1
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Szandruk-Bender M, Nowak B, Merwid-Ląd A, Kucharska AZ, Krzystek-Korpacka M, Bednarz-Misa I, Wiatrak B, Szeląg A, Piórecki N, Sozański T. Cornus mas L. Extract Targets the Specific Molecules of the Th17/Treg Developmental Pathway in TNBS-Induced Experimental Colitis in Rats. Molecules 2023; 28:molecules28073034. [PMID: 37049797 PMCID: PMC10095994 DOI: 10.3390/molecules28073034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Given that one of the crucial events in the pathogenesis of inflammatory bowel disease is the loss of homeostasis between Th17 and Treg cells, targeting the specific molecules of the Th17/Treg axis developmental pathway is a promising strategy for inflammatory bowel disease prevention and treatment. The current study aimed to assess the impact of cornelian cherry (Cornus mas L.) extract, rich in iridoids and polyphenols known for their potential anti-inflammatory activity, at two doses (20 or 100 mg/kg) on the crucial factors for Th17/Treg cell differentiation in the course of experimental colitis and compare this action with that of sulfasalazine. This study was conducted on the biobank colon tissue samples collected during the previous original experiment, in which colitis in rats was induced by trinitrobenzenesulfonic acid (TNBS). The levels of IL-6, RORγt, total STAT3, p-STAT3, and Foxp3 were determined by ELISA. The expression of PIAS3 mRNA was quantified by qPCR. Cornelian cherry extract at a dose of 100 mg/kg counteracted the TNBS-induced elevation of IL-6, RORγt, and p-STAT3 levels and a decrease in Foxp3 level and PIAS3 mRNA expression, while given concomitantly with sulfasalazine was more effective than sulfasalazine alone in reversing the TNBS-induced changes in IL-6, RORγt, total STAT3, p-STAT3, Foxp3 levels, and PIAS3 mRNA expression. The beneficial effect of cornelian cherry extract on experimental colitis may be due to its immunomodulatory activity reflected by the influence on factors regulating the Th17/Treg axis.
Collapse
|
3
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
4
|
Hutchinson PE, Pringle JH. Consideration of possible effects of vitamin D on established cancer, with reference to malignant melanoma. Pigment Cell Melanoma Res 2022; 35:408-424. [PMID: 35445563 PMCID: PMC9322395 DOI: 10.1111/pcmr.13040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that Vitamin D has a beneficial, inhibitory effect on cancer development and subsequent progression, including melanoma (MM), and favourable MM outcome has been reported as directly related to vitamin D3 status, assessed by serum 25-hydroxyvitamin D3 (25[OH]D3 ) levels taken at diagnosis. It has been recommended that MM patients with deficient levels of 25(OH)D3 be given vitamin D3 . We examine possible beneficial or detrimental effects of treating established cancer with vitamin D3 . We consider the likely biological determinants of cancer outcome, the reported effects of vitamin D3 on these in both cancerous and non-cancerous settings, and how the effect of vitamin D3 might change depending on the integrity of tumour vitamin D receptor (VDR) signalling. We would argue that the effect of defective tumour VDR signalling could result in loss of suppression of growth, reduction of anti-tumour immunity, with potential antagonism of the elimination phase and enhancement of the escape phase of tumour immunoediting, possibly increased angiogenesis but continued suppression of inflammation. In animal models, having defective VDR signalling, vitamin D3 administration decreased survival and increased metastases. Comparable studies in man are lacking but in advanced disease, a likely marker of defective VDR signalling, studies have shown modest or no improvement in outcome with some evidence of worsening. Work is needed in assessing the integrity of tumour VDR signalling and the safety of vitamin D3 supplementation when defective.
Collapse
Affiliation(s)
| | - James H. Pringle
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| |
Collapse
|
5
|
Min Z, Li Y, Ying H. Blood T-helper 17 cells and interleukin-17A correlate with the elevated risk of postpartum depression and anxiety. J Clin Lab Anal 2022; 36:e24559. [PMID: 35708016 PMCID: PMC9279994 DOI: 10.1002/jcla.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background T‐helper (Th) cells regulate inflammation and immunity, which is implicated in psychological disorders. The current study aimed to explore the clinical role of blood Th1, Th2, and Th17 cells and their main secreted cytokines in postpartum depression (PPD) and postpartum anxiety (PPA). Methods A total of 226 postpartum women were included. At 6 weeks postpartum, Edinburgh Postnatal Depression Scale (EPDS) and State Trait Anxiety Inventory 6 item version (STAI6) scores were assessed; meanwhile, blood Th1, Th2, and Th17 cells were detected by flow cytometry, serum interferon‐gamma (IFN‐γ), interleukin‐4 (IL‐4), and IL‐17A were detected by enzyme‐linked immunosorbent assay. Results The incidence of PPD and PPA were 24.3% and 27.9%, respectively. Th17 cells and IL‐17A were positively correlated with EPDS score and STAI6 score (all p < 0.001). Besides, Th17 cells (p < 0.001) and IL‐17A (p = 0.002) were increased in PPD cases vs. non‐PPD cases, and they were also elevated in PPA cases vs. non‐PPA cases (both p < 0.05). However, Th1 cells, Th2 cells, IFN‐γ, and IL‐4 were not linked with EPDS score or STAI6 score (all p > 0.05); besides, they did not vary in PPD cases vs. non‐PPD cases or in PPA cases vs. non‐PPA cases (all p > 0.05). Multivariate logistic regression model analysis showed that Th17 cells were independently associated with an elevated risk of PPD (odds ratio [OR] = 1.600, p = 0.001) and PPA (OR = 1.371, p = 0.022). Conclusion Blood Th17 cells and IL‐17A are positively linked with the risk of PPD and PPA, indicating which may be involved in the development of PPD and PPA.
