1
|
He J, Li J, Lin Q, Ni H, Huang S, Cheng H, Ding X, Huang Y, Yu H, Xu Y, Nie H. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice. Inflamm Res 2024; 73:433-446. [PMID: 38345634 DOI: 10.1007/s00011-023-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND B cells were believed to act as antigen-presenting cells (APCs) to promote T helper type 2 (Th2) cell responses. However, the role of lung B cells and its subpopulations in Th2 cell responses in asthma remains unclear. OBJECTIVE We leveraged an anti-CD20 monoclonal antibody (mAb) treatment that has been shown to selectively deplete B cells in mice and investigated whether this treatment modulates Th2 cell responses and this modulation is related to lung follicular mature (FM) B cells in a murine model of asthma. METHODS AND RESULTS We used a house dust mite (HDM)-induced asthma mouse model and found that anti-CD20 mAb treatment attenuates Th2 cell responses. Meanwhile, anti-CD20 mAb treatment did dramatically reduce the number of B cells, especially FM B cells in the lungs, but did not impact the frequency of other immune cell types, including lung T cells, dendritic cells, natural killer cells, and regulatory T cells in wild-type mice. Moreover, we found that the suppressive effect of anti-CD20 mAb treatment on Th2 cell responses could be reversed upon adoptive transfer of lung FM B cells, but not lung CD19+ B cells without FM B cells in asthmatic mice. CONCLUSIONS These findings reveal that anti-CD20 mAb treatment alleviates Th2 cell responses, possibly by depleting lung FM B cells in a Th2-driven asthma model. This implies a potential therapeutic approach for asthma treatment through the targeting of lung FM B cells.
Collapse
Affiliation(s)
- Jilong He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jingling Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Sisi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
2
|
Chiu YH, Chiu HP, Lin MY. Synergistic effect of probiotic and postbiotic on attenuation of PM2.5-induced lung damage and allergic response. J Food Sci 2023; 88:513-522. [PMID: 36463413 DOI: 10.1111/1750-3841.16398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
To date, few studies have been conducted on the relationship between postbiotics and air pollution, and there is limited knowledge if postbiotic and probiotic have synergistic effects. Therefore, we created a PM-induced lung inflammation mice model and demonstrated the effect of probiotic, postbiotic, and their combination treatment on attenuation of PM2.5-induced lung damage and allergic response. The mice were intratracheally given PM2.5 triggering conditions of acute lung damage and allergic response. Our results showed that individual treatment of probiotic and postbiotic reduced body weight loss by 47.1% and 48.9%, but the results did not show any effect on polarizing IFN-γ/IL-4 ratio. In addition, PM2.5-induced overactive expression of IgE treated by probiotic and postbiotic was reduced by 33.2% and 30.4%, respectively. While combination treatment of probiotic and postbiotic exerted a synergistic effect, especially considerably on improving IgE reduction by 57.1%, body weight loss by 78.3%, and IFN-γ/IL-4 ratio boost by 87.5%. To sum up the above functionality, these research findings may help establish a novel platform for postbiotic application, formulation, and mechanistic selection with regard to PM2.5-induced lung injury. PRACTICAL APPLICATION: Allergic inflammation caused by PM2.5 is not like common allergens (ex. Pollens, ovalbumin, dust mites), which simply skewing Th1/Th2 polarization to Th2. Thus using probiotics screened by Th1-skewing criteria might not be the best choice to treat on PM2.5-induced symptoms. This research proposed a combination of probiotics and postbiotics on modulating immunity homeostasis, and consequently attenuating complications of PM2.5-induced lung damage. These research findings may help establish a novel platform for postbiotic application, formulation and mechanistic selection with regard to PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan.,Chambio Co., Ltd., Taichung, ROC, Taiwan
| | | | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan
| |
Collapse
|
3
|
Zhang J, Cheng H, Di Narzo A, Zhu Y, Shan M, Zhang Z, Shao X, Chen J, Wang C, Hao K. Within- and cross-tissue gene regulations were disrupted by PM 2.5 nitrate exposure and associated with respiratory functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157977. [PMID: 35964746 DOI: 10.1016/j.scitotenv.2022.157977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pathogenesis of complex diseases often involves multiple organs/tissue-types. To date, the PM2.5 exposure's toxic effects and induced disease risks were not studied at multi-tissue level. METHODS C57BL/6 mice (n = 40) were exposed to PM2.5 NO3- and clean air, respectively, and afterwards assessed respiratory functions and transcriptome in relevant tissues: blood and lung. We constructed within- and cross-tissue gene regulation networks and identified network modules associated with exposure and respiratory functions. RESULTS PM2.5 NO3- exposure elevated naïve B cells proportion in blood (p = 0.0028). Among the 6000 highest expressed genes in blood, 18.8 % (1133 genes) were altered by exposure at p ≤ 0.05 level, among which 763 genes were also associated with respiratory function (enrichment folds = 7.63, p = 2.7E-189). The exposure disrupted blood genes were primarily in the immunoregulation pathways. Both within- and cross-tissue gene network modules were perturbed by exposure and associated with respiratory function. An immunodeficiency related cross-tissue module of 555 genes was affected by exposure (p = 0.0023) and strongly correlated with FEV0.05/FVC (r = 0.61 and p = 3E-5). CONCLUSIONS This study aims to fill in a major knowledge gap and investigated the effect of PM2.5 exposure simultaneously in multiple tissues. We provided novel evidence that PM2.5 NO3- exposure profoundly perturbed within- and cross-tissue gene regulations, and highlighted their roles in the etiology of respiratory decline.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Sema4, Stamford, CT, USA.
