1
|
Liu R, Wang H, Ding J. Epithelial-Mesenchymal Transition of Cancer Cells on Micropillar Arrays. ACS APPLIED BIO MATERIALS 2024; 7:3997-4006. [PMID: 38815185 DOI: 10.1021/acsabm.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-β1 (TGF-β1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-β1. Overall, the micropillar array exhibits a promoting effect on the EMT.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Lin J, Hou L, Zhao X, Zhong J, Lv Y, Jiang X, Ye B, Qiao Y. Switch of ELF3 and ATF4 transcriptional axis programs the amino acid insufficiency-linked epithelial-to-mesenchymal transition. Mol Ther 2024; 32:1956-1969. [PMID: 38627967 PMCID: PMC11184330 DOI: 10.1016/j.ymthe.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor β (TGF-β) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-β-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-β-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Collapse
Affiliation(s)
- Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Linjun Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jingli Zhong
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
3
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
4
|
Ricci C, Ambrosi F, Grillini A, Massari F, Fiorentino M, Colecchia M, Ulbright TM, Acosta AM. Analysis of GATA3 and FOXA2 expression suggests that downregulation of genes involved in the maintenance of a mature yolk sac tumor phenotype may underlie sarcomatoid transformation. Virchows Arch 2024; 484:709-713. [PMID: 38141134 DOI: 10.1007/s00428-023-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
In the post-chemotherapy setting, germ cell tumors of the testis (GCTT) that resemble non-specific sarcomas and co-express cytokeratins and glypican-3 (GPC3) are diagnosed as "sarcomatoid yolk sac tumor postpubertal-type (YSTpt)". The diagnosis of sarcomatoid YSTpt is clinically relevant but challenging due to its rarity, non-specific histology, and negative α-fetoprotein (AFP) staining. Recently, FOXA2 has emerged as a key-gene in the reprogramming of GCTT (activating the transcription of several genes, among which GATA3), and immunohistochemical studies showed that GATA3 and FOXA2 have a higher sensitivity for non-sarcomatoid YSTpt than GPC3 and AFP. We found that sarcomatoid YSTpt did not express FOXA2 [0: 14/14 (100%)] and showed focal expression of GATA3 [0: 12/14 (85.7%), 1 + : 2/14 (14.3%)], thus suggesting that these markers are not useful in diagnosing this tumor. Furthermore, we proposed a potential mechanism of sarcomatoid transformation in the post-chemotherapy setting of GCTT, mediated by the downregulation of FOXA2 and GATA3.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Francesca Ambrosi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | | | - Francesco Massari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | | | - Thomas M Ulbright
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andres Martin Acosta
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Xing M, Yao B, Xu J, Lu P, Li Q, Wu D, Chen B, Wei J, Su L, Zhao Q. NatD epigenetically activates FOXA2 expression to promote breast cancer progression by facilitating MMP14 expression. iScience 2024; 27:108840. [PMID: 38303717 PMCID: PMC10830889 DOI: 10.1016/j.isci.2024.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation of histone H4 (Nt-Ac-H4), but its role in breast cancer metastasis remains unknown. Here, we show that depletion of NatD directly represses the expression of FOXA2, and is accompanied by a significant reduction in Nt-Ac-H4 enrichment at the FOXA2 promoter. We show that NatD is commonly upregulated in primary breast cancer tissues, where its expression level correlates with FOXA2 expression, enhanced invasiveness, and poor clinical outcomes. Furthermore, we show that FOXA2 promotes the migration and invasion of breast cancer cells by activating MMP14 expression. MMP14 is also upregulated in breast cancer tissues, where its expression level correlates with FOXA2 expression and poor clinical prognosis. Our study shows that the NatD-FOXA2-MMP14 axis functions as a key signaling pathway to promote the migratory and invasive capabilities of breast cancer cells, suggesting that NatD is a critical epigenetic modulator of cell invasion during breast cancer progression.
Collapse
Affiliation(s)
- Mengying Xing
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jiaxuan Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Dongliang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Su
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210046, China
| |
Collapse
|
7
|
Hong L, Chen M, Huang M, Chen W, Abudukeremu X, She F, Chen Y. FOXA2 suppresses gallbladder carcinoma cell migration, invasion, and epithelial-mesenchymal transition by targeting SERPINB5. ENVIRONMENTAL TOXICOLOGY 2024; 39:708-722. [PMID: 37665156 DOI: 10.1002/tox.23953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.
Collapse
Affiliation(s)
- Lingju Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Yang D, Li Q, Lu P, Wu D, Li W, Meng X, Xing M, Shangguan W, Chen B, Yang J, Zhang Z, Wang Z, Huang DCS, Zhao Q. FOXA2 activates HIF2α expression to promote tumor progression and is regulated by the E3 ubiquitin ligase VHL in renal cell carcinoma. J Biol Chem 2024; 300:105535. [PMID: 38072043 PMCID: PMC10801253 DOI: 10.1016/j.jbc.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.
Collapse
Affiliation(s)
- Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongliang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xingjun Meng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengying Xing
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenbing Shangguan
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Urology and Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Urology and Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology and Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David C S Huang
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Haga Y, Sakamoto Y, Kajiya K, Kawai H, Oka M, Motoi N, Shirasawa M, Yotsukura M, Watanabe SI, Arai M, Zenkoh J, Shiraishi K, Seki M, Kanai A, Shiraishi Y, Yatabe Y, Matsubara D, Suzuki Y, Noguchi M, Kohno T, Suzuki A. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat Commun 2023; 14:8375. [PMID: 38102134 PMCID: PMC10724178 DOI: 10.1038/s41467-023-43732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.