Collapse
Affiliation(s)
- Zhihong Min
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Li
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Cheng C, Zhang W, Zhang C, Ji P, Wu X, Sha Z, Chen X, Wang Y, Chen Y, Cheng H, Shi L. Hyperoside Ameliorates DSS-Induced Colitis through MKRN1-Mediated Regulation of PPARγ Signaling and Th17/Treg Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15240-15251. [PMID: 34878764 DOI: 10.1021/acs.jafc.1c06292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperoside (HYP), a naturally occurring flavonoid compound, exerts multiple biological functions including myocardial protection, antiredox, and anti-inflammatory activities. However, the role of HYP on inflammatory bowel disease (IBD) and the underlying mechanism need to be further established. Here, we show that HYP treatment profoundly alleviated dextran sulfate sodium-induced ulcerative colitis in mice, characterized by reduced pathological scores, preserved tissue integrity, suppressed colonic inflammation, and balanced Th17/Treg response. Mechanistically, HYP was shown to restrain the expression of the E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), which in turn promoted the ubiquitination and proteasomal degradation of peroxisome proliferator-activated receptor gamma (PPARγ), an essential regulator of Th17 and Treg differentiation. Consequently, HYP treatment enhanced PPARγ signaling and hence promoted Treg differentiation while suppressing Th17 cell development during colitis. Thus, our data indicate that HYP acts through the MKRN1/PPARγ axis to modulate the Th17/Treg axis and thereby confers protection against experimental colitis. The findings extend our understanding about HYP action and may provide a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
- The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wei Zhang
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Cong Zhang
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiaohui Wu
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Zhou Sha
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiang Chen
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Yongkang Wang
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Yugen Chen
- The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Haibo Cheng
- The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing 210023, China
| | - Liyun Shi
- Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310022, China
| |
Collapse
|
7
|
Chang Y, Zhai L, Peng J, Wu H, Bian Z, Xiao H. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother 2021; 141:111931. [PMID: 34328111 DOI: 10.1016/j.biopha.2021.111931] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.
Collapse
Affiliation(s)
- Yaoyao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Cui M, Dai W, Kong J, Chen H. Th17 Cells in Depression: Are They Crucial for the Antidepressant Effect of Ketamine? Front Pharmacol 2021; 12:649144. [PMID: 33935753 PMCID: PMC8082246 DOI: 10.3389/fphar.2021.649144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Major depressive disorder is associated with inflammation and immune processes. Depressive symptoms correlate with inflammatory markers and alterations in the immune system including cytokine levels and immune cell function. Th17 cells are a T cell subset which exerts proinflammatory effects. Th17 cell accumulation and Th17/Treg imbalances have been reported to be critical in the pathophysiology of major depressive disorder and depressive-like behaviors in animal models. Th17 cells are thought to interfere with glutamate signaling, dopamine production, and other immune processes. Ketamine is a newly characterized antidepressant medication which has proved to be effective in rapidly reducing depressive symptoms. However, the mechanisms behind these antidepressant effects have not been fully elucidated. Method: Literature about Th17 cells and their role in depression and the antidepressant effect of ketamine are reviewed, with the possible interaction networks discussed. Result: The immune-modulating role of Th17 cells may participate in the antidepressant effect of ketamine. Conclusion: As Th17 cells play multiple roles in depression, it is important to explore the mechanisms of action of ketamine on Th17 cells and Th17/Treg cell balance. This provides new perspectives for strengthening the antidepressant effect of ketamine while reducing its side effects and adverse reactions.
Collapse
Affiliation(s)
- Meiying Cui
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongzhi Chen
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
10
|
Huang Q, Wu H, Li M, Yang Y, Fu X. Prednisone improves pregnancy outcome in repeated implantation failure by enhance regulatory T cells bias. J Reprod Immunol 2020; 143:103245. [PMID: 33161280 DOI: 10.1016/j.jri.2020.103245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Repeated implantation failure (RIF) has been shown related to maternal immune imbalance. Many studies suggested that prednisone promoted the Th17/Treg balance shift to the direction of immune tolerance. Our study aimed to evaluate the role of prednisone in Th17/Treg balance and pregnancy outcome in RIF patients. STUDY DESIGN AND MAIN OUTCOME MEASURES Peripheral blood of healthy fertile controls and RIF patients were collected at the late proliferation phase. The population of Treg and Th17 cells, the expression of Foxp3 and RORC mRNA and the concentration of IL-17A, IL-23 and IL-10 were detected by flow cytometry, qRT-PCR and enzyme-linked immunosorbent assay. RIF patients were given oral prednisone 10 mg daily from the late proliferation phase of the cycle before FET. After one month of treatment, the above immune indicators were tested, and natural cycle frozen embryo transfer was performed. RESULTS The Treg cells proportion and IL-10 concentration in peripheral blood of RIF patients was lower than that of NF group, while the proportion of Th17 cells and concentration of proinflammatory cytokine were significantly higher. After prednisone treatment, the indicators related to immune tolerance increased significantly. Five out of 19 RIF patients were successful pregnancy after FET, in which, one had an early miscarriage and four live births. No pregnancy complications and fetal abnormalities were observed. CONCLUSIONS We report the beneficial effect of prednisone on RIF patients. The underlying mechanism may attribute to shift the Treg/Th17 immune balance to a Treg bias, and enhance embryo implantation, ultimately improve pregnancy outcomes.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Reproductive Center, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Huimei Wu
- Department of Reproductive Center, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yihua Yang
- Department of Reproductive Center, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| | - Xiaoqian Fu
- Department of Reproductive Center, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
12
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
13
|
Shi C, Zhang H, Wang X, Jin B, Jia Q, Li Y, Yang Y. Cinnamtannin D1 attenuates autoimmune arthritis by regulating the balance of Th17 and treg cells through inhibition of aryl hydrocarbon receptor expression. Pharmacol Res 2019; 151:104513. [PMID: 31706010 DOI: 10.1016/j.phrs.2019.104513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The suppression of the abnormal systemic immune response constitutes a primary strategy for treatment of rheumatoid arthritis (RA); toward this end, the identification of natural compounds with immunosuppressive activity represents a promising strategy for RA drug discovery. Cinnamtannin D1 (CTD-1), a polyphenolic compound isolated from Cinnamomum tamala, was previously reported to possess good immunosuppressive activity. However, the beneficial effect of CTD-1 on RA is currently unknown. The aim of this study was to evaluate the anti-arthritic effect of CTD-1 in collagen-induced arthritis (CIA) mice and clarify the underlying mechanisms. CTD-1 treatment significantly alleviated the severity of CIA mice, affording reduced clinical scores and paw swelling, along with reduced inflammatory cell infiltration and cartilage damage in the joints; in addition, the serum levels of IL-17, IL-6, and IL-1β were decreased whereas those of TGF-β and IL-10 were increased. CTD-1-treated mice exhibited lower frequency of Th17 cells and higher frequency of Treg cells compared to those in untreated mice, indicating that the balance of Th17/Treg cells may serve as the target for CTD-1. Consistent with this, in ex vivo assays, CTD-1 inhibited Th17 cell differentiation through the downregulation of phospho-STAT3/RORγt, whereas it promoted Treg differentiation by upregulating phospho-STAT5/Foxp3 in response to the stimulation of collagen type II. Moreover, in an in vitro naïve CD4+ T cell differentiation assay, CTD-1 directly inhibited Th17 cell differentiation and promoted Treg differentiation, suggesting that CTD-1 regulated the balance of Th17 and Treg cells to inhibit excessive immune response. Furthermore, the regulation effect of CTD-1 on Th17 and Treg cells was dependent on Ahr expression, as this effect was abolished when Ahr was knocked down and was impaired when Ahr was overexpressed. Together, our results indicated that CTD-1 treatment benefits CIA mice by regulating Th17 and Treg differentiation through the inhibition of AHR expression, and suggested a potential application of CTD-1 toward RA treatment.