| |
Collapse
|
4
|
Haas-Neil S, Dvorkin-Gheva A, Forsythe P. Severe, but not moderate asthmatics share blood transcriptomic changes with post-traumatic stress disorder and depression. PLoS One 2022; 17:e0275864. [PMID: 36206293 PMCID: PMC9543640 DOI: 10.1371/journal.pone.0275864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma, an inflammatory disorder of the airways, is one of the most common chronic illnesses worldwide and is associated with significant morbidity. There is growing recognition of an association between asthma and mood disorders including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Although there are several hypotheses regarding the relationship between asthma and mental health, there is little understanding of underlying mechanisms and causality. In the current study we utilized publicly available datasets of human blood mRNA collected from patients with severe and moderate asthma, MDD, and PTSD. We performed differential expression (DE) analysis and Gene Set Enrichment Analysis (GSEA) on diseased subjects against the healthy subjects from their respective datasets, compared the results between diseases, and validated DE genes and gene sets with 4 more independent datasets. Our analysis revealed that commonalities in blood transcriptomic changes were only found between the severe form of asthma and mood disorders. Gene expression commonly regulated in PTSD and severe asthma, included ORMDL3 a gene known to be associated with asthma risk and STX8, which is involved in TrkA signaling. We also identified several pathways commonly regulated to both MDD and severe asthma. This study reveals gene and pathway regulation that potentially drives the comorbidity between severe asthma, PTSD, and MDD and may serve as foci for future research aimed at gaining a better understanding of both the relationship between asthma and PTSD, and the pathophysiology of the individual disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neil
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul Forsythe
- Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
5
|
Malik J, Ahmed S, Yaseen Z, Alanazi M, Alharby TN, Alshammari HA, Anwar S. Association of SARS-CoV-2 and Polypharmacy with Gut-Lung Axis: From Pathogenesis to Treatment. ACS OMEGA 2022; 7:33651-33665. [PMID: 36164411 PMCID: PMC9491241 DOI: 10.1021/acsomega.2c02524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 is a novel infectious contagion leading to COVID-19 disease. The virus has affected the lives of millions of people across the globe with a high mortality rate. It predominantly affects the lung (respiratory system), but it also affects other organs, including the cardiovascular, psychological, and gastrointestinal (GIT) systems. Moreover, elderly and comorbid patients with compromised organ functioning and pre-existing polypharmacy have worsened COVID-19-associated complications. Microbiota (MB) of the lung plays an important role in developing COVID-19. The extent of damage mainly depends on the predominance of opportunistic pathogens and, inversely, with the predominance of advantageous commensals. Changes in the gut MB are associated with a bidirectional shift in the interaction among the gut with a number of vital human organs, which leads to severe disease symptoms. This review focuses on dysbiosis in the gut-lung axis, COVID-19-induced worsening of comorbidities, and the influence of polypharmacy on MB.