Collapse
Affiliation(s)
- Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Keiko Kajiya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Ono Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Noriko Motoi
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-Adachi-gun, Saitama, 362-0806, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masaya Yotsukura
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Miyuki Arai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Junko Zenkoh
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Clinical Cancer Research Division, Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
10
|
Ricci C, Ambrosi F, Franceschini T, Giunchi F, Di Filippo G, Franchini E, Massari F, Mollica V, Tateo V, Bianchi FM, Colecchia M, Acosta AM, Fiorentino M. FoxA2 is a reliable marker for the diagnosis of yolk sac tumour postpubertal-type. Histopathology 2023; 83:465-476. [PMID: 37317674 DOI: 10.1111/his.14968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
AIMS Yolk sac tumour postpubertal-type (YSTpt) shows a wide range of histological patterns and is challenging to diagnose. Recently, forkhead box transcription factor A2 (FoxA2) emerged as a driver of YSTpt formation and a promising marker for diagnosing YSTpt. However, FoxA2 has not been tested in the different patterns of YSTpt. This study aimed to assess the staining pattern of FoxA2 in te different patterns of YSTpt and other germ cell tumours of the testis (GCTT), comparing it with glypican-3 (GPC3) and α-fetoprotein (AFP). METHODS AND RESULTS FOXA2, GPC3 and AFP immunohistochemistry was performed on 24 YSTpt (24 microcystic/reticular, 10 myxoid, two macrocystic, five glandular/alveolar, two endodermal sinus/perivascular, four solid, two polyembryoma/embryoid body and two polyvesicular vitelline) and 81 other GCTT. The percentage of positive cells (0, 1+, 2+, 3+) and the intensity (0, 1, 2, 3) were evaluated regardless of and within each YSTpt pattern. FoxA2 was positive in all YSTpt (24 of 24) and all but one (23 of 24) exhibited 2+/3+ stain, with higher intensity [median value (mv): 2.6] than AFP (1.8) and GPC3 (2.5). Both FoxA2 and GPC3 were positive in all microcystic/reticular (24 of 24), myxoid (10 of 10), macrocystic (two of two), endodermal sinus/perivascular (four of four) and polyembryoma/embryoid body (two of two) patterns. Nevertheless, only FoxA2 was positive in all glandular/alveolar (five of five), solid (four of four) and polyvesicular vitelline (two of two) patterns. The intensity of FoxA2 was higher than AFP and GPC3 in almost all YST patterns. In the other GCTT, FoxA2 was positive only in teratoma postpubertal-type (Tpt) [13 of 20 (65%)], with staining almost exclusively confined to the mature gastrointestinal/respiratory tract epithelium. CONCLUSIONS FoxA2 is a highly sensitive and specific biomarker that supports the diagnosis of YSTpt. FoxA2 is superior to GPC3 and AFP, especially in rare and difficult-to-diagnose histological patterns of YSTpt, but mature glands of Tpt could represent a potential diagnostic pitfall.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ambrosi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Francesco Massari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Veronica Mollica
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Tateo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Maurizio Colecchia
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andres Martin Acosta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelangelo Fiorentino
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Zhao K, Zheng M, Su Z, Ghosh S, Zhang C, Zhong W, Ho JWK, Jin G, Zhou Z. MOF-mediated acetylation of SIRT6 disrupts SIRT6-FOXA2 interaction and represses SIRT6 tumor-suppressive function by upregulating ZEB2 in NSCLC. Cell Rep 2023; 42:112939. [PMID: 37566546 DOI: 10.1016/j.celrep.2023.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Mammalian sirtuin 6 (SIRT6) regulates a spectrum of vital biological processes and has long been implicated in the progression of cancer. However, the mechanisms underlying the regulation of SIRT6 in tumorigenesis remain elusive. Here, we report that the tumor-suppressive function of SIRT6 in non-small cell lung cancer (NSCLC) is regulated by acetylation. Specifically, males absent on the first (MOF) acetylates SIRT6 at K128, K160, and K267, resulting in a decreased deacetylase activity of SIRT6 and attenuated SIRT6 tumor-suppressive function in NSCLC. Mechanistically, MOF-mediated SIRT6 acetylation hinders the interaction between SIRT6 and transcriptional factor FOXA2, which in turn leads to the transcriptional activation of ZEB2, thus promoting NSCLC progression. Collectively, these data indicate an acetylation-dependent mechanism that modulates SIRT6 tumor-suppressive function in NSCLC. Our findings suggest that the MOF-SIRT6-ZEB2 axis may represent a promising therapeutic target for the management of NSCLC.
Collapse
Affiliation(s)
- Kaiqiang Zhao
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Mingyue Zheng
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Zezhuo Su
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Shrestha Ghosh
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China.
| | - Zhongjun Zhou
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Reproductive Medical Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, P.R. China.
| |
Collapse
|
12
|
Zhang FW, Xie XW, Chen MH, Tong J, Chen QQ, Feng J, Chen FT, Liu WQ. Poly(A)-specific ribonuclease protein promotes the proliferation, invasion and migration of esophageal cancer cells. World J Gastroenterol 2023; 29:4783-4796. [PMID: 37664151 PMCID: PMC10473923 DOI: 10.3748/wjg.v29.i31.4783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease (PARN) gene in gastric cancer, head and neck squamous cell carcinoma, melanoma, cervical cancer and lung squamous cell carcinoma tissues was significantly higher than that in normal tissues and was associated with high stage and poor prognosis. The expression of the PARN gene in esophageal cancer (EC) tissue is also significantly higher than that in normal tissues, but the effect of PARN on the proliferation, migration and invasion of EC cells remains unclear. AIM To investigate the relationship between PARN and the proliferation, migration and invasion of EC cells. METHODS The EC tissues of 91 patients after EC surgery and 63 paired precancerous healthy tissues were collected. PARN mRNA levels were measured using a tissue microarray, and the PARN expression level was evaluated using immunohistochemistry to analyze the relationship between PARN expression and clinicopathologic features as well as the survival and prognosis of patients. In addition, the effects of PARN gene knockout on tumor cell proliferation, invasion and migration were studied by using shRNA during the in vitro culture of EC cell lines Eca-109 and TE-1, and the effects of the PARN gene on tumor growth in vivo were verified by a xenotransplantation nude mice model. RESULTS The expression of PARN in EC tissues was higher than that in adjacent normal tissues, and the level of PARN expression was significantly positively correlated with lymphatic metastasis. Patients with high PARN levels had poor overall survival. BIM, IGFBP-5 and p21 levels were significantly increased in the PARN knockout group, while the expression levels of the antiapoptotic proteins Survivin and sTNF-R1 were significantly decreased in the apoptotic antibody array data. In addition, the expression levels of Akt, p-Akt, PIK3CA and CCND1 in the downstream signaling pathway regulating EC progression were significantly decreased. The culture of EC cell lines confirmed that the apoptosis rate of EC cells was significantly increased, the growth and proliferation of tumor cells were significantly inhibited, and the invasion and migration ability of tumor cells were significantly decreased after PARN gene knockout. In vivo experiments of BALB/c nude mice transfected with Eca-109 cells expressing control shRNA (sh-NC) and PARN shRNA (sh-PARN) showed that the tumor volume and weight of nude mice treated with sh-PARN were significantly decreased compared with those of nude mice treated with sh-NC, indicating that PARN knockdown significantly inhibited tumor growth in vivo. CONCLUSION PARN has antiapoptotic effects on EC cells and promotes their proliferation, invasion and migration, which is associated with the development of EC and poor patient prognosis. PARN may become a potential target for the diagnosis, prognosis prediction and treatment of EC.
Collapse
Affiliation(s)
- Fu-Wei Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Wei Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Meng-Hua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jian Tong
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Qun-Qing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jing Feng
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Feng-Ti Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Wen-Qi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Xiong Y, Zhang Y, Liu N, Li Y, Liu H, Yang Q, Chen Y, Xia Z, Chen X, Wanggou S, Li X. Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma. J Transl Med 2023; 21:499. [PMID: 37491302 PMCID: PMC10369768 DOI: 10.1186/s12967-023-04331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Transcriptional programs are often dysregulated in cancers. A comprehensive investigation of potential regulons is critical to the understanding of tumorigeneses. We first constructed the regulatory networks from single-cell RNA sequencing data in human lung adenocarcinoma (LUAD). We next introduce LPRI (Lung Cancer Prognostic Regulon Index), a precision oncology framework to identify new biomarkers associated with prognosis by leveraging the single cell regulon atlas and bulk RNA sequencing or microarray datasets. We confirmed that LPRI could be a robust biomarker to guide prognosis stratification across lung adenocarcinoma cohorts. Finally, a multi-omics data analysis to characterize molecular alterations associated with LPRI was performed from The Cancer Genome Atlas (TCGA) dataset. Our study provides a comprehensive chart of regulons in LUAD. Additionally, LPRI will be used to help prognostic prediction and developing personalized treatment for future studies.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Na Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yueshuo Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Chen
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhizhi Xia
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xin Chen
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201600, China.
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Wu N, Zhou T, Carpino G, Baiocchi L, Kyritsi K, Kennedy L, Ceci L, Chen L, Wu C, Kundu D, Barupala N, Franchitto A, Onori P, Ekser B, Gaudio E, Francis H, Glaser S, Alpini G. Prolonged administration of a secretin receptor antagonist inhibits biliary senescence and liver fibrosis in Mdr2 -/- mice. Hepatology 2023; 77:1849-1865. [PMID: 36799446 DOI: 10.1097/hep.0000000000000310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-β1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-β1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS Modulating the SCT/SR axis may be critical for managing PSC.