Collapse
Affiliation(s)
- Chenchen Shi
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Haoyue Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Wang
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingliang Jin
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yifu Yang
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Jiang Y, Wang X, Dong C. Molecular mechanisms of T helper 17 cell differentiation: Emerging roles for transcription cofactors. Adv Immunol 2019; 144:121-153. [PMID: 31699215 DOI: 10.1016/bs.ai.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T helper 17 (Th17) cells, characterized by secretion of IL-17 and IL-17F, are a specialized CD4+ effector T cell lineage that not only facilitates host defense against pathogen infection and maintenance of mucosal barrier, but also potently induces tissue inflammation and autoimmune diseases. Since its discovery in 2005, the developmental program of Th17 cells has been characterized, which involves a number of key cytokines, transcription factors and multiple layers of epigenetic modifications. However, how these mechanisms integrate into the complex regulatory network in Th17 cells has not been well defined. Emerging evidences have revealed essential roles of cofactors in controlling chromosome accessibilities and activities of Th17-specific transcription factors. Moreover, cofactors also act as critical signaling integrators to coordinate multiple signaling pathways and transcriptional programs. Deficiency or dysregulation of these cofactors results in defects in Th17 responses and induction of associated autoimmune diseases. Our lab has recently reported several important cofactors in Th17 cells. Here we summarize our findings regarding this new scenario of developmental regulation of Th17 cells. These findings may benefit the development of innovative strategies to treat autoimmune diseases.
Collapse
Affiliation(s)
- Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China.
| |
Collapse
|
15
|
Zhang W, Cheng C, Han Q, Chen Y, Guo J, Wu Q, Zhu B, Shan J, Shi L. Flos Abelmoschus manihot extract attenuates DSS-induced colitis by regulating gut microbiota and Th17/Treg balance. Biomed Pharmacother 2019; 117:109162. [DOI: 10.1016/j.biopha.2019.109162] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
|
16
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Rajaei E, Haybar H, Mowla K, Zayeri ZD. Metformin one in a Million Efficient Medicines for Rheumatoid Arthritis Complications: Inflammation, Osteoblastogenesis, Cardiovascular Disease, Malignancies. Curr Rheumatol Rev 2019; 15:116-122. [PMID: 30019648 DOI: 10.2174/1573397114666180717145745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Rheumatoid arthritis is a widespread autoimmune disease and inflammation and bone destruction are two main issues in rheumatoid arthritis. OBJECTIVE To discussing metformin effects on rheumatoid arthritis complications. METHODS We conducted a narrative literature search including clinical trials, experimental studies on laboratory animals and cell lines. Our search covered Medline, PubMed and Google Scholar databases from 1999 until 2018. We used the terms" Metformin; Rheumatoid arthritis; Cardiovascular disease; Cancer; Osteoblastogenesis. DISCUSSION Inflammatory pro-cytokines such as Interlukin-6 play important roles in T. helper 17 cell lineage differentiation. Interlukin-6 and Tumor Necrosis Factor-α activate Janus kinase receptors signal through signaling transducer and activator of transcription signaling pathway which plays important role in inflammation, bone destruction and cancer in rheumatoid arthritis patients. Interlukin-6 and Tumor Necrosis Factor-α synergistically activate signaling transducer and activator of transcription and Nuclear Factor-kβ pathways and both cytokines increase the chance of cancer development in rheumatoid arthritis patients. Metformin is AMPK activators that can suppress mTOR, STAT3 and HIF-1 so AMPK activation plays important role in suppressing inflammation and osteoclastogenesis and decreasing cancer. CONCLUSION Metformin effect on AMPK and mTOR pathways gives the capability to change Treg/Th17 balance and decrease Th17 differentiation and inflammation, osteoclastogenesis and cancers in RA patients. Metformin can be useful in protecting bones especially in first stages of RA and it can decrease inflammation, CVD and cancer in RA patients so Metformin beside DAMARs can be useful in increasing RA patients' life quality with less harm and cost.
