1
|
Yin J, Chen J, Wang T, Sun H, Yan Y, Zhu C, Huang L, Chen Z. Coinhibitory Molecule VISTA Play an Important Negative Regulatory Role in the Immunopathology of Bronchial Asthma. J Asthma Allergy 2024; 17:813-832. [PMID: 39246611 PMCID: PMC11378793 DOI: 10.2147/jaa.s449867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the significance of VISTA in bronchial asthma and its impact on the disease. Methods Human peripheral blood of asthma children was gathered. The expression concentrations of VISTA, IL-4, IL-6, CD25, CD40L, and PD-L2 in peripheral blood plasma were detected by ELISA. We established the mouse model of asthma and intervened with agonistic anti-VISTA mAb (4C11) and VISTA fusion protein. ELISA, flow cytometry, and Western blotting were performed to detect the expression levels of Th1, Th2, and Th17 cell subsets and related characteristic cytokines, as well as the protein levels of MAPKs, NF-κB, and TRAF6 in lung tissues. In addition, the infiltration of eosinophils and inflammatory cells, airway mucus secretion, and VISTA protein expression in lung histopathological sections of different groups of mice were analyzed. Results The concentration of VISTA in human asthma group decreased significantly (p < 0.05); A positive correlation was observed between VISTA and CD40L. The intervention of 4C11 mAb and fusion protein respectively during the induction period increase the differentiation of Th1 cells and the secretion of IFN-γ, and inhibit the differentiation of Th2 and Th17 cells, as well as the secretion of IL-4, IL-5, IL-13 and IL-17, partially reduce the pathological changes of asthma in mouse lungs and correct the progress of asthma. The MAPK, NF-κB, and TRAF6 protein levels were the middle range in the 4C11 mAb and fusion protein groups (p < 0.05). Conclusion The findings suggest VISTA may play a negative regulatory role in the occurrence and development of bronchial asthma.
Collapse
Affiliation(s)
- Jianqun Yin
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting Wang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiming Sun
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongdong Yan
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Canhong Zhu
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Huang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Tian T, Xie M, Sun G. Association of systemic immune-inflammation index with asthma and asthma-related events: a cross-sectional NHANES-based study. Front Med (Lausanne) 2024; 11:1400484. [PMID: 38988356 PMCID: PMC11233796 DOI: 10.3389/fmed.2024.1400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Background Asthma is associated with persistent airway inflammation, and numerous studies have investigated inflammatory markers causing asthma. However, the systemic immune-inflammation index (SII) is a novel inflammatory marker, with scarce research reporting on the correlation between SII and asthma and asthma-related events. Objective The purpose of this study was to assess the relationship between SII and asthma and asthma-related events (including whether asthma is still present, asthma flare-ups in the past year, and asthma duration) using data from the National Health and Nutrition Examination Survey (NHANES). Methods The study utilized data from NHANES 2009-2018 with asthma and asthma-related events as dependent variables and SII as an independent variable. Multifactor logistic regression was employed to assess the correlation between the independent and dependent variables. Smoothed curve-fitting and threshold effect analyses were also carried out to determine the presence of non-linear relationships. Subgroup analyses were then performed to identify sensitive populations. Results In this study, we analyzed data from 40,664 participants to elucidate the association between SII and asthma and its related events. The study findings indicated a positive correlation between SII and asthma, with a relative risk increase of 0.03% for asthma incidence per one percentage point increase in SII (OR = 1.0003, 95% CI: 1.0002, 1.0004). For individuals still suffering from asthma, higher SII also indicated a positive correlation with ongoing asthma (OR = 1.0004, 95% CI: 1.0001, 1.0006). However, no statistically significant association was observed between SII and asthma exacerbations within the following year (OR = 1.0001, p > 0.05). When considering the duration of asthma, we observed a slight positive correlation with SII (β = 0.0017, 95% CI: 0.0005, 0.0029). Additionally, a significant non-linear relationship between SII and asthma duration emerged at the threshold of 504.3 (β = 0.0031, 95% CI: 0.0014-0.0048, p = 0.0003). Subgroup analysis revealed a stronger correlation between SII and asthma in male patients (OR = 1.0004, 95% CI: 1.0002-1.0006) and individuals aged 60 and above (OR = 1.0005, 95% CI: 1.0003-1.0007). No gender differences were observed for individuals still suffering from asthma. However, the positive correlation between SII and asthma was more pronounced in participants under 20 years old (OR = 1.0004 in Model 3, 95% CI: 1.0002-1.0006). Specific sensitive subgroups for asthma exacerbation recurrence within the past year were not identified. When considering asthma duration, we observed this association to be significant in male individuals (β = 0.0031 in Model 3, 95% CI: 0.0014-0.0049) as well as individuals aged 20 to 39 (β = 0.0023 in Model 3, 95% CI: 0.0005-0.0040). Conclusion Our study concludes that SII is positively correlated with the persistence of asthma yet has limited predictive power for asthma recurrence. This highlights SII's potential as a tool for assessing asthma risk and formulating targeted management strategies.