Collapse
Affiliation(s)
- Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | | | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nipuni Barupala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Antonio Franchitto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University Sapienza of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Tomoshige K, Stuart WD, Fink-Baldauf IM, Ito M, Tsuchiya T, Nagayasu T, Yamatsuji T, Okada M, Fukazawa T, Guo M, Maeda Y. FOXA2 Cooperates with Mutant KRAS to Drive Invasive Mucinous Adenocarcinoma of the Lung. Cancer Res 2023; 83:1443-1458. [PMID: 37067057 PMCID: PMC10160002 DOI: 10.1158/0008-5472.can-22-2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 04/18/2023]
Abstract
The endoderm-lineage transcription factor FOXA2 has been shown to inhibit lung tumorigenesis in in vitro and xenograft studies using lung cancer cell lines. However, FOXA2 expression in primary lung tumors does not correlate with an improved patient survival rate, and the functional role of FOXA2 in primary lung tumors remains elusive. To understand the role of FOXA2 in primary lung tumors in vivo, here, we conditionally induced the expression of FOXA2 along with either of the two major lung cancer oncogenes, EGFRL858R or KRASG12D, in the lung epithelium of transgenic mice. Notably, FOXA2 suppressed autochthonous lung tumor development driven by EGFRL858R, whereas FOXA2 promoted tumor growth driven by KRASG12D. Importantly, FOXA2 expression along with KRASG12D produced invasive mucinous adenocarcinoma (IMA) of the lung, a fatal mucus-producing lung cancer comprising approximately 5% of human lung cancer cases. In the mouse model in vivo and human lung cancer cells in vitro, FOXA2 activated a gene regulatory network involved in the key mucous transcription factor SPDEF and upregulated MUC5AC, whose expression is critical for inducing IMA. Coexpression of FOXA2 with mutant KRAS synergistically induced MUC5AC expression compared with that induced by FOXA2 alone. ChIP-seq combined with CRISPR interference indicated that FOXA2 bound directly to the enhancer region of MUC5AC and induced the H3K27ac enhancer mark. Furthermore, FOXA2 was found to be highly expressed in primary tumors of human IMA. Collectively, this study reveals that FOXA2 is not only a biomarker but also a driver for IMA in the presence of a KRAS mutation. SIGNIFICANCE FOXA2 expression combined with mutant KRAS drives invasive mucinous adenocarcinoma of the lung by synergistically promoting a mucous transcriptional program, suggesting strategies for targeting this lung cancer type that lacks effective therapies.
Collapse
Affiliation(s)
- Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - William D. Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iris M. Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Yang L, Zhou M, Wang S, Yi X, Xiong G, Cheng J, Sai B, Zhang Q, Yang Z, Kuang Y, Zhu Y. Long Noncoding RNA SAMMSON Promotes Melanoma Progression by Inhibiting FOXA2 Expression. Stem Cells Int 2023; 2023:8934210. [PMID: 36798674 PMCID: PMC9928518 DOI: 10.1155/2023/8934210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 02/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in melanoma initiation and development, serving as potential therapeutic targets and prognostic markers for melanoma. lncRNA survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON) is upregulated in many types of human cancers. However, the functions of SAMMSON in melanoma have not been fully elucidated. This study is aimed at investigating the expression and functions of SAMMSON in melanoma development. Bioinformatics analysis was performed to determine the expression of SAMMSON and its correlation with the 10-year overall survival (OS) in melanoma patients. Cell proliferation, migration, invasion, and tumorigenesis were detected by MTT, colony formation, Transwell assays, and mouse xenograft model. The expression of cell cycle-related factors, epithelial-to-mesenchymal transition (EMT) makers, and matrix metalloproteinases (MMPs) was assessed by RT-qPCR and western blotting analysis. The results demonstrated that SAMMSON expression was upregulated in melanoma tissues and cells, and lower SAMMSON expression was correlated with longer 10-year OS. SAMMSON knockdown decreased the proliferation, migration, and invasion of melanoma cells by regulating the expression of proliferation-related genes, EMT factors, and MMPs, respectively. Additionally, Forkhead box protein A2 (FOXA2) was confirmed to be a target of SAMMSON, and the biological effects induced by FOXA2 overexpression were similar to those induced by SAMMSON silencing in melanoma cells. Further studies showed that SAMMSON downregulated FOXA2 expression in melanoma cells by modulating the EZH2/H3K27me3 axis. Taken together, our data indicate that SAMMSON plays an important role in melanoma progression and can be a valuable biomarker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Meiling Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Student Affairs, Guilin University of Technology Nanning Branch, Nanning, China
| | - Shulei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jing Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
FOXA2 and STAT5A regulate oncogenic activity of KIF5B-RET fusion. Am J Cancer Res 2023; 13:638-653. [PMID: 36895965 PMCID: PMC9989603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/19/2023] [Indexed: 03/11/2023] Open
Abstract
KIF5B-RET gene rearrangement occurs in ~1% of lung adenocarcinomas. Recently, targeted agents that inhibit RET phosphorylation have been evaluated in several clinical studies; however, little is known about the role of this gene fusion in driving lung cancer. Immunohistochemistry was used to evaluate the expression of the FOXA2 protein in tumor tissues of patients with lung adenocarcinoma. KIF5B-RET fusion cells proliferated in a cohesive form and grew tightly packed with variable-sized colonies. The expression of RET and its downstream signaling molecules, including p-BRAF, p-ERK, and p-AKT, increased. In KIF5B-RET fusion cells, the intracellular expression of p-ERK was higher in the cytoplasm than in the nucleus. Two transcription factors, STAT5A and FOXA2, exhibiting significantly different expressions at the mRNA level, were finally selected. p-STAT5A was highly expressed in the nucleus and cytoplasm, whereas the expression of the FOXA2 protein was lower; however, it was much higher in the nucleus than in the cytoplasm. Compared with the expression of FOXA2 in the RET rearrangement-wild NSCLC (45.0%), high expression (3+) were observed in most RET rearrangement NSCLCs (94.4%). Meanwhile, KIF5B-RET fusion cells began to increase belatedly from day 7 and only doubled on day 9 in 2D cell culture. However, tumors in mice injected with KIF5B-RET fusion cells began to rapidly increase from day 26. In cell cycle analyses, the KIF5B-RET fusion cells in G0/G1 were increased on day 4 (50.3 ± 2.6%) compared with the empty cells (39.3 ± 5.2%; P = 0.096). Cyclin D1 and E2 expressions were reduced, whereas CDK2 expression slightly increased. pRb and p21 expression was diminished compared with the empty cells, TGF-β1 mRNA was highly expressed, and the proteins were accumulated mostly in the nucleus. Twist mRNA and protein expression was increased, whereas Snail mRNA and protein expression was decreased. Particularly, in KIF5B-RET fusion cells treated with FOXA2 siRNA, the expression of TGF-β 1 mRNA was remarkably reduced but Twist1 and Snail mRNA were increased. Our data suggest that cell proliferation and invasiveness in KIF5B-RET fusion cells are regulated by the upregulation of STAT5A and FOXA2 through the continuous activation of multiple RET downstream signal cascades, including the ERK and AKT signaling pathways. We found that TGF-β1 mRNA, where significant increments were observed in KIF5B-RET fusion cells, is regulated at the transcriptional level by FOXA2.