Collapse
Affiliation(s)
- Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Department of Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karim Mowla
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Gene expression profile of human T cells following a single stimulation of peripheral blood mononuclear cells with anti-CD3 antibodies. BMC Genomics 2019; 20:593. [PMID: 31324145 PMCID: PMC6642599 DOI: 10.1186/s12864-019-5967-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023] Open
Abstract
Background Anti-CD3 immunotherapy was initially approved for clinical use for renal transplantation rejection prevention. Subsequently, new generations of anti-CD3 antibodies have entered clinical trials for a broader spectrum of therapeutic applications, including cancer and autoimmune diseases. Despite their extensive use, little is known about the exact mechanism of these molecules, except that they are able to activate T cells, inducing an overall immunoregulatory and tolerogenic behavior. To better understand the effects of anti-CD3 antibodies on human T cells, PBMCs were stimulated, and then, we performed RNA-seq assays of enriched T cells to assess changes in their gene expression profiles. In this study, three different anti-CD3 antibodies were used for the stimulation: two recombinant antibody fragments, namely, a humanized and a chimeric FvFc molecule, and the prototype mouse mAb OKT3. Results Gene Ontology categories and individual immunoregulatory markers were compared, suggesting a similarity in modulated gene sets, mainly those for immunoregulatory and inflammatory terms. Upregulation of interleukin receptors, such as IL2RA, IL1R, IL12RB2, IL18R1, IL21R and IL23R, and of inhibitory molecules, such as FOXP3, CTLA4, TNFRSF18, LAG3 and PDCD1, were also observed, suggesting an inhibitory and exhausted phenotype. Conclusions We used a deep transcriptome sequencing method for comparing three anti-CD3 antibodies in terms of Gene Ontology enrichment and immunological marker expression. The present data showed that both recombinant antibodies induced a compatible expression profile, suggesting that they might be candidates for a closer evaluation with respect to their therapeutic value. Moreover, the proposed methodology is amenable to be more generally applied for molecular comparison of cell receptor dependent antibody therapy. Electronic supplementary material The online version of this article (10.1186/s12864-019-5967-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Penkert RR, Rowe HM, Surman SL, Sealy RE, Rosch J, Hurwitz JL. Influences of Vitamin A on Vaccine Immunogenicity and Efficacy. Front Immunol 2019; 10:1576. [PMID: 31379816 PMCID: PMC6651517 DOI: 10.3389/fimmu.2019.01576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Vitamin A deficiencies and insufficiencies are widespread in developing countries, and may be gaining prevalence in industrialized nations. To combat vitamin A deficiency (VAD), the World Health Organization (WHO) recommends high-dose vitamin A supplementation (VAS) in children 6-59 months of age in locations where VAD is endemic. This practice has significantly reduced all-cause death and diarrhea-related mortalities in children, and may have in some cases improved immune responses toward pediatric vaccines. However, VAS studies have yielded conflicting results, perhaps due to influences of baseline vitamin A levels on VAS efficacy, and due to cross-regulation between vitamin A and related nuclear hormones. Here we provide a brief review of previous pre-clinical and clinical data, showing how VAD and VAS affect immune responses, vaccines, and infectious diseases. We additionally present new results from a VAD mouse model. We found that when VAS was administered to VAD mice at the time of vaccination with a pneumococcal vaccine (Prevnar-13), pneumococcus (T4)-specific antibodies were significantly improved. Preliminary data further showed that after challenge with Streptococcus pneumoniae, all mice that had received VAS at the time of vaccination survived. This was a significant improvement compared to vaccination without VAS. Data encourage renewed attention to vitamin A levels, both in developed and developing countries, to assist interpretation of data from vaccine research and to improve the success of vaccine programs.
Collapse
Affiliation(s)
- Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hannah M. Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Ding JW, Luo CY, Wang XA, Zhou T, Zheng XX, Zhang ZQ, Yu B, Zhang J, Tong XH. Glycyrrhizin, a High-Mobility Group Box 1 Inhibitor, Improves Lipid Metabolism and Suppresses Vascular Inflammation in Apolipoprotein E Knockout Mice. J Vasc Res 2019; 55:365-377. [DOI: 10.1159/000495310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
|
21
|
He D. Mobile Information Retrieval. FabioCrestani, StefanoMizzaro, and IvanScagnetto. Cham, Switzerland: Springer, 2017. 110 pp. $54.99 (softcover). (ISBN 9783319607764). J Assoc Inf Sci Technol 2018. [DOI: 10.1002/asi.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daqing He
- School of Computing and Information; University of Pittsburgh, 135 North Bellefield Avenue; Pittsburgh PA, 15213
| |
Collapse
|
22
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
23
|
Kuijieling regulates the differentiation of Treg and Th17 cells to ameliorate experimental colitis in rats. Biomed Pharmacother 2018; 105:781-788. [PMID: 29909346 DOI: 10.1016/j.biopha.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells and T helper 17 (Th17) cells play crucial roles in ulcerative colitis (UC). Kuijieling (KJL) is an effective Chinese medicine formula for treating UC in clinic. Kuijieling has shown remedy effect on the imbalance between Treg and Th17 cells. This study aimed to further reveal the exact underlying mechanism of how Kuijieling regulates the differentiation of Treg and Th17 cells in the treatment of UC. METHODS Colitis was induced by trinitrobenzene sulfonic acid in rats and treated by KJL. Pathological injury was evaluated by HE staining and pathological score. Transforming growth factor-β1 (TGF-β1), interleukin(IL)-2, IL-6, IL-10, IL-17, IL-23 and IL-21 in plasma were assayed by ELISA. Forkhead box P3 (Foxp3), signal transducer and activator of transcription (STAT) 5 expressed in colon mucosa were measured by western blot. Immunohistochemistry was employed for quantifying retinoic acid-related orphan receptor γt (RORγt) and STAT3 in colon. RT-PCR was used to analyze the expression of IL-2, IL-17, IL-23, IL-21 mRNA in colon. RESULTS After the administration of KJL, pathological injury in colon mucosa was reduced and histological score was decreased, transforming growth factor-β1 (TGF-β1), interleukin(IL)-2, IL-10 in blood and Foxp3, STAT5, IL-2 in colon increased significantly, IL-6, IL-23, IL-17, IL-21 in blood and RORγt, STAT3, IL-23, IL-17, IL-21 in colon decreased. Our result showed that KJL regulates the related cytokines and transcription factors to promote Treg cells and suppress Th17 cells. CONCLUSION KJL restores the balance between Treg and Th17 cells through regulating the differentiation of them, therefore contributes to the treatment of UC.