Collapse
Affiliation(s)
- Tulei Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Meiling Xie
- Bengbu Medical University Graduate School, Bengbu, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Gruba S, Wu X, Spanolios E, He J, Xiong-Hang K, Haynes CL. Platelet Response to Allergens, CXCL10, and CXCL5 in the Context of Asthma. ACS BIO & MED CHEM AU 2023; 3:87-96. [PMID: 36820311 PMCID: PMC9936497 DOI: 10.1021/acsbiomedchemau.2c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Asthma is a chronic respiratory disease initiated by a variety of factors, including allergens. During an asthma attack, the secretion of C-X-C-motif chemokine 10 (CXCL10) and chemokine ligand 5 (CCL5) causes the migration of immune cells, including platelets, into the lungs and airway. Platelets, which contain three classes of chemical messenger-filled granules, can secrete vasodilators (adenosine diphosphate and adenosine triphosphate), serotonin (a vasoconstrictor and a vasodilator, depending on the biological system), platelet-activating factor, N-formylmethionyl-leucyl-phenylalanine ((fMLP), a bacterial tripeptide that stimulates chemotaxis), and chemokines (CCL5, platelet factor 4 (PF4), and C-X-C-motif chemokine 12 (CXCL12)), amplifying the asthma response. The goal of this work was threefold: (1) to understand if and how the antibody immunoglobulin E (IgE), responsible for allergic reactions, affects platelet response to the common platelet activator thrombin; (2) to understand how allergen stimulation compares to thrombin stimulation; and (3) to monitor platelet response to fMLP and the chemokines CXCL10 and CCL5. Herein, high-pressure liquid chromatography with electrochemical detection and/or carbon-fiber microelectrode amperometry measured granular secretion events from platelets with and without IgE in the presence of the allergen 2,4,6-trinitrophenyl-conjugated ovalbumin (TNP-Ova), thrombin, CXCL10, or CCL5. Platelet adhesion and chemotaxis were measured using a microfluidic platform in the presence of CXCL10, CCL5, or TNP-OVA. Results indicate that IgE binding promotes δ-granule secretion in response to platelet stimulation by thrombin in bulk. Single-cell results on platelets with exogenous IgE exposure showed significant changes in the post-membrane-granule fusion behavior during chemical messenger delivery events after thrombin stimulation. In addition, TNP-Ova allergen stimulation of IgE-exposed platelets secreted serotonin to the same extent as thrombin platelet stimulation. Enhanced adhesion to endothelial cells was demonstrated by TNP-Ova stimulation. Finally, only after incubation with IgE did platelets secrete chemical messengers in response to stimulation with fMLP, CXCL10, and CCL5.