Collapse
|
18
|
Czerny CC, Borschel A, Cai M, Otto M, Hoyer-Fender S. FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep 2022; 12:21468. [PMID: 36509813 PMCID: PMC9744847 DOI: 10.1038/s41598-022-25966-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are sensory organelles essential for embryonic and postnatal development, and tissue homeostasis in adulthood. They are generated in a cell cycle-dependent manner and found on most cells of the body. Although cilia formation is intensively investigated virtually nothing is known about the transcriptional regulation of primary ciliation. We used here Odf2/Cenexin, encoding a protein of the mother centriole and the basal body that is mandatory for primary cilia formation, as the target gene for the identification of transcriptional activators. We identified a consensus binding site for Fox transcription factors (TFs) in its promoter region and focused here on the Fox family. We found transcriptional activation of Odf2 neither by FOXO TFs nor by the core TF for multiciliation, FOXJ1. However, we identified FOXA1 as a transcriptional activator of Odf2 by reporter gene assays and qRT-PCR, and showed by qWB that Foxa1 knockdown caused a decrease in ODF2 and CP110 proteins. We verified the binding sequence of FOXA1 in the Odf2 promoter by ChIP. Finally, we demonstrated that knockdown of FOXA1 affected primary cilia formation. We, thus, showed for the first time, that FOXA1 regulates primary ciliation by transcriptional activation of ciliary genes.
Collapse
Affiliation(s)
- Christian Carl Czerny
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anett Borschel
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Mingfang Cai
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Madeline Otto
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany ,grid.424957.90000 0004 0624 9165Present Address: Thermo Fisher Scientific GENEART, Regensburg, Germany
| | - Sigrid Hoyer-Fender
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| |
Collapse
|
19
|
Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers (Basel) 2022; 14:5354. [PMID: 36358773 PMCID: PMC9658772 DOI: 10.3390/cancers14215354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/28/2023] Open
Abstract
Endometrial (EC) and cervical (CC) cancers are the most prevalent malignancies of the female reproductive system. There is a global trend towards increasing incidence and mortality, with a decreasing age trend. E3 ligases label substrates with ubiquitin to regulate their activity and stability and are involved in various cellular functions. Studies have confirmed abnormal expression or mutations of E3 ligases in EC and CC, indicating their vital roles in the occurrence and progression of EC and CC. This paper provides an overview of the E3 ligases implicated in EC and CC and discusses their underlying mechanism. In addition, this review provides research advances in the target of ubiquitination processes in EC and CC.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Vadhan A, Hou MF, Vijayaraghavan P, Wu YC, Hu SCS, Wang YM, Cheng TL, Wang YY, Yuan SSF. CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2. Biomedicines 2022; 10:2488. [PMID: 36289750 PMCID: PMC9599046 DOI: 10.3390/biomedicines10102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2 in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover, the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2.
Collapse
Affiliation(s)
- Anupama Vadhan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Priya Vijayaraghavan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shyng-Shiou F. Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Sirkisoon SR, Wong GL, Aguayo NR, Doheny DL, Zhu D, Regua AT, Arrigo A, Manore SG, Wagner C, Thomas A, Singh R, Xing F, Jin G, Watabe K, Lo HW. Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2→CNTF axis to promote progression of brain metastases. Cancer Lett 2022; 540:215726. [PMID: 35589002 PMCID: PMC9387054 DOI: 10.1016/j.canlet.2022.215726] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023]
Abstract
Mechanisms underlying breast cancer brain metastasis (BCBM) are still unclear. In this study, we observed that extracellular vesicles (EVs) secreted from breast cancer cells with increased expression of tGLI1, a BCBM-promoting transcription factor, strongly activated astrocytes. EV-derived microRNA/miRNA microarray revealed tGLI1-positive breast cancer cells highly secreted miR-1290 and miR-1246 encapsulated in EVs. Genetic knockin/knockout studies established a direct link between tGLI1 and both miRNAs. Datamining and analysis of patient samples revealed that BCBM patients had more circulating EV-miRs-1290/1246 than those without metastasis. Ectopic expression of miR-1290 or miR-1246 strongly activated astrocytes whereas their inhibitors abrogated the effect. Conditioned media from miR-1290- or miR-1246-overexpressing astrocytes promoted mammospheres. Furthermore, miRs-1290/1246 suppressed expression of FOXA2 transcription repressor, leading to CNTF cytokine secretion and subsequent activation of astrocytes. Finally, we conducted a mouse study to demonstrate that astrocytes overexpressing miR-1290, but not miR-1246, enhanced intracranial colonization and growth of breast cancer cells. Collectively, our findings demonstrate, for the first time, that breast cancer EV-derived miR-1290 and miR-1246 activate astrocytes in the brain metastatic microenvironment and that EV-derived miR-1290 promotes progression of brain metastases through the novel EV-miR-1290→FOXA2→CNTF signaling axis.
Collapse
Affiliation(s)
- Sherona R Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Noah R Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Calvin Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
22
|
Levati L, Bassi C, Mastroeni S, Lupini L, Antonini Cappellini GC, Bonmassar L, Alvino E, Caporali S, Lacal PM, Narducci MG, Molineris I, De Galitiis F, Negrini M, Russo G, D’Atri S. Circulating miR-1246 and miR-485-3p as Promising Biomarkers of Clinical Response and Outcome in Melanoma Patients Treated with Targeted Therapy. Cancers (Basel) 2022; 14:cancers14153706. [PMID: 35954369 PMCID: PMC9367338 DOI: 10.3390/cancers14153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR . Receiver Operating Characteristics (ROC), Kaplan–Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Cristian Bassi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Laura Lupini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Maria Grazia Narducci
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
- Correspondence:
| |
Collapse
|
23
|
Chen Z, Xiao Q, Shen Y, Xue C. FOXA2 promotes esophageal cancer migration and metastasis by activating CXCR4 expression. Biochem Biophys Res Commun 2022; 625:16-22. [DOI: 10.1016/j.bbrc.2022.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
|
24
|
FOXA1, FOXA2, SOX10 and GAS2 Gene Expression in Oral Squamous Cell Carcinoma and Their Relationship with Clinicopathological Indices. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: The use of molecular methods in cancer diagnosis has led to a better prognosis. One of the important gene families in the carcinogenic pathways of various cancers is the forkhead box (FOX) family genes. Moreover, developmental transcription factors and proapoptotic proteins play critical roles in cell function and carcinogenesis. Objectives: The current study aimed to evaluate the expression of A1 FOXA1, FOXA2, SOX10, and growth arrest specific 2 (GAS2) genes in oral squamous cell carcinoma (OSCC) tumors due to biomarker discovery and early diagnosis of cancer. Methods: To evaluate the expression of FOXA1, FOXA2, SOX10, and GAS2 genes, 30 OSCC samples and 30 normal specimens were obtained from Imam Khomeini Hospital Cancer Institute. RNA extraction and cDNA synthesis were done by relevant kits. After a specific primer design for FOXA1, FOXA2, SOX10, and GAS2 genes, real-time PCR was done to evaluate the genes’ expression for molecular biomarker discovery and validation. ANOVA and independent t-test were used to analyze the data. Results: Significant differences were observed in the expression of the studied genes in tumor and control tissues (P < 0.001). The results showed that FOXA1, GAS2, and SOX10 expressions in tumor and normal cells have significant differences (P < 0.001). Regardless of FOXA1, FOXA2 and SOX10, there was a significant difference in the expression of GAS2 genes in term patients’ age (P < 0.05) and overexpressed in patients over 55 years. SOX10 gene is upregulated in grade II OSCC tumors but there is no significant difference in expression of FOXA1, FOXA2, and GAS2 in different stages and grades. The ROC curve analysis, FOXA1, and FOXA2 showed AUC = 0.66 and AUC = 0.57 respectively. Meanwhile, SOX10 and GAS2 showed AUC = 0.9 and AUC = 1 respectively. Conclusions: In general, the expression of FOXA1, GAS2, and SOX10 genes in cancer and control tissues were different, and therefore the role of these genes in OSCC is confirmed. Also, in the present study, the biomarker potential of SOX10 and GAS2 genes for OSCC diagnosis was demonstrated. In the current study, the important role of the studied genes in OSCC diagnosis was shown. However, further studies are needed to confirm this.