Collapse
|
24
|
Sun D, Luo F, Xing JC, Zhang F, Xu JZ, Zhang ZH. 1,25(OH) 2 D 3 inhibited Th17 cells differentiation via regulating the NF-κB activity and expression of IL-17. Cell Prolif 2018; 51:e12461. [PMID: 29687949 DOI: 10.1111/cpr.12461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The role of vitamin D (VD) in innate and adaptive immune responses to tuberculosis is still unclear. Our research was aimed to uncover the effect of VD on Th17 cells and elucidate potential molecular mechanism. MATERIALS AND METHODS VDR-deficient and wild-type mice were used to obtain CD4 T cells. Th17 cells were induced and activated by Bacillus Calmette Guerin. Flow cytometry was used to analyse the apoptosis rate and degree of differentiation of Th17 cells in the treatment of 1,25(OH)2 D3 . The interaction between P65 and Rorc was determined by immunofluorescence assay, luciferase reporter assay, EMSA-Super-shelf assay and ChIP assay. Co-IP assay was carried out to test the interaction between VDR and NF-κB family proteins. qRT-PCR and Western blot were also performed to detect the levels of P65, RORγt and IL-17. RESULTS The Th17 cells differentiation was suppressed by 1,25(OH)2 D3 in vitro. We confirmed that Rorc was a downstream gene of the transcription factor P65. VDR interacts with P105/P50, P100/P52 and P65 NF-κB family proteins. 1,25(OH)2 D3 inhibited the expression of RORγt/IL-17 by suppressing p65 transcription factor translocating to nucleus. In vivo experiments, the expression of IL-17 and RANKL was suppressed by 1,25(OH)2 D3 by VD receptor. Moreover, 1,25(OH)2 D3 suppressed the inflammatory infiltrates and inhibited the expression of P65, RORγt and IL-17 in the spleen tissues of model mice. CONCLUSIONS Together, 1,25(OH)2 D3 suppressed the differentiation of Th17 cells via regulating the NF-κB activity.
Collapse
Affiliation(s)
- Dong Sun
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun-Chao Xing
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Zhong Xu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ze-Hua Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Klepsch V, Hermann-Kleiter N, Do-Dinh P, Jakic B, Offermann A, Efremova M, Sopper S, Rieder D, Krogsdam A, Gamerith G, Perner S, Tzankov A, Trajanoski Z, Wolf D, Baier G. Nuclear receptor NR2F6 inhibition potentiates responses to PD-L1/PD-1 cancer immune checkpoint blockade. Nat Commun 2018; 9:1538. [PMID: 29670099 PMCID: PMC5906604 DOI: 10.1038/s41467-018-04004-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Analyzing mouse tumor models in vivo, human T cells ex vivo, and human lung cancer samples, we provide direct evidence that NR2F6 acts as an immune checkpoint. Genetic ablation of Nr2f6, particularly in combination with established cancer immune checkpoint blockade, efficiently delays tumor progression and improves survival in experimental mouse models. The target genes deregulated in intratumoral T lymphocytes upon genetic ablation of Nr2f6 alone or together with PD-L1 blockade reveal multiple advantageous transcriptional alterations. Acute Nr2f6 silencing in both mouse and human T cells induces hyper-responsiveness that establishes a non-redundant T-cell-inhibitory function of NR2F6. NR2F6 protein expression in T-cell-infiltrating human NSCLC is upregulated in 54% of the cases (n = 303) and significantly correlates with PD-1 and CTLA-4 expression. Our data define NR2F6 as an intracellular immune checkpoint that suppresses adaptive anti-cancer immune responses and set the stage for clinical validation of targeting NR2F6 for next-generation immuno-oncological regimens. Immune checkpoints blockade (ICB) is a viable anti-cancer strategy. Here the authors show that nuclear receptor NR2F6 acts as an immune checkpoint in T cells and, using mouse models and human T cells, they show NR2F6 inhibition might improve current ICB therapy or work as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Victoria Klepsch
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Patricia Do-Dinh
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Anne Offermann
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, 23538, Leubeck, Germany
| | - Mirjana Efremova
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Sieghart Sopper
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Anne Krogsdam
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, 6030, Innsbruck, Austria
| | - Gabriele Gamerith
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, 23538, Leubeck, Germany
| | - Alexandar Tzankov
- Department of Pathology, University of Basel, University Hospital Basel, 4031, Basel, Switzerland
| | - Zlatko Trajanoski
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria
| | - Dominik Wolf
- Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, 6020, Innsbruck, Austria.,Medical Clinic III, Oncology, Hematology & Rheumatology, University Clinic Bonn, 53127, Bonn, Germany
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
26
|
Hosseini A, Dolati S, Hashemi V, Abdollahpour‐Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol 2018; 233:6561-6573. [DOI: 10.1002/jcp.26604] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Arezoo Hosseini
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student's Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Sanam Dolati
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student's Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Vida Hashemi
- Department of Basic ScienceFaculty of MedicineMaragheh University of Medical SciencesMaraghehIran
| | - Meghdad Abdollahpour‐Alitappeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Yousefi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
27
|
Counotte J, Drexhage HA, Wijkhuijs JM, Pot-Kolder R, Bergink V, Hoek HW, Veling W. Th17/T regulator cell balance and NK cell numbers in relation to psychosis liability and social stress reactivity. Brain Behav Immun 2018; 69:408-417. [PMID: 29289662 DOI: 10.1016/j.bbi.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/21/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Psychotic disorders are characterized by a deranged immune system, including altered number and function of Natural Killer (NK) and T cells. Psychotic disorders arise from an interaction between genetic vulnerability and exposure to environmental risk factors. Exposure to social adversity during early life is particularly relevant to psychosis risk and is thought to increase reactivity to subsequent minor daily social stressors. Virtual reality allows controlled experimental exposure to virtual social stressors. AIM To investigate the interplay between social adversity during early life, cell numbers of NK cells and T helper subsets and social stress reactivity in relation to psychosis liability. METHODS Circulating numbers of Th1, Th2, Th17, T regulator and NK cells were determined using flow cytometry in 80 participants with low psychosis liability (46 healthy controls and 34 siblings) and 53 participants with high psychosis liability (14 ultra-high risk (UHR) patients and 39 recent-onset psychosis patients), with and without the experience of childhood trauma. We examined if cell numbers predicted subjective stress when participants were exposed to social stressors (crowdedness, hostility and being part of an ethnic minority) in a virtual reality environment. RESULTS There were no significant group differences in Th1, Th2, Th17, T regulator and NK cell numbers between groups with a high or low liability for psychosis. However, in the high psychosis liability group, childhood trauma was associated with increased Th17 cell numbers (p = 0.028). Moreover, in the high psychosis liability group increased T regulator and decreased NK cell numbers predicted stress experience during exposure to virtual social stressors (p = 0.015 and p = 0.009 for T regulator and NK cells, respectively). CONCLUSION A deranged Th17/T regulator balance and a reduced NK cell number are associated intermediate biological factors in the relation childhood trauma, psychosis liability and social stress reactivity.