Collapse
Affiliation(s)
- Sarah Gruba
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eleni Spanolios
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kang Xiong-Hang
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Ma H, Yang L, Liu L, Zhou Y, Guo X, Wu S, Zhang X, Xu X, Ti X, Qu S. Using inflammatory index to distinguish asthma, asthma-COPD overlap and COPD: A retrospective observational study. Front Med (Lausanne) 2022; 9:1045503. [PMID: 36465915 PMCID: PMC9714673 DOI: 10.3389/fmed.2022.1045503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Although asthma and chronic obstructive pulmonary disease (COPD) are two well-defined and distinct diseases, some patients present combined clinical features of both asthma and COPD, particularly in smokers and the elderly, a condition termed as asthma-COPD overlap (ACO). However, the definition of ACO is yet to be established and clinical guidelines to identify and manage ACO remain controversial. Therefore, in this study, inflammatory biomarkers were established to distinguish asthma, ACO, and COPD, and their relationship with the severity of patients' symptoms and pulmonary function were explored. MATERIALS AND METHODS A total of 178 patients, diagnosed with asthma (n = 38), ACO (n = 44), and COPD (n = 96) between January 2021 to June 2022, were enrolled in this study. The patients' pulmonary function was examined and routine blood samples were taken for the analysis of inflammatory indexes. Logistic regression analysis was used to establish inflammatory biomarkers for distinguishing asthma, ACO, and COPD; linear regression analysis was used to analyze the relationship between inflammatory indexes and symptom severity and pulmonary function. RESULT The results showed that, compared with ACO, the higher the indexes of platelet, neutrophil-lymphocyte ratio (NLR) and eosinophil-basophil ratio (EBR), the more likely the possibility of asthma and COPD in patients, while the higher the eosinophils, the less likely the possibility of asthma and COPD. Hemoglobin and lymphocyte-monocyte ratio (LMR) were negatively correlated with the severity of patients' symptoms, while platelet-lymphocyte ratio (PLR) was negatively correlated with forced expiratory volume in the 1 s/forced vital capacity (FEV1/FVC) and FEV1 percent predicted (% pred), and EBR was positively correlated with FEV1% pred. CONCLUSION Inflammatory indexes are biomarkers for distinguishing asthma, ACO, and COPD, which are of clinical significance in therapeutic strategies and prognosis evaluation.
Collapse
Affiliation(s)
- Haiman Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Lingli Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoya Guo
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuo Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xi Xu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xinyu Ti
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuoyao Qu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
6
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Li M, Zhu W, Saeed U, Sun S, Fang Y, Wang C, Luo Z. Identification of the molecular subgroups in asthma by gene expression profiles: airway inflammation implications. BMC Pulm Med 2022; 22:29. [PMID: 35000593 PMCID: PMC8742931 DOI: 10.1186/s12890-022-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Asthma is a heterogeneous disease and different phenotypes based on clinical parameters have been identified. However, the molecular subgroups of asthma defined by gene expression profiles of induced sputum have been rarely reported. Methods We re-analyzed the asthma transcriptional profiles of the dataset of GSE45111. A deep bioinformatics analysis was performed. We classified 47 asthma cases into different subgroups using unsupervised consensus clustering analysis. Clinical features of the subgroups were characterized, and their biological function and immune status were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single sample Gene Set Enrichment Analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) network were performed to identify key gene modules and hub genes. Results Unsupervised consensus clustering of gene expression profiles in asthma identified two distinct subgroups (Cluster I/II), which were significantly associated with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA). The differentially expressed genes (DEGs) between the two subgroups were primarily enriched in immune response regulation and signal transduction. The ssGSEA suggested the different immune infiltration and function scores between the two clusters. The WGCNA and PPI analysis identified three hub genes: THBS1, CCL22 and CCR7. ROC analysis further suggested that the three hub genes had a good ability to differentiate the Cluster I from the Cluster II. Conclusions Based on the gene expression profiles of the induced sputum, we identified two asthma subgroups, which revealed different clinical characteristics, gene expression patterns, biological functions and immune status. The transcriptional classification confirms the molecular heterogeneity of asthma and provides a framework for more in-depth research on the mechanisms of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01824-3.
Collapse
Affiliation(s)
- Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ummair Saeed
- Department of Dermatology, National Orthopedic and General Hospital, Bahawalpur, Pakistan
| | - Shibo Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Chu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China.
| |
Collapse
|
8
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
9
|
Platelets, Not an Insignificant Player in Development of Allergic Asthma. Cells 2021; 10:cells10082038. [PMID: 34440807 PMCID: PMC8391764 DOI: 10.3390/cells10082038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic and heterogeneous pulmonary disease in which platelets can be activated in an IgE-mediated pathway and migrate to the airways via CCR3-dependent mechanism. Activated platelets secrete IL-33, Dkk-1, and 5-HT or overexpress CD40L on the cell surfaces to induce Type 2 immune response or interact with TSLP-stimulated myeloid DCs through the RANK-RANKL-dependent manner to tune the sensitization stage of allergic asthma. Additionally, platelets can mediate leukocyte infiltration into the lungs through P-selectin-mediated interaction with PSGL-1 and upregulate integrin expression in activated leukocytes. Platelets release myl9/12 protein to recruit CD4+CD69+ T cells to the inflammatory sites. Bronchoactive mediators, enzymes, and ROS released by platelets also contribute to the pathogenesis of allergic asthma. GM-CSF from platelets inhibits the eosinophil apoptosis, thus enhancing the chronic inflammatory response and tissue damage. Functional alterations in the mitochondria of platelets in allergic asthmatic lungs further confirm the role of platelets in the inflammation response. Given the extensive roles of platelets in allergic asthma, antiplatelet drugs have been tested in some allergic asthma patients. Therefore, elucidating the role of platelets in the pathogenesis of allergic asthma will provide us with new insights and lead to novel approaches in the treatment of this disease.