Collapse
|
25
|
Sahoo SS, Ramanand SG, Gao Y, Abbas A, Kumar A, Cuevas IC, Li HD, Aguilar M, Xing C, Mani RS, Castrillon DH. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity. J Clin Invest 2022; 132:157574. [PMID: 35703180 PMCID: PMC9197528 DOI: 10.1172/jci157574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development.,Department of Bioinformatics.,Department of Population and Data Sciences
| | - Ram S Mani
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Diego H Castrillon
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Grishin D, Gusev A. Allelic imbalance of chromatin accessibility in cancer identifies candidate causal risk variants and their mechanisms. Nat Genet 2022; 54:837-849. [PMID: 35697866 PMCID: PMC9886437 DOI: 10.1038/s41588-022-01075-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
While many germline cancer risk variants have been identified through genome-wide association studies (GWAS), the mechanisms by which these variants operate remain largely unknown. Here we used 406 cancer ATAC-Seq samples across 23 cancer types to identify 7,262 germline allele-specific accessibility QTLs (as-aQTLs). Cancer as-aQTLs had stronger enrichment for cancer risk heritability (up to 145 fold) than any other functional annotation across seven cancer GWAS. Most cancer as-aQTLs directly altered transcription factor (TF) motifs and exhibited differential TF binding and gene expression in functional screens. To connect as-aQTLs to putative risk mechanisms, we introduced the regulome-wide associations study (RWAS). RWAS identified genetically associated accessible peaks at >70% of known breast and prostate loci and discovered new risk loci in all examined cancer types. Integrating as-aQTL discovery, motif analysis and RWAS identified candidate causal regulatory elements and their probable upstream regulators. Our work establishes cancer as-aQTLs and RWAS analysis as powerful tools to study the genetic architecture of cancer risk.
Collapse
Affiliation(s)
- Dennis Grishin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA. .,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Ueshima S, Fang J. Histone H3K9 methyltransferase SETDB1 augments invadopodia formation to promote tumor metastasis. Oncogene 2022; 41:3370-3380. [PMID: 35546351 PMCID: PMC9801494 DOI: 10.1038/s41388-022-02345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of leading causes of cancer-related mortality worldwide, which harbors various accumulated genetic and epigenetic abnormalities. Histone methyltransferase SETDB1 is a pivotal epigenetic regulator whose focal amplification and upregulation are commonly detected in NSCLC. However, molecular mechanisms underlying the pro-oncogenic function of SETDB1 remain poorly characterized. Here, we demonstrate that SETDB1 augments the migration and invasion capabilities of NSCLC cells by reinforcing invadopodia formation and mediated ECM degradation. At the molecular level, SETDB1 suppresses the expression of FOXA2, a crucial tumor and metastasis suppressor via coordinated epigenetic mechanisms - SETDB1 not only catalyzes histone H3K9 methylation on FOXA2 genomic locus, but also recruits DNMT3A to regulate DNA methylation on CpG island. Consequently, depletion of Setdb1 in murine lung adenocarcinoma cells completely abolished their full and spontaneous metastatic capabilities in mouse xenograft models. These findings together establish the pro-metastasis activity of SETDB1 in NSCLC and elucidate the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Shuhei Ueshima
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jia Fang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
28
|
Shen PC, Wang YF, Chang HC, Huang WY, Lo CH, Su YF, Yang JF, Lin CS, Dai YH. Developing a novel DNA methylation risk score for survival and identification of prognostic gene mutations in endometrial cancer: a study based on TCGA data. Jpn J Clin Oncol 2022; 52:992-1000. [DOI: 10.1093/jjco/hyac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Few studies have focused on DNA methylation in endometrial cancer. The aim of our study is identify its role in endometrial cancer prognosis.
Methods
A publicly available dataset was retrieved from The Cancer Genome Atlas. For validation of expression alteration due to methylation, RNA sequencing data were obtained from other independent cohorts. MethSurv was used to search for candidate CpG probes, which were then filtered by least absolute shrinkage and selection operator Cox regression and multivariate Cox regression analyses to identify final set of CpG probes for overall survival. A methylation-based risk model was developed and receiver operating characteristic analysis with area under curve was used for evaluation. Patients were divided into high- and low-risk groups using an optimal cut-off point. Comprehensive bioinformatic analyses were conducted to identify hub genes, key transcription factors, and enriched cancer-related pathways. Kaplan–Meier curve was used for survival analysis.
Results
A 5-CpG signature score was established. Its predictive value for 5-year overall survival was high, with area under curve of 0.828, 0.835 and 0.816 for the training, testing and entire cohorts. cg27487839 and cg12885678 had strong correlation with their gene expression, XKR6 and PTPRN2, and lower PTPRN2 expression was associated with poorer survival in both The Cancer Genome Atlas and the validation datasets. Low-risk group was associated with significantly better survival. Low-risk group harboured more mutations in hub genes and key transcription factors, and mutations in SP1 and MECP2 represented favourable outcome.
Conclusion
We developed a methylation-based prognostic stratification system for endometrial cancer. Low-risk group was associated with better survival and harboured more mutations in the key regulatory genes.
Collapse
Affiliation(s)
- Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Fu Wang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Hao-Chih Chang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Cheng-Hsiang Lo
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yu-Fu Su
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jen-Fu Yang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| |
Collapse
|
29
|
Zhang W, Liu C, Li J, Lu Y, Li H, Zhuang J, Ren X, Wang M, Sun C. Tanshinone IIA: New Perspective on the Anti-Tumor Mechanism of A Traditional Natural Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:209-239. [PMID: 34983327 DOI: 10.1142/s0192415x22500070] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The search for natural and efficacious antineoplastic drugs, with minimal toxicity and side effects, is an important part of antitumor drug research and development. Tanshinone IIA is the most evaluated lipophilic active component of Salvia miltiorrhiza. Tanshinone IIA is a path-breaking traditional drug applied in cardiovascular treatment. It has also been found that tanshinone IIA plays an important role in the digestive, respiratory and circulatory systems, as well as in other tumor diseases. Tanshinone IIA significantly inhibits the proliferation of several types of tumors, blocks the cell cycle, induces apoptosis and autophagic death, in addition to inhibiting cell migration and invasion. Among these, the regulation of tumor-cell apoptosis signaling pathways is the key breakthrough point in several modes of antitumor therapy. The PI3K/AKT/MTOR signaling pathway and the JNK pathway are the key pathways for tanshinone IIA to induce tumor cell apoptosis. In addition to glycolysis, reactive oxygen species and signal transduction all play an active role with the participation of tanshinone IIA. Endogenous apoptosis is considered the main mechanism of tumor apoptosis induced by tanshinone IIA. Multiple pathways and targets play a role in the process of endogenous apoptosis. Tanshinone IIA can protect chemotherapy drugs, which is mainly reflected in the protection of the side effects of chemotherapy drugs, such as neurotoxicity and inhibition of the hematopoietic system. Tanshinone IIA also has a certain regulatory effect on tumor angiogenesis, which is mainly manifested in the control of hypoxia. Our findings indicated that tanshinone IIA is an effective treatment agent in the cardiovascular field and plays a significant role in antitumor therapeutics. This paper reviews the pharmacological potential and inhibitory effect of tanshinone IIA on cancer. It is greatly anticipated that tanshinone IIA will be employed as an adjuvant in the treatment of various cancers.