Collapse
Affiliation(s)
- J Counotte
- Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DH The Hague, The Netherlands.
| | - H A Drexhage
- Erasmus Medical Center Rotterdam, Department of Immunology, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - J M Wijkhuijs
- Health E-Solutions, Westplein 11, 3016 BM Rotterdam, The Netherlands
| | - R Pot-Kolder
- Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DH The Hague, The Netherlands; VU University, Department of Clinical Psychology, de Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - V Bergink
- Erasmus Medical Center Rotterdam, Department of Psychiatry, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - H W Hoek
- Parnassia Psychiatric Institute, Kiwistraat 43, 2552 DH The Hague, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Psychiatry, PO Box 30.001, 9700 RB Groningen, The Netherlands; Columbia University, Mailman School of Public Health, Department of Epidemiology, 722 West 168th Street, NY 10032, New York, NY, USA
| | - W Veling
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, PO Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
28
|
S. Rosenthal K. Immune monitoring of the body’s borders. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.3.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. J Allergy Clin Immunol 2018. [DOI: 10.1016/j.jaci.2017.04.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Fu XQ, Cai JY, Huang QY, Li DJ, Li N, Li MJ. Prednisone may induce immunologic tolerance by activating the functions of decidual immune cells in early pregnancy. Oncotarget 2017; 8:102191-102198. [PMID: 29254235 PMCID: PMC5731945 DOI: 10.18632/oncotarget.22188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/04/2017] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to investigate alterations in human first-trimester decidual immune cells (DICs) and relevant cytokines after treatment with prednisone. Decidual lymphocytes were treated with prednisone alone, cytokines alone or the combination of prednisone and cytokines. Levels of STAT3, STAT5, RORC and FOXP3 mRNA were assayed using quantitative real-time PCR, proportions of CD4+ T helper 17 (Th17) and CD4+ T regulatory (Treg) cells were measured using flow cytometry, and concentrations of interleukin (IL)-17A and IL-10 were determined using enzyme-linked immunosorbent assay. After treatment with prednisone alone, levels of STAT5 and FOXP3 mRNA were significantly higher than in untreated control cells (both P < 0.01), while levels of RORC mRNA were significantly lower than in controls (P < 0.05). Levels of STAT3 mRNA did not vary significantly with treatment. After treatment with prednisone alone, proportions of Th17/CD4+ cells and levels of IL-17A were significantly lower than in control cells, and proportions of Treg/CD4+ cells and levels of IL-10 significantly higher than in controls (all P < 0.01). Our results suggest that prednisone may improve pregnancy outcomes by restoring immunological homeostasis through up-regulation of STAT5 and FOXP3, induction of DIC differentiation into Treg cells, inhibition of DIC differentiation into Th17 cells, reduction of IL-17A secretion and induction of IL-10 secretion.
Collapse
Affiliation(s)
- Xiao-Qian Fu
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jun-Ying Cai
- Department of Reproductive Center, Maternal and Child Health Hospital and Obstetrics and Gynecology Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Qian-Yi Huang
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Dong-Ju Li
- Guangxi Medical University, Guangxi, China
| | - Ning Li
- Guangxi Medical University, Guangxi, China
| | - Mu-Jun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
32
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
33
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
34
|
Garziera M, Scarabel L, Toffoli G. Hypoxic Modulation of HLA-G Expression through the Metabolic Sensor HIF-1 in Human Cancer Cells. J Immunol Res 2017; 2017:4587520. [PMID: 28781970 PMCID: PMC5525073 DOI: 10.1155/2017/4587520] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022] Open
Abstract
The human leukocyte antigen-G (HLA-G) is considered an immune checkpoint molecule involved in tumor immune evasion. Hypoxia and the metabolic sensor hypoxia-inducible factor 1 (HIF-1) are hallmarks of metastasization, angiogenesis, and intense tumor metabolic activity. The purpose of this review was to examine original in vitro studies carried out in human cancer cell lines, which reported data about HLA-G expression and HIF-1 mediated-HLA-G expression in response to hypoxia. The impact of HLA-G genomic variability on the hypoxia responsive elements (HREs) specific for HIF-1 binding was also discussed. Under hypoxia, HLA-G-negative cell lines might transcribe HLA-G without translation of the protein while in contrast, HLA-G-positive cell lines, showed a reduced HLA-G transcriptional activity and protein level. HIF-1 modulation of HLA-G expression induced by hypoxia was demonstrated in different cell lines. HLA-G SNPs rs1632947 and rs41551813 located in distinct HREs demonstrated a prominent role of HIF-1 binding by DNA looping. Our research revealed a fine regulation of HLA-G in hypoxic conditions through HIF-1, depending on the cellular type and HLA-G genomic variability. Specifically, SNPs found in HREs should be considered in future investigations as markers with potential clinical value especially in metastatic malignancies.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, IRCCS, Via F. Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
35
|
Rodriguez Cetina Biefer H, Vasudevan A, Elkhal A. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. Int J Tryptophan Res 2017; 10:1178646917713491. [PMID: 28659716 PMCID: PMC5476425 DOI: 10.1177/1178646917713491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence underscores the interesting ability of tryptophan to regulate immune responses. However, the exact mechanisms of tryptophan's immune regulation remain to be determined. Tryptophan catabolism via the kynurenine pathway is known to play an important role in tryptophan's involvement in immune responses. Interestingly, quinolinic acid, which is a neurotoxic catabolite of the kynurenine pathway, is the major pathway for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). Recent studies have shown that NAD+, a natural coenzyme found in all living cells, regulates immune responses and creates homeostasis via a novel signaling pathway. More importantly, the immunoregulatory properties of NAD+ are strongly related to the overexpression of tryptophan hydroxylase 1 (Tph1). This review provides recent knowledge of tryptophan and NAD+ and their specific and intriguing roles in the immune system. Furthermore, it focuses on the mechanisms by which tryptophan regulates NAD+ synthesis as well as innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Shan K, Pang R, Zhao C, Liu X, Gao W, Zhang J, Zhao D, Wang Y, Qiu W. IL-17-triggered downregulation of miR-497 results in high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice. Cell Mol Immunol 2017; 14:cmi201712. [PMID: 28458392 PMCID: PMC5675954 DOI: 10.1038/cmi.2017.