Collapse
Affiliation(s)
- Jonaid
Ahmad Malik
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
- Department
of Biomedical Engineering, Indian Institute
of Technology Rupnagar 140001, India
| | - Sakeel Ahmed
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Zahid Yaseen
- Department
of Pharmaceutical Biotechnology, Delhi Pharmaceutical
Sciences and Research University, New Delhi, Delhi 110017, India
| | - Muteb Alanazi
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | - Tareq Nafea Alharby
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | | | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| |
Collapse
|
6
|
Lin CH, Li YR, Kor CT, Lin SH, Ji BC, Lin MT, Chai WH. The Mediating Effect of Cytokines on the Association between Fungal Sensitization and Poor Clinical Outcome in Asthma. Biomedicines 2022; 10:biomedicines10061452. [PMID: 35740474 PMCID: PMC9220002 DOI: 10.3390/biomedicines10061452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sensitization to fungal allergens is one of the proposed phenotypes in asthma. An association between fungal sensitization and worse clinical outcomes is apparent. Moreover, fungal sensitization in asthma that is associated with different type of immunological mechanism has been reported. How the role of cytokines mediates the association between fungal sensitization and poorer asthmatic outcomes remains unclear. We aimed to determine role of cytokines in the relationship between fungal sensitization and worse clinical outcomes in asthma. METHOD We conducted a prospective study to recruit adult patients with asthma. Data including age, sex, height, weight, smoking history, medication, emergency visit and admission, pulmonary function testing result, and Asthma Control Test (ACT) scores were collected. We used the automated BioIC method to measure fungal allergen sIgE in sera. Serum levels of Interleukin (IL) -4, IL-13, IL-6, IL-9, IL-10, IL-17 A, IL-22, Interferon (IFN) -γ, Immunoglobulin E (IgE), Tumor necrosis factor-α (TNF-α), and Transforming growth factor-β (TGF-β) were measured using ELISA. RESULT IL-6 and IL-17A had a significant positive correlation between sensitization and most fungi species compared to IgE. Sensitization to Candida albicans had strongly positive association both with IL-6 and IL-17A. However, only IL-17A had significant relationship with ED visit times. The mediation analysis result indicates that IL-17A had a significant positively mediating effect (ME) on the association between Candida albicans and ED visit times. CONCLUSION IL-17A is a potential mediator to link Candida albicans sensitization and ED visits for asthma. We suggest that patients with fungal sensitization, such as Candida albicans, have poorer outcomes associated with Th17-mediated immune response rather than Th2.
Collapse
Affiliation(s)
- Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (S.-H.L.); (B.-C.J.); (M.-T.L.); (W.-H.C.)
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan
- Correspondence: ; Tel.: +886-4-7238595; Fax: +886-4-7232942
| | - Yi-Rong Li
- Thoracic Medicine Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chew-Teng Kor
- Big Data Center, Changhua Christian Hospital, Changhua 500, Taiwan;
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua 500, Taiwan
| | - Sheng-Hao Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (S.-H.L.); (B.-C.J.); (M.-T.L.); (W.-H.C.)
- Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan
- Thoracic Medicine Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Bin-Chuan Ji
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (S.-H.L.); (B.-C.J.); (M.-T.L.); (W.-H.C.)
| | - Ming-Tai Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (S.-H.L.); (B.-C.J.); (M.-T.L.); (W.-H.C.)
| | - Woei-Horng Chai
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (S.-H.L.); (B.-C.J.); (M.-T.L.); (W.-H.C.)
| |
Collapse
|
7
|
Namvar S, Labram B, Rowley J, Herrick S. Aspergillus fumigatus-Host Interactions Mediating Airway Wall Remodelling in Asthma. J Fungi (Basel) 2022; 8:jof8020159. [PMID: 35205913 PMCID: PMC8879933 DOI: 10.3390/jof8020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic heterogeneous respiratory condition that is mainly associated with sensitivity to airborne agents such as pollen, dust mite products and fungi. Key pathological features include increased airway inflammation and airway wall remodelling. In particular, goblet cell hyperplasia, combined with excess mucus secretion, impairs clearance of the inhaled foreign material. Furthermore, structural changes such as subepithelial fibrosis and increased smooth muscle hypertrophy collectively contribute to deteriorating airway function and possibility of exacerbations. Current pharmacological therapies focused on airway wall remodelling are limited, and as such, are an area of unmet clinical need. Sensitisation to the fungus, Aspergillus fumigatus, is associated with enhanced asthma severity, bronchiectasis, and hospitalisation. How Aspergillus fumigatus may drive airway structural changes is unclear, although recent evidence points to a central role of the airway epithelium. This review provides an overview of the airway pathology in patients with asthma and fungal sensitisation, summarises proposed airway epithelial cell-fungal interactions and discusses the initiation of a tissue remodelling response. Related findings from in vivo animal models are included given the limited analysis of airway pathology in patients. Lastly, an important role for Aspergillus fumigatus-derived proteases in triggering a cascade of damage-repair events through upregulation of airway epithelial-derived factors is proposed.