Collapse
Affiliation(s)
- Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China.,School of Traditional Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P. R. China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Yiping Lu
- Integrated Traditional Chinese and Western Medicine Center, Department of Medicine, Qingdao University, Qingdao Shandong 266000, P. R. China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Mengmeng Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, P. R. China
| |
Collapse
|
30
|
Yao J, Zhang Y, Li M, Sun Z, Liu T, Zhao M, Li Z. Single-Cell RNA-Seq Reveals the Promoting Role of Ferroptosis Tendency During Lung Adenocarcinoma EMT Progression. Front Cell Dev Biol 2022; 9:822315. [PMID: 35127731 PMCID: PMC8810644 DOI: 10.3389/fcell.2021.822315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/31/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and ferroptosis are two important processes in biology. In tumor cells, they are intimately linked. We used single-cell RNA sequencing to investigate the regulatory connection between EMT and ferroptosis tendency in LUAD epithelial cells. We used Seurat to construct the expression matrix using the GEO dataset GSE131907 and extract epithelial cells. We found a positive correlation between the trends of EMT and ferroptosis tendency. Then we used SCENIC to analyze differentially activated transcription factors and constructed a molecular regulatory directed network by causal inference. Some ferroptosis markers (GPX4, SCP2, CAV1) were found to have strong regulatory effects on EMT. Cell communication networks were constructed by iTALK and implied that Ferro_High_EMT_High cells have a higher expression of SDC1, SDC4, and activation of LGALS9-HARVCR2 pathways. By deconvolution of bulk sequencing, the results of CIBERSORTx showed that the co-occurrence of ferroptosis tendency and EMT may lead to tumor metastasis and non-response to immunotherapy. Our findings showed there is a strong correlation between ferroptosis tendency and EMT. Ferroptosis may have a promotive effect on EMT. High propensities of ferroptosis and EMT may lead to poor prognosis and non-response to immunotherapy.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yuchong Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Mengling Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Zuyu Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Liu, ; Mingfang Zhao, ; Zhi Li,
| |
Collapse
|
31
|
Giannos P, Kechagias KS, Gal A. Identification of Prognostic Gene Biomarkers in Non-Small Cell Lung Cancer Progression by Integrated Bioinformatics Analysis. BIOLOGY 2021; 10:1200. [PMID: 34827193 PMCID: PMC8615219 DOI: 10.3390/biology10111200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
The progression of non-small cell lung cancer (NSCLC) is linked to epithelial-mesenchymal transition (EMT), a biologic process that enables tumor cells to acquire a migratory phenotype and resistance to chemo- and immunotherapies. Discovery of novel biomarkers in NSCLC progression is essential for improved prognosis and pharmacological interventions. In the current study, we performed an integrated bioinformatics analysis on gene expression datasets of TGF-β-induced EMT in NSCLC cells to identify novel gene biomarkers and elucidate their regulation in NSCLC progression. The gene expression datasets were extracted from the NCBI Gene Expression Omnibus repository, and differentially expressed genes (DEGs) between TGF-β-treated and untreated NSCLC cells were retrieved. A protein-protein interaction network was constructed and hub genes were identified. Functional and pathway enrichment analyses were conducted on module DEGs, and a correlation between the expression levels of module genes and survival of NSCLC patients was evaluated. Prediction of interactions of the biomarker genes with transcription factors and miRNAs was also carried out. We described four protein clusters in which DEGs were associated with ubiquitination (Module 1), regulation of cell death and cell adhesions (Module 2), oxidation-reduction reactions of aerobic respiration (Module 3) and mitochondrial translation (Module 4). From the module genes, we identified ten prognostic gene biomarkers in NSCLC. Low expression levels of KCTD6, KBTBD7, LMO7, SPSB2, RNF19A, FOXA2, DHTKD1, CDH1 and PDHB and high expression level of KLHL25 were associated with reduced overall survival of NSCLC patients. Most of these biomarker genes were involved in protein ubiquitination. The regulatory network of the gene biomarkers revealed their interaction with tumor suppressor miRNAs and transcription factors involved in the mechanisms of cancer progression. This ten-gene prognostic signature can be useful to improve risk prediction and therapeutic strategies in NSCLC. Our analysis also highlights the importance of deregulation of ubiquitination in EMT-associated NSCLC progression.
Collapse
Affiliation(s)
- Panagiotis Giannos
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Konstantinos S. Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
32
|
FoXA2 promotes esophageal squamous cell carcinoma progression by ZEB2 activation. World J Surg Oncol 2021; 19:286. [PMID: 34551777 PMCID: PMC8456667 DOI: 10.1186/s12957-021-02358-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background It has been reported that Forkhead transcription family member (FOXA2) regulates esophageal squamous cell carcinoma (ESCC) progression. However, the specific mechanism, by which FOXA2 promotes ESCC malignant progression, remains unclear. Materials and methods QRT-PCR and western blotting were applied to measure FOXA2 expression in ESCC tissues, while CCK-8 assay and Transwell assays were used to investigate the effect of FOXA2 on ESCC. Luciferase reporter assay, followed by fast chromatin immunoprecipitation (ChIP) assay, was used to study the relationship between FOXA2 and ZEB2. Results FOXA2 was significantly increased in ESCC tissues, when compared to normal tissues. Moreover, high expression of FOXA2 was also found in ESCC cells. Knockdown of FOXA2 inhibited ESCC cell proliferation, invasion, and migration. Mechanically, FOXA2 was verified to regulate ZEB2 expression at transcription level. Moreover, ZEB2 reversed the inhibitory effect of FOXA2 on ESCC proliferation, invasion, and migration. The relationship between ZEB2 and FOXA2 in ESCC tissues was negative. Conclusions These results indicate that FOXA2 plays a critical role in ESCC progression and may become a potential candidate target for ESCC treatment.
Collapse
|
33
|
Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, Böttcher A, Ansarullah, Irmler M, Beckers J, Cernilogar FM, Schotta G, Theis FJ, Lickert H. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 2021; 23:692-703. [PMID: 34168324 PMCID: PMC8277579 DOI: 10.1038/s41556-021-00694-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
34
|
Mezera MA, Li W, Liu L, Meidan R, Peñagaricano F, Wiltbank MC. Effect of natural pre-luteolytic prostaglandin F2α pulses on the bovine luteal transcriptome during spontaneous luteal regression. Biol Reprod 2021; 105:1016-1029. [PMID: 34170313 DOI: 10.1093/biolre/ioab123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023] Open
Abstract
The pulsatile pattern of prostaglandin F2alpha (PGF) secretion during spontaneous luteolysis is well-documented, with multiple pulses of exogenous PGF necessary to induce regression using physiologic concentrations of PGF. However, during spontaneous regression, the earliest pulses of PGF are small and not associated with detectable changes in circulating progesterone (P4), bringing into question what, if any, role these early, subluteolytic PGF pulses have during physiologic regression. To investigate the effect of small PGF pulses, luteal biopsies were collected throughout natural luteolysis in conjunction with bihourly blood samples to determine circulating P4 and PGF metabolite to retrospectively assign biopsies to early and later regression. Whole transcriptome analysis was conducted on CL biopsies. Early PGF pulses altered the luteal transcriptome, inducing differential expression of 210 genes (Q < 0.05) during early regression, compared to 4615 differentially expressed genes during later regression. In early regression, few of these differentially expressed genes were directly associated with luteolysis, rather there were changes in local steroid and glutathione metabolism. Most (94%) differentially expressed genes from early regression were also differentially expressed during later regression, with 98% of these continuing to be altered in the same direction compared to CL at a similar stage of the cycle that had not yet been exposed to PGF. Thus, early, subluteolytic PGF pulses impact the luteal transcriptome, though not by altering steroidogenesis or causing direct inhibition of cellular function. Rather, small pulses alter pathways resulting in removal of cellular support systems, which may sensitize the CL to later pulses of PGF.