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin 17 (IL-17) is increasingly recognized as a key factor that contributes to the pathogenesis of multiple sclerosis (MS) and its experimental mouse autoimmune encephalomyelitis (EAE) model. However, the roles and regulatory mechanisms of IL-17-induced pro-inflammatory cytokine production in EAE mice remain largely unclear. In this study, the expression of IL-17, hypoxia inducible factor-1α (HIF-1α), IL-1β, IL-6 and microRNA-497 (miR-497), as well as their intrinsic associations, was investigated using EAE model mice and cultured astrocytes exposed to IL-17 in vitro. We observed markedly increased production of IL-17, HIF-1α, IL-1β and IL-6 in the brain tissues of EAE mice, while the expression and secretion of HIF-1α, IL-1β and IL-6 were also significantly increased when cultured primary astrocytes from mice were stimulated with IL-17. Meanwhile, the expression of miR-497 was downregulated both in vivo and in vitro. Subsequent in vitro experiments revealed that IL-17 induced the production of IL-1β and IL-6 in astrocytes through the upregulation of HIF-1α as a transcriptional factor, indicating that IL-17-mediated downregulation of miR-497 enhanced HIF-1α expression. Furthermore, astrocyte-specific knockdown of IL-17RA and HIF-1α or astrocyte-specific overexpression of miR-497 by infection with different lentiviral vectors containing an astrocyte-specific promotor markedly decreased IL-1β and IL-6 production in brain tissues and alleviated the pathological changes and score of EAE mice. Collectively, these findings indicate that decreased miR-497 expression is responsible for IL-17-triggered high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice.Cellular & Molecular Immunology advance online publication, 1 May 2017; doi:10.1038/cmi.2017.12.
Collapse
Affiliation(s)
- Kai Shan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rongrong Pang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaomei Liu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenxing Gao
- Basic Medical Science of Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
37
|
Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis 2017; 8:e2723. [PMID: 28358365 PMCID: PMC5386545 DOI: 10.1038/cddis.2017.150] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
The imbalance between Th17 and Treg cells substantially contributes to the intestinal immune disturbance and subsequent tissue injury in ulcerative colitis. The triterpenoid-rich fraction of Centella asiatica was able to ameliorate dextran sulfate sodium-induced colitis in mice. Here we explored its active ingredient and underlying mechanism with a focus on restoring the Th17/Treg balance. The four main triterpenoids occurring in C. asiatica were shown to attenuate colitis in mice by oral administration. The most effective ingredient madecassoside lost anti-colitis effect when applied topically in the colon, and madecassic acid was recognized to be the active form of madecassoside. Oral administration of madecassic acid decreased the percentage of Th17 cells and downregulated the expression of RORγt, IL-17A, IL-17F, IL-21 and IL-22 and increased the percentage of Treg cells and the expression of Foxp3 and IL-10 in the colons of mice with colitis, but it did not affect Th1 and Th2 cells. Under Th17-polarizing conditions, madecassic acid downregulated ACC1 expression and enhanced the shift of Th17 cells toward Treg cells, but it did not affect the differentiation of Treg cells under Treg-polarizing conditions. Both compound C and AMPK siRNA inhibited the madecassic acid-mediated downregulation of ACC1 expression and shift of Th17 cells to Treg cells under Th17-polarizing conditions. GW9662, T0070907 and PPARγ siRNA blocked the effect of madecassic acid on AMPK activation, ACC1 expression and shift of Th17 cells to Treg cells. Furthermore, madecassic acid was identified as a PPARγ agonist, as it promoted PPARγ transactivation. The correlation between activation of PPARγ and AMPK, downregulation of ACC1 expression, restoration of Th17/Treg balance and attenuation of colitis by madecassic acid was validated in mice with DSS-induced colitis. In conclusion, madecassic acid was the active form of madecassoside in ameliorating colitis by restoring the Th17/Treg balance via regulating the PPARγ/AMPK/ACC1 pathway.
Collapse
|
38
|
Cachem FCOF, Dias AS, Monteiro C, Castro JR, Fernandes G, Delphim L, Almeida AJ, Tavares F, Maciel AMA, Amendola-Pires MM, Brandão-Mello CE, Bento CAM. The proportion of different interleukin-17-producing T-cell subsets is associated with liver fibrosis in chronic hepatitis C. Immunology 2017; 151:167-176. [PMID: 28140446 DOI: 10.1111/imm.12720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Studies have suggested the pivotal role of T helper type 1 (Th1) -related cytokines on the outcome of hepatitis C virus (HCV) infection. Nevertheless, the role of different interleukin-17 (IL-17) -secreting T cells on chronic hepatitis C (CHC) is less clear. Here, the in vivo IL-1β, IL-6, and IL-17 levels were positively correlated with both alanine transaminase (ALT) levels and hepatic lesions. When compared with the control group, CHC patients showed a lower proportion of IL-17-secreting (CD4+ and CD8+ ) T cells capable of simultaneously producing IL-21. Moreover, the percentage of IL-10-secreting Th17 cells was also lower in CHC patients. Notably, advanced liver lesions were observed among those patients with lower percentage levels of IL-17-producing T cells positive for IL-21, interferon-γ (IFN-γ) and IL-10. In contrast, the severity of hepatic damage was associated with peripheral single IL-17+ T cells. The percentage of IL-17+ IL-21- IFN-γ+ (CD4+ and CD8+ ) T-cell phenotypes was positively associated with plasma CD14 levels. Finally, elevated levels of circulating CD14 were detected among CHC patients with extensive liver damage. In summary, although preliminary, our results suggest that a balance between different IL-17-producing T cells, associated with peripheral levels of CD14, may be a progress marker for liver disease in chronically HCV-infected patients.