Collapse
|
10
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
11
|
Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 2020; 307:109-120. [DOI: 10.1016/j.atherosclerosis.2020.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
12
|
Upchurch K, Wiest M, Cardenas J, Skinner J, Nattami D, Lanier B, Millard M, Joo H, Turner J, Oh S. Whole blood transcriptional variations between responders and non-responders in asthma patients receiving omalizumab. Clin Exp Allergy 2020; 50:1017-1034. [PMID: 32472607 DOI: 10.1111/cea.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/10/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Anti-IgE (omalizumab) has been used for the treatment of moderate-to-severe asthma that is not controlled by inhaled steroids. Despite its success, it does not always provide patients with significant clinical benefits. OBJECTIVE To investigate the transcriptional variations between omalizumab responders and non-responders and to study the mechanisms of action of omalizumab. METHODS The whole blood transcriptomes of moderate-to-severe adult asthma patients (N = 45:34 responders and 11 non-responders) were analysed over the course of omalizumab treatment. Non-asthmatic healthy controls (N = 17) were used as controls. RESULTS Transcriptome variations between responders and non-responders were identified using the genes significant (FDR < 0.05) in at least one comparison of each patient response status and time point compared with control subjects. Using gene ontology and network analysis, eight clusters of genes were identified. Longitudinal analyses of individual clusters revealed that responders could maintain changes induced with omalizumab treatment and become more similar to the control subjects, while non-responders tend to remain more similar to their pre-treatment baseline. Further analysis of an inflammatory gene cluster revealed that genes associated with neutrophil/eosinophil activities were up-regulated in non-responders and, more importantly, omalizumab did not significantly alter their expression levels. The application of modular analysis supported our findings and further revealed variations between responders and non-responders. CONCLUSION AND CLINICAL RELEVANCE This study provides not only transcriptional variations between omalizumab responders and non-responders, but also molecular insights for controlling asthma by omalizumab.
Collapse
Affiliation(s)
| | - Matthew Wiest
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jacob Cardenas
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Jason Skinner
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Durgha Nattami
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Bobby Lanier
- North Texas Institute for Clinical Trials, Ft Worth, TX, USA
| | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, TX, USA
| | - HyeMee Joo
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jacob Turner
- Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - SangKon Oh
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
13
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
14
|
Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats. Inflammopharmacology 2019; 27:1179-1192. [PMID: 31069605 DOI: 10.1007/s10787-019-00597-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a hydroxyl pentacyclic triterpene acid (HTAs) used in various ailments. Inflammatory diseases may be profoundly influenced by iron (Fe) and zinc (Zn) status. We studied the anti-asthmatic effects of two metal complexes (Fe and Zn) of OA in the ovalbumin (OVA)-induced rat model. Delayed type hypersensitivity (DTH) was measured. Total and differential leucocyte count was done in blood as well as bronchoalveolar lavage fluid (BALF). The mRNA expression levels of pro-inflammatory cytokines were measured in lung tissue by reverse transcription polymerase chain reaction. The levels of cyclooxygenase-2 (COX-2), immunoglobulin E (IgE) and 5-lipoxygenase (5-LOX) were estimated by enzyme linked immunosorbent assay. Splenocyte proliferation was performed through BrdU uptake method and nitric oxide levels were measured by colorimetric assay kit. The acute toxicity study was also done for the complexes. The asthmatic group developed allergic airway inflammation shown by increased DTH and inflammatory markers in blood and BALF. OA + Fe and OA + Zn displayed significant decrease in DTH, NO, expression of IL-4, 5, 13, 17, toll-like receptor-2, nuclear factor-kappa B and tumor necrosis factor-α; serum IgE, COX-2, and 5-LOX. The metal complexes also attenuated OVA-stimulated splenocyte proliferation. While no hepatotoxic or nephrotoxic potential was shown by OA + Fe and OA + Zn. Our findings indicate that both OA + Fe and OA + Zn possess significant anti-asthmatic effect which may be ascribed to its immunomodulatory and anti-inflammatory features.