Collapse
Affiliation(s)
- Megan A Mezera
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,USDA Dairy Forage Research Center, Madison, WI 53706, USA
| | - Wenli Li
- USDA Dairy Forage Research Center, Madison, WI 53706, USA
| | - Lihe Liu
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rina Meidan
- Department of Animal Sciences, The Hebrew University of Jerusalem
| | - Francisco Peñagaricano
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
35
|
Chen J, Qian C, Ren P, Yu H, Kong X, Huang C, Luo H, Chen G. Light-Responsive Micelles Loaded With Doxorubicin for Osteosarcoma Suppression. Front Pharmacol 2021; 12:679610. [PMID: 34220512 PMCID: PMC8249570 DOI: 10.3389/fphar.2021.679610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 01/14/2023] Open
Abstract
The enhancement of tumor targeting and cellular uptake of drugs are significant factors in maximizing anticancer therapy and minimizing the side effects of chemotherapeutic drugs. A key challenge remains to explore stimulus-responsive polymeric nanoparticles to achieve efficient drug delivery. In this study, doxorubicin conjugated polymer (Poly-Dox) with light-responsiveness was synthesized, which can self-assemble to form polymeric micelles (Poly-Dox-M) in water. As an inert structure, the polyethylene glycol (PEG) can shield the adsorption of protein and avoid becoming a protein crown in the blood circulation, improving the tumor targeting of drugs and reducing the cardiotoxicity of doxorubicin (Dox). Besides, after ultraviolet irradiation, the amide bond connecting Dox with PEG can be broken, which induced the responsive detachment of PEG and enhanced cellular uptake of Dox. Notably, the results of immunohistochemistry in vivo showed that Poly-Dox-M had no significant damage to normal organs. Meanwhile, they showed efficient tumor-suppressive effects. This nano-delivery system with the light-responsive feature might hold great promises for the targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Jiayi Chen
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | | | - Peng Ren
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Han Yu
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiangjia Kong
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
36
|
Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM, Fan J. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer 2021; 20:75. [PMID: 33985545 PMCID: PMC8117652 DOI: 10.1186/s12943-021-01361-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Cirrhosis is a recognized risk factor for developing hepatocellular carcinoma (HCC). Few studies have reported the expression profile of circRNAs in HCC samples compared to paratumour dysplastic nodule (DN) samples. Methods The Arraystar Human circRNA Array combined with laser capture microdissection (LCM) was used to analyse the expression profile of circRNAs in HCC samples compared to paratumour DN samples. Then, both in vitro and in vivo HCC models were used to determine the role and mechanism of key circRNA in HCC progression and treatment sensitivity. Results We found that circMEMO1 was significantly downregulated in HCC samples and that the level of circMEMO1 was closely related to the OS and disease-free survival (DFS) of HCC patients. Mechanistic analysis revealed that circMEMO1 can modulate the promoter methylation and gene expression of TCF21 to regulate HCC progression by acting as a sponge for miR-106b-5p, which targets the TET family of genes and increases the 5hmC level. More importantly, circMEMO1 can increase the sensitivity of HCC cells to sorafenib treatment. Conclusion Our study determined that circMEMO1 can promote the demethylation and expression of TCF21 and can be considered a crucial epigenetic modifier in HCC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01361-3.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.,Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jia-Bing Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Wei Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 YiXue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China. .,Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
37
|
Bilal F, Arenas EJ, Pedersen K, Martínez-Sabadell A, Nabet B, Guruceaga E, Vicent S, Tabernero J, Macarulla T, Arribas J. The Transcription Factor SLUG Uncouples Pancreatic Cancer Progression from the RAF-MEK1/2-ERK1/2 Pathway. Cancer Res 2021; 81:3849-3861. [PMID: 33903121 DOI: 10.1158/0008-5472.can-20-4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Activating mutations in some isoforms of RAS or RAF are drivers of a substantial proportion of cancers. The main Raf effector, MEK1/2, can be targeted with several highly specific inhibitors. The clinical activity of these inhibitors seems to be mixed, showing efficacy against mutant BRAF-driven tumors but not KRAS-driven tumors, such as pancreatic adenocarcinomas. To improve our understanding of this context-dependent efficacy, we generated pancreatic cancer cells resistant to MEK1/2 inhibition, which were also resistant to KRAS and ERK1/2 inhibitors. Compared with parental cells, inhibitor-resistant cells showed several phenotypic changes including increased metastatic ability in vivo. The transcription factor SLUG, which is known to induce epithelial-to-mesenchymal transition, was identified as the key factor responsible for both resistance to MEK1/2 inhibition and increased metastasis. Slug, but not similar transcription factors, predicted poor prognosis of pancreatic cancer patients and induced the transition to a cellular phenotype in which cell-cycle progression becomes independent of the KRAS-RAF-MEK1/2-ERK1/2 pathway. SLUG was targeted using two independent strategies: (i) inhibition of the MEK5-ERK5 pathway, which is responsible for upregulation of SLUG upon MEK1/2 inhibition, and (ii) direct PROTAC-mediated degradation. Both strategies were efficacious in preclinical pancreatic cancer models, paving the path for the development of more effective therapies against pancreatic cancer. SIGNIFICANCE: This study demonstrates that SLUG confers resistance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tumor progression from KRAS-RAF-MEK1/2-ERK1/2 signaling, providing new therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3849/F1.large.jpg.
Collapse
Affiliation(s)
- Faiz Bilal
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Barcelona, Spain
| | - Enrique J Arenas
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Barcelona, Spain
| | - Kim Pedersen
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alex Martínez-Sabadell
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Guruceaga
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Josep Tabernero
- CIBERONC, Barcelona, Spain.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Teresa Macarulla
- Clinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Joaquín Arribas
- Preclinical Research Programs, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,CIBERONC, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
38
|
The lncRNAs LINC00261 and LINC00665 are upregulated in long-term prostate cancer adaptation after radiotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:175-187. [PMID: 33767914 PMCID: PMC7960506 DOI: 10.1016/j.omtn.2021.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to impact important biological functions such as proliferation, survival, and genomic stability. To analyze radiation-induced lncRNA expression in human tumors, we irradiated prostate cancer cells with a single dose of 10 Gy or a multifractionated radiotherapeutic regimen of 10 fractions with a dose of 1 Gy (10 × 1 Gy) during 5 days. We found a stable upregulation of the lncRNA LINC00261 and LINC00665 at 2 months after radiotherapy that was more pronounced after single-dose irradiation. Analysis of the The Cancer Genome Atlas (TCGA) and The Atlas of Non-coding RNAs in Cancer (TANRIC) databases showed that high expression of these two lncRNAs may be a potential negative prognostic marker for overall survival of prostate cancer patients. Knockdown of LINC00261 and LINC00665 in long-term survivors decreased survival after re-irradiation and affected DNA double-strand break repair. Mechanistically, both lncRNAs showed an interdependent expression and regulated expression of the DNA repair proteins CtIP (RBBP8) and XPC as well as the microRNA miR-329. Identifying long-term tumor adaptation mechanisms can lead to the discovery of new molecular targets, in effect opening up new research directions and improving multimodal radiation oncologic treatment.