Collapse
Affiliation(s)
- Fabio C O F Cachem
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - Aleida S Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - José Roberto Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adilson J Almeida
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Felipe Tavares
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M A Maciel
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Marcia M Amendola-Pires
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Carlos E Brandão-Mello
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Poletti S, de Wit H, Mazza E, Wijkhuijs AJM, Locatelli C, Aggio V, Colombo C, Benedetti F, Drexhage HA. Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls. Brain Behav Immun 2017; 61:317-325. [PMID: 28025071 DOI: 10.1016/j.bbi.2016.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022] Open
Abstract
UNLABELLED Abnormalities of T cell-mediated immune activation, in the absence of active somatic immune diseases, have consistently been reported in mood disorders. Apart from being important players in the regulation of cells of the immune system, T cells are essential for normal brain development. We here report studies on the relationship between circulating levels of T helper cells and structural and functional brain imaging in depressed bipolar patients. Since the CCL20-CCR6 axis is an important entry to the brain we differentiated the various T helper cell subpopulations on the basis of their chemokine receptor expression. METHODS FACS staining was performed for Th1, Th2, Th17, Th22 and T regulatory cells on frozen leukocytes of 25 consecutively admitted inpatients affected by a major depressive episode, without psychotic features, in the course of Bipolar Disorder I and 21 healthy controls. The frequency of the T helper populations was associated with DTI and fMRI data acquired on a Philips 3.0 Tesla scanner. Tract based spatial statistic was used to obtain measures of white matter integrity (fractional anisotropy, axial, radial and mean diffusivity) from a standard DTI sequence with 35 directions. Patients were also studied for fMRI through a moral valence decision task were subjects had to decide whether morally tuned stimuli were positive or negative. RESULTS The percentage of circulating Th17 (CCR6+CXCR3negCCR4+CCR10neg) cells correlated positively with higher fractional anisotropy in fiber tracts contributing to the functional integrity of the brain both in patients and healthy controls, while the frequency of circulating T regulatory (CD4+CD25+FOXP3+) cells correlated positively with higher radial and mean diffusivity in patients. The frequency of circulating T regulatory cells also correlated to lower neuronal responses to negative versus positive morally tuned stimuli in the right dorsolateral prefrontal cortex of patients. Th1 cells correlated negatively with white matter integrity in several tracts (healthy controls), while the cells showed a positive correlation to the levels of pro-inflammatory cytokines (patients). CONCLUSION This study shows a new putative role for Th17 cells. Th17 cells are not only playing a role in inducing autoimmunity and auto-inflammation, but might also play a counter intuitive anabolic role in the maintenance of the functional and structural integrity of the brain.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy.
| | - Harm de Wit
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Elena Mazza
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | | | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Veronica Aggio
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milano, Italy
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
40
|
Human CD39 hi regulatory T cells present stronger stability and function under inflammatory conditions. Cell Mol Immunol 2016; 14:521-528. [PMID: 27374793 PMCID: PMC5518817 DOI: 10.1038/cmi.2016.30] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases are characterized by an imbalance between regulatory T cells and effector T-cell subsets, such as Th1 and Th17 cells. Studies have confirmed that natural CD4+Foxp3+ Tregs were unstable and dysfunctional in the presence of pro-inflammatory cytokines. In the current study, human CD39hi Tregs and CD39low Tregs were sorted from Tregs in vitro after 7 days of expansion. The functions of both Treg subsets were investigated under inflammatory conditions in vitro and in vivo. In the presence of IL-1β and IL-6, cultured CD4+CD39hi Tregs maintained stable forkhead box protein 3 expression, whereas CD4+CD39low Tregs lost Foxp3 expression and trans-differentiated into Th1 or Th17 cells. Decreased IL-1βR and IL-6R expression on the CD39hi Tregs was the primary mechanism responsible for Treg stability. In addition, reduced activation of downstream molecules, such as STAT1 and STAT3, through the modulation of CpG demethylation played an important role. Finally, human CD4+CD39hi Tregs but not CD4+CD39low Tregs protected against xenograft versus host disease in model mice. These results strongly implied the physiological importance of CD39 expression and suggested that manipulation of CD39hi Tregs might represent a novel strategy for the treatment of autoimmune diseases.
Collapse
|
41
|
Balancing Inflammation: The Link between Th17 and Regulatory T Cells. Mediators Inflamm 2016; 2016:6309219. [PMID: 27413254 PMCID: PMC4930807 DOI: 10.1155/2016/6309219] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
CD4+ T cell compartments in mouse and man are composed of multiple distinct subsets each possessing unique phenotypic and functional characteristics. IL-17-producing CD4+ T cells (Th17 cells) represent a distinct subset of the CD4+ T cell lineage. Recent evidence suggests that Th17 cells carry out effector functions similar to cytotoxic CD8+ T cells and play an important role in the clearance of extracellular pathogens and fungi. Th17 cell differentiation and function are closely related to the development and function of regulatory T cells (TREG). The balance between these two cell populations is essential for immune homeostasis and dysregulation of this balance has been implicated in a variety of inflammatory conditions including autoimmunity, allograft rejection, and tumorigenesis. Emerging evidence reports a significant amount of plasticity between the Th17 and regulatory T cell compartments, and the mechanisms by which these cells communicate and influence each other are just beginning to be understood. In this review, we highlight recent findings detailing the mechanisms driving Th17 and TREG plasticity and discuss the biologic consequences of their unique relationship.
Collapse
|
42
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
43
|
How regulatory T cells sense and adapt to inflammation. Cell Mol Immunol 2015; 12:519-20. [PMID: 26277895 DOI: 10.1038/cmi.2015.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/29/2022] Open
|