Collapse
|
15
|
Amison RT, Cleary SJ, Riffo-Vasquez Y, Bajwa M, Page CP, Pitchford SC. Platelets Play a Central Role in Sensitization to Allergen. Am J Respir Cell Mol Biol 2019; 59:96-103. [PMID: 29365287 DOI: 10.1165/rcmb.2017-0401oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet activation occurs in patients with allergic inflammation, and platelets can be activated directly by allergen via an IgE-dependent process. Platelets have been shown to activate APCs such as CD11c+ dendritic cells in vitro. Although CD11c+ dendritic cells are a requisite for allergen sensitization, the role of platelets in this process is unknown. In this study, we investigated whether platelets were necessary for allergen sensitization. Balb/c mice sensitized to ovalbumin were exposed to subsequent aerosolized allergen (ovalbumin challenge). We analyzed lung CD11c+ cell activation, colocalization with platelets, and some other indices of inflammation. The role of platelets at the time of allergen sensitization was assessed through platelet depletion experiments restricted to the period of sensitization. Platelets colocalized with airway CD11c+ cells, and this association increased after allergen sensitization as well as after subsequent allergen exposure. Temporary platelet depletion (>95%) at the time of allergen sensitization led to a suppression of IgE and IL-4 synthesis and to a decrease in the pulmonary recruitment of eosinophils, macrophages, and lymphocytes after subsequent allergen exposure. Furthermore, in mice previously depleted of platelets at the time of sensitization, the recovered platelet population was shown to have reduced expression of FcεRI. Pulmonary CD11c+ cell recruitment was suppressed in these mice after allergen challenge, suggesting that the migration of CD11c+ cells in vivo may be dependent on direct platelet recognition of allergen. We conclude that platelets are necessary for efficient host sensitization to allergen. This propagates the subsequent inflammatory response during secondary allergen exposure and increases platelet association with airway CD11c+ cells.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Maidda Bajwa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Shi G, Zhao JW, Ming L. [Clinical significance of peripheral blood neutrophil-lymphocyte ratio and platelet- lymphocyte ratio in patients with asthma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019. [PMID: 28109104 DOI: 10.3969/j.issn.1673-4254.2017.01.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the changes of peripheral blood neutrophil-lymphocyte ratio (NLR) and platelet- lymphocyte ratio (PLR) in patients in acute stage of bronchial asthma and their clinical significance. METHODS A total of 262 patients with acute asthma, including 97 critical and 175 non-critical patients, were recruited from our hospital between January, 2013 and May, 2016, with 130 healthy individuals as the control group. The absolute neutrophil count, absolute lymphocyte count, platelet, NLR and PLR were compared among different groups, and their diagnostic values were evaluated using the area under the receiver-operating characteristic (ROC) curve. RESULTS The absolute neutrophil count, absolute lymphocyte count, PLR and NLR (P<0.0001), but not platelet count (P=0.971), differed significantly among the 3 groups. The absolute lymphocyte count was significantly lower while the absolute neutrophil count, NLR and PLR were significantly higher in asthmatic patients in critical condition than in patients in non-critical condition and the control subjects (P<0.0001), and these parameters showed no significant differences between latter two groups (P>0.05). The areas under the curve of absolute neutrophil count, absolute lymphocyte count, NLR and PLR for the diagnosis of acute exacerbation of bronchial asthma were 0.802, 0.784, 0.873 and 0.795, respectively (all P<0.01); the optimal cut-off value of NLR was 2.58 for the diagnosis with a sensitivity of 82.8% and a specificity of 81.1%. CONCLUSIONS Peripheral blood NLR and PLR are increased in asthmatic patients, and their variations offer assistance in the diagnosis and assessment of bronchial asthma.