Collapse
Affiliation(s)
- Sara Namvar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
- Correspondence: (S.N.); (S.H.)
| | - Briony Labram
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Jessica Rowley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Sarah Herrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- Correspondence: (S.N.); (S.H.)
| |
Collapse
|
8
|
Özkan M, Eskiocak YC, Wingender G. Macrophage and dendritic cell subset composition can distinguish endotypes in adjuvant-induced asthma mouse models. PLoS One 2021; 16:e0250533. [PMID: 34061861 PMCID: PMC8168852 DOI: 10.1371/journal.pone.0250533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7+ activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.
Collapse
Affiliation(s)
- Müge Özkan
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | | | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
9
|
Park JH, Jiang Y, Zhou J, Gong H, Mohapatra A, Heo J, Gao W, Fang RH, Zhang L. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. SCIENCE ADVANCES 2021; 7:eabf7820. [PMID: 34134990 PMCID: PMC8208717 DOI: 10.1126/sciadv.abf7820] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
As numerous diseases are associated with increased local inflammation, directing drugs to the inflamed sites can be a powerful therapeutic strategy. One of the common characteristics of inflamed endothelial cells is the up-regulation of vascular cell adhesion molecule-1 (VCAM-1). Here, the specific affinity between very late antigen-4 (VLA-4) and VCAM-1 is exploited to produce a biomimetic nanoparticle formulation capable of targeting inflammation. The plasma membrane from cells genetically modified to constitutively express VLA-4 is coated onto polymeric nanoparticle cores, and the resulting cell membrane-coated nanoparticles exhibit enhanced affinity to target cells that overexpress VCAM-1 in vitro. A model anti-inflammatory drug, dexamethasone, is encapsulated into the nanoformulation, enabling improved delivery of the payload to inflamed lungs and significant therapeutic efficacy in vivo. Overall, this work leverages the unique advantages of biological membrane coatings to engineer additional targeting specificities using naturally occurring target-ligand interactions.
Collapse
Affiliation(s)
- Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Initiation and Pathogenesis of Severe Asthma with Fungal Sensitization. Cells 2021; 10:cells10040913. [PMID: 33921169 PMCID: PMC8071493 DOI: 10.3390/cells10040913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth, and their ubiquity and small proteolytically active products make them pervasive allergens that affect humans and other mammals. The immunologic parameters surrounding fungal allergies are still not fully elucidated despite their importance given that a large proportion of severe asthmatics are sensitized to fungal allergens. Herein, we explore fungal allergic asthma with emphasis on mouse models that recapitulate the characteristics of human disease, and the main leukocyte players in the pathogenesis of fungal allergies. The endogenous mycobiome may also contribute to fungal asthma, a phenomenon that we discuss only superficially, as much remains to be discovered.
Collapse
|
11
|
Morán G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J Mycol Med 2017; 28:128-136. [PMID: 29233467 DOI: 10.1016/j.mycmed.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils are the predominant inflammatory cells that infiltrate airways during acute exacerbation of asthma. The importance of A. fumigatus sensitization, and IgE response in the airways in patients with acute asthma is unclear. Rockefeller (RK) mice were sensitized with A. fumigatus extract protein. The animals were subsequently challenged with different degrees of A. fumigatus contamination in the cage bedding. All groups of mice were euthanized to obtain bronchoalveolar lavage fluid (BALF) for cytological and Elisa assays, and lung tissue for histological analysis. Moreover, several bioassays were conducted to determine whether BALF IgE antibodies can activate mast cells. In this study, we demonstrated that exposure of sensitized mice to a known concentration of A. fumigatus conidia produces bronchial hyperreactivity with marked neutrophilic bronchial infiltration and increased BALF IgE, capable of triggering mast cell degranulation. This study suggests that IgE may play a role in bronchial hyperreactivity associated to A. fumigatus exposure in mice. Mice sensitized and challenged with this fungus showed characteristics of severe asthma, with an increase of BALF neutrophils, histological changes consistent with severe asthma and an increase of IgE capable of triggering type I hypersensitivity.
