the role for macrophage-induced phagocytosis of xenogeneic donor cells. SUMMARY Induction of tolerance to xenogeneic antigens has been accomplished only in small animals; however, graft survivals in large animal models continue to improve. Further clarification of both the adaptive and innate immune responses to xenogeneic antigens is required for success to continue.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|