Collapse
Affiliation(s)
- Guang Shi
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.E-mail:
| | | | | |
Collapse
|
17
|
Jordakieva G, Jensen-Jarolim E. The impact of allergen exposure and specific immunotherapy on circulating blood cells in allergic rhinitis. World Allergy Organ J 2018; 11:19. [PMID: 30128065 PMCID: PMC6092783 DOI: 10.1186/s40413-018-0197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated inflammatory disease of the nasal mucosa with well described local immune responses during allergen exposure. The frequent association of AR with general extra-nasal symptoms and other allergic conditions, such as conjunctivitis and asthma, however, support a more systemic disease impact. In addition to acute elevation of soluble inflammatory mediators in periphery blood, a growing number of studies have reported changes in circulating blood cells after specific nasal allergen challenge or environmental allergen exposure. These findings imply an involvement of specific blood leukocyte subsets, thrombocytes and recently, erythrocytes. This review summarizes the circulating blood cell dynamics associated with allergen exposure in AR subjects reported so far. Additionally, the impact of therapy, particularly allergen-specific immunotherapy (AIT), the only currently available causal treatment reducing AR-related symptoms, is further considered in this context.
Collapse
Affiliation(s)
- Galateja Jordakieva
- 1Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090 Austria
| | - Erika Jensen-Jarolim
- 2Department of Pathophysiology and Allergy Research, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria.,The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Veterinaerplatz 1, Vienna, 1210 Austria.,AllergyCare, Allergy Diagnosis and Study Center Vienna, Vienna, Austria
| |
Collapse
|
18
|
Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int 2018; 67:326-333. [PMID: 29242144 DOI: 10.1016/j.alit.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Platelets play an essential role in hemostasis to minimize blood loss due to traumatic injury. In addition, they contain various immune-associated molecules and contribute to immunological barrier formation at sites of vascular injury, thereby protecting against invading pathogens. Platelets are also crucially involved in development of allergic diseases, including bronchial asthma. Platelets in asthmatics are more activated than those in healthy individuals. By using a murine asthma model, platelets were shown to be actively involved in progression of the disease, including in airway eosinophilia and airway remodeling. In the asthmatic airway, pathological microvascular angiogenesis, a component of airway remodeling, is commonly observed, and the degree of abnormality is significantly associated with disease severity. Therefore, in order to repair the newly formed and structurally fragile blood vessels under inflammatory conditions, platelets may be continuously activated in asthmatics. Importantly, platelets constitutively express IL-33 protein, an alarmin cytokine that is essential for development of bronchial asthma. Meanwhile, the concept of development of allergic diseases has recently changed dramatically, and allergy researchers now share a belief in the centrality of epithelial barrier functions. In particular, IL-33 released from epithelial barrier tissue at sites of eczema can activate the antigen-non-specific innate immune system as an alarmin that is believed to be necessary for subsequent antigen-specific acquired immunological responses. From this perspective, we propose in this review a possible mechanism for how activated platelets act as an alarmin in development of bronchial asthma.
Collapse
Affiliation(s)
- Tomohiro Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
19
|
Shi G, Zhao JW, Sun XX, Ma JF, Wang P, He FC, Ming L. TIPE2 is negatively correlated with tissue factor and thrombospondin-1 expression in patients with bronchial asthma. Exp Ther Med 2018; 15:3449-3454. [PMID: 29545867 PMCID: PMC5840926 DOI: 10.3892/etm.2018.5870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between inflammatory processes and a hypercoagulant state may aggravate the severity of asthma and stimulate the airway remodeling of asthma. The aim of the current study was to evaluate the association between the negative inflammatory regulator tumor necrosis factor α induced protein-8 like-2 (TIPE2) and the coagulating substances tissue factor (TF) and thrombospondin-1 (TSP-1) in patients with bronchial asthma. Compared with healthy controls, TIPE2 expression was significantly downregulated, whereas TF expression was upregulated in the peripheral blood mononuclear cells (PBMCs) of patients with bronchial asthma. In addition, levels of TF and TSP-1 in the sera were up-regulated in patients with asthma compared with healthy controls. TIPE2 expression was negatively correlated with TF in the PBMCs and sera and was negatively correlated with TSP-1 levels in the sera of patients with bronchial asthma. The results of the current study indicated that anti-inflammatory TIPE2 levels are associated with levels of the coagulation substances TF and TSP-1. However, further studies are required to determine whether TIPE2 participates in the pathogenesis of asthma by interacting with the coagulation substances TF and TSP-1.