Collapse
Affiliation(s)
- G Morán
- Department of pharmacology, faculty of veterinary science, universidad Austral de Chile, Valdivia, Chile.
| | - B Uberti
- Department of clinical veterinary sciences, faculty of veterinary sciences, universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of veterinary medicine, universidad Católica de Temuco, Temuco, Chile
| | - H Folch
- Department of immunology, faculty of medicine, universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
Wang J, Li F, Tian Z. Role of microbiota on lung homeostasis and diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1407-1415. [PMID: 29019144 PMCID: PMC7089139 DOI: 10.1007/s11427-017-9151-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
The lungs, as a place of gas exchange, are continuously exposed to environmental stimuli, such as allergens, microbes, and pollutants. The development of the culture-independent technique for microbiological analysis, such as 16S rRNA sequencing, has uncovered that the lungs are not sterile and, in fact, colonized by diverse communities of microbiota. The function of intestinal microbiota in modulating mucosal homeostasis and defense has been widely studied; however, the potential function of lung microbiota in regulating immunity and homeostasis has just begun. Increasing evidence indicates the relevance of microbiota to lung homeostasis and disease. In this review, we describe the distribution and composition of microbiota in the respiratory system and discuss the potential function of lung microbiota in both health and acute/chronic lung disease. In addition, we also discuss the recent understanding of the gut-lung axis, because several studies have revealed that the immunological interaction among the gut, the lung, and the microbiota was involved in this issue.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University Zurich, Zurich, 8091, Switzerland.
| | - Fengqi Li
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Humoral immune responses during asthma and influenza co-morbidity in mice. Immunobiology 2017; 222:1064-1073. [PMID: 28889999 DOI: 10.1016/j.imbio.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Humoral immunity serve dual functions of direct pathogen neutralization and enhancement of leukocyte function. Antibody classes are determined by antigen triggers, and the resulting antibodies can contribute to disease pathogenesis and host defense. Although asthma and influenza are immunologically distinct diseases, since we have found that allergic asthma exacerbation promotes antiviral host responses to influenza A virus, we hypothesized that humoral immunity may contribute to allergic host protection during influenza. C57BL/6J mice sensitized and challenged with Aspergillus fumigatus (or not) were infected with pandemic influenza A/CA/04/2009 virus. Negative control groups included naïve mice, and mice with only 'asthma' or influenza. Concentrations of antibodies were quantified by ELISA, and in situ localization of IgA- and IgE-positive cells in the lungs was determined by immunohistochemistry. The number and phenotype of B cells in spleens and mediastinal lymph nodes were determined by flow cytometry at predetermined timepoints after virus infection until viral clearance. Mucosal and systemic antibodies remained elevated in mice with asthma and influenza with prominent production of IgE and IgA compared to influenza-only controls. B cell expansion was prominent in the mediastinal lymph nodes of allergic mice during influenza where most cells produced IgG1 and IgA. Although allergy-skewed B cell responses dominated in mice with allergic airways inflammation during influenza virus infection, virus-specific antibodies were also induced. Future studies are required to identify the mechanisms involved with B cell activation and function in allergic hosts facing respiratory viral infections.
Collapse
|
14
|
Li S, Koziol-White C, Jude J, Jiang M, Zhao H, Cao G, Yoo E, Jester W, Morley MP, Zhou S, Wang Y, Lu MM, Panettieri RA, Morrisey EE. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness. J Clin Invest 2016; 126:1978-82. [PMID: 27088802 DOI: 10.1172/jci81389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/01/2016] [Indexed: 12/23/2022] Open
Abstract
Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma.
Collapse
|
15
|
Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 2015; 15:59. [PMID: 26288940 DOI: 10.1007/s11882-015-0561-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.
Collapse
|
16
|
Ghosh S, Hoselton SA, Wanjara SB, Carlson J, McCarthy JB, Dorsam GP, Schuh JM. Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology 2015; 220:899-909. [PMID: 25698348 DOI: 10.1016/j.imbio.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by excessive eosinophilic and lymphocytic inflammation with associated changes in the extracellular matrix (ECM) resulting in airway wall remodeling. Hyaluronan (HA) is a nonsulfated glycosaminoglycan ECM component that functions as a structural cushion in its high molecular mass (HMM) but has been implicated in metastasis and other disease processes when it is degraded to smaller fragments. However, relatively little is known about the role HA in mediating inflammatory responses in allergy and asthma. In the present study, we used a murine Aspergillus fumigatus inhalational model to mimic human disease. After observing in vivo that a robust B cell recruitment followed a massive eosinophilic egress to the lumen of the allergic lung and corresponded with the detection of low molecular mass HA (LMM HA), we examined the effect of HA on B cell chemotaxis and cytokine production in the ex vivo studies. We found that LMM HA functioned through a CD44-mediated mechanism to elicit chemotaxis of B lymphocytes, while high molecular mass HA (HMM HA) had little effect. LMM HA, but not HMM HA, also elicited the production of IL-10 and TGF-β1 in these cells. Taken together, these findings demonstrate a critical role for ECM components in mediating leukocyte migration and function which are critical to the maintenance of allergic inflammatory responses.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steve B Wanjara
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer Carlson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
17
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|