Collapse
Affiliation(s)
- Guang Shi
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Wei Zhao
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Xu Sun
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Fen Ma
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pan Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fu-Cheng He
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Correspondence to: Professor Liang Ming, Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 1E Jianshe Road, Zhengzhou, Henan 450052, P.R. China, E-mail:
| |
Collapse
|
20
|
Xia F, Deng C, Jiang Y, Qu Y, Deng J, Cai Z, Ding Y, Guo Z, Wang J. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy 2018; 14:450-464. [PMID: 29297752 DOI: 10.1080/15548627.2017.1421884] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a common airway inflammatory disease in which B cells play important roles through IgE production and antigen presentation. SNP (single nucleotide polymorphism) analysis showed that Atg (autophagy-related) allele mutations are involved in asthma. It has been demonstrated that macroautophagy/autophagy is essential for B cell survival, plasma cell differentiation and immunological memory maintenance. However, whether B cell autophagy participates in asthma pathogenesis remains to be investigated. In this report, we found that autophagy was enhanced in pulmonary B cells from asthma-prone mice. Autophagy deficiency in B cells led to attenuated immunopathological symptoms in asthma-prone mice. Further investigation showed that IL4 (interleukin 4), a key effector Th2 cytokine in allergic asthma, was critical for autophagy induction in B cells both in vivo and in vitro, which further sustained B cell survival and enhanced antigen presentation by B cells. Moreover, IL4-induced autophagy depended on JAK signaling via an MTOR-independent, PtdIns3K-dependent pathway. Together, our data indicate that B cell autophagy aggravates experimental asthma through multiple mechanisms.
Collapse
Affiliation(s)
- Fucan Xia
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| | - Changwen Deng
- b Department of Respiratory Medicine , Changhai Hospital , Second Military Medical University , Shanghai , China
| | - Yanyan Jiang
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Yulan Qu
- b Department of Respiratory Medicine , Changhai Hospital , Second Military Medical University , Shanghai , China
| | - Jiewen Deng
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Zhijian Cai
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| | - Yuanyuan Ding
- d National Key Laboratory of Medical Molecular Biology & Department of Immunology , Institute of Basic Medical Sciences , Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing , China
| | - Zhenhong Guo
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Jianli Wang
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
21
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Yan B, Chen F, Xu L, Wang Y, Wang X. Interleukin-28B dampens airway inflammation through up-regulation of natural killer cell-derived IFN-γ. Sci Rep 2017; 7:3556. [PMID: 28620197 PMCID: PMC5472588 DOI: 10.1038/s41598-017-03856-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Interleukin-28A (IL-28A) modulates CD11c+ dendritic cell (DC) function and promotes type 1T helper (Th1) differentiation, thus suppressing allergic airway diseases. However, the function of the IL-28A isoform IL-28B in these diseases remains largely unknown. In this study, we revealed a novel role of IL-28B in inducing type 1 immunity and protecting against ovalbumin (OVA)-induced allergic asthma in mice. IL-28B overexpression in wild-type mice promoted natural killer (NK) cell polarization in the lung, leading to the increased number of interferon (IFN)-γ-producing NK1 cells as well as Th1 differentiation. Importantly, IL-28B overexpression had no protective effect on OVA-induced asthma in IFN-γ-knockout (IFN-γ−/−) mice. These results demonstrate that IL-28B ameliorates experimental allergic asthma via enhancing NK cell polarization, which might be useful for prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Bailing Yan
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, China
| | - Feng Chen
- Dermatology Department, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Lijun Xu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yanshi Wang
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xuefu Wang
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,School of Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
23
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
24
|
Li YT, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep 2016; 6:25077. [PMID: 27117228 PMCID: PMC4846878 DOI: 10.1038/srep25077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Tumours constitute unique microenvironments where various blood cells and factors are exposed as a result of leaky vasculature. In the present study, we report that thrombin enrichment in B16F10 melanoma led to platelet aggregation, and this property was exploited to administer an anticancer cytokine, interferon-gamma induced protein 10 (IP10), through the formation of a platelet-IP10 complex. When intravenously infused, the complex reached platelet microaggregates in the tumour. The responses induced by the complex were solely immune-mediated, and tumour cytotoxicity was not observed. The complex suppressed the growth of mouse melanoma in vivo, while both platelets and the complex suppressed the accumulation of FoxP3+ regulatory T cells in the tumour. These results demonstrated that thrombin-dependent platelet aggregation in B16F10 tumours defines platelets as a vector to deliver anticancer cytokines and provide specific treatment benefits.
Collapse
Affiliation(s)
- Yu-Tung Li
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoyuki Nishikawa
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|