Collapse
|
39
|
Lv E, Sheng J, Yu C, Rao D, Huang W. LncRNA influence sequential steps of hepatocellular carcinoma metastasis. Biomed Pharmacother 2021; 136:111224. [PMID: 33450489 DOI: 10.1016/j.biopha.2021.111224] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/20/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a class of new and crucial molecules involved in the regulation of biological function, long noncoding RNA (lncRNA) have obtained widespread attention in recent days. While it was thought that lncRNA would be redundant in the past, it is proved that lncRNA identify a class of molecular that regulate the homeostasis including hepatocellular carcinoma in the present. All kinds of lncRNA have been implicated in a various of diseases, particularly in tumorigenesis and metastasis. But the mechanisms how they act is still not entirely clear. Metastasis is a major factor affecting long-term survival in hepatocellular carcinoma (HCC) patients. Recently, growing numbers of experiments demonstrate that there is close connection between lncRNA and HCC metastasis. Here, we will briefly introduce a series of steps (primary tumor growth, angiogenesis, epithelial-to-mesenchymal transition, invasion, intravasation, survival in circulatory system, extravasation, dormancy and subsequent secondary tumor growth) of tumor metastasis, its classical but promising theories, the role of lncRNA in metastasis and the possible mechanisms involved. LncRNA, as potentially new and important tumor diagnostic and therapeutic molecules, has attracted much attention in recent years.
Collapse
Affiliation(s)
- Enjun Lv
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Jiaqi Sheng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Chengpeng Yu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Dean Rao
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
40
|
Maharjan M, Tanvir RB, Chowdhury K, Duan W, Mondal AM. Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies. BMC Bioinformatics 2020; 21:218. [PMID: 33272232 PMCID: PMC7713218 DOI: 10.1186/s12859-020-3524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung cancer is the number one cancer killer in the world with more than 142,670 deaths estimated in the United States alone in the year 2019. Consequently, there is an overreaching need to identify the key biomarkers for lung cancer. The aim of this study is to computationally identify biomarker genes for lung cancer that can aid in its diagnosis and treatment. The gene expression profiles of two different types of studies, namely non-treatment and treatment, are considered for discovering biomarker genes. In non-treatment studies healthy samples are control and cancer samples are cases. Whereas, in treatment studies, controls are cancer cell lines without treatment and cases are cancer cell lines with treatment. RESULTS The Differentially Expressed Genes (DEGs) for lung cancer were isolated from Gene Expression Omnibus (GEO) database using R software tool GEO2R. A total of 407 DEGs (254 upregulated and 153 downregulated) from non-treatment studies and 547 DEGs (133 upregulated and 414 downregulated) from treatment studies were isolated. Two Cytoscape apps, namely, CytoHubba and MCODE, were used for identifying biomarker genes from functional networks developed using DEG genes. This study discovered two distinct sets of biomarker genes - one from non-treatment studies and the other from treatment studies, each set containing 16 genes. Survival analysis results show that most non-treatment biomarker genes have prognostic capability by indicating low-expression groups have higher chance of survival compare to high-expression groups. Whereas, most treatment biomarkers have prognostic capability by indicating high-expression groups have higher chance of survival compare to low-expression groups. CONCLUSION A computational framework is developed to identify biomarker genes for lung cancer using gene expression profiles. Two different types of studies - non-treatment and treatment - are considered for experiment. Most of the biomarker genes from non-treatment studies are part of mitosis and play vital role in DNA repair and cell-cycle regulation. Whereas, most of the biomarker genes from treatment studies are associated to ubiquitination and cellular response to stress. This study discovered a list of biomarkers, which would help experimental scientists to design a lab experiment for further exploration of detail dynamics of lung cancer development.
Collapse
Affiliation(s)
- Mona Maharjan
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Raihanul Bari Tanvir
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Kamal Chowdhury
- School of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC, USA
| | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ananda Mohan Mondal
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
41
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
42
|
Hight SK, Mootz A, Kollipara RK, McMillan E, Yenerall P, Otaki Y, Li LS, Avila K, Peyton M, Rodriguez-Canales J, Mino B, Villalobos P, Girard L, Dospoy P, Larsen J, White MA, Heymach JV, Wistuba II, Kittler R, Minna JD. An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia 2020; 22:294-310. [PMID: 32512502 PMCID: PMC7281309 DOI: 10.1016/j.neo.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Using a mini-library of 1062 lentiviral shRNAs targeting 40 nuclear hormone receptors and 70 of their co-regulators, we searched for potential therapeutic targets that would be important during in vivo tumor growth using a parallel in vitro and in vivo shRNA screening strategy in the non-small cell lung cancer (NSCLC) line NCI-H1819. We identified 21 genes essential for in vitro growth, and nine genes specifically required for tumor survival in vivo, but not in vitro: NCOR2, FOXA1, HDAC1, RXRA, RORB, RARB, MTA2, ETV4, and NR1H2. We focused on FOXA1, since it lies within the most frequently amplified genomic region in lung adenocarcinomas. We found that 14q-amplification in NSCLC cell lines was a biomarker for FOXA1 dependency for both in vivo xenograft growth and colony formation, but not mass culture growth in vitro. FOXA1 knockdown identified genes involved in electron transport among the most differentially regulated, indicating FOXA1 loss may lead to a decrease in cellular respiration. In support of this, FOXA1 amplification was correlated with increased sensitivity to the complex I inhibitor phenformin. Integrative ChipSeq analyses reveal that FOXA1 functions in this genetic context may be at least partially independent of NKX2-1. Our findings are consistent with a neomorphic function for amplified FOXA1, driving an oncogenic transcriptional program. These data provide new insight into the functional consequences of FOXA1 amplification in lung adenocarcinomas, and identify new transcriptional networks for exploration of therapeutic vulnerabilities in this patient population.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Genomics/methods
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Cytoplasmic and Nuclear
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Suzie K Hight
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Mootz
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul Yenerall
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yoichi Otaki
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Long-Shan Li
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Villalobos
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patrick Dospoy
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill Larsen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John V Heymach
- Department Thoracic and Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
43
|
Shi W, Wang D, Yuan X, Liu Y, Guo X, Li J, Song J. Glucocorticoid receptor-IRS-1 axis controls EMT and the metastasis of breast cancers. J Mol Cell Biol 2020; 11:1042-1055. [PMID: 30726932 PMCID: PMC6934157 DOI: 10.1093/jmcb/mjz001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 02/02/2019] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid receptor (GR) is involved in the transcriptional regulation of genes that are important for various biological functions, including tumor growth and metastatic progression. However, the cellular and biological effects of GR remain poorly understood. Here, we investigated the role of GR and its underlying mechanism in mediating breast cancer cell survival and metastasis. We observed that the GR levels were increased in drug-resistant breast cancer cells and in metastatic breast cancer samples. GR promoted tumor cell invasion and lung metastasis in vivo. The GR expression levels were negatively correlated with the survival rates of breast cancer patients. Both ectopic expression and knockdown of GR revealed that GR is a strong inducer of epithelial-to-mesenchymal transition (EMT), which is consistent with its effects on cell survival and metastasis. GR suppressed the expression of insulin receptor substrate 1 (IRS-1) by acting as an IRS-1 transcriptional repressor. In addition, GR has an opposite effect on the expression levels of IRS-2, indicating that GR is able to differentially regulate the IRS-1 and IRS-2 expression. The cellular and biological effects elicited by GR were consistent with the reduced levels of IRS-1 observed in cancer cells, and GR-mediated IRS-1 suppression activated the ERK2 MAP kinase pathway, which is required for GR-mediated EMT. Taken together, our results indicate that GR–IRS-1 signaling axis plays an essential role in regulating the survival, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Weiwei Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinwang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojie Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianguo Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Qiao Y, Wang Z, Tan F, Chen J, Lin J, Yang J, Li H, Wang X, Sali A, Zhang L, Zhong G. Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis. Mol Ther 2020; 28:2083-2095. [PMID: 32526202 DOI: 10.1016/j.ymthe.2020.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription growth factor β (TGF-β) signaling-triggered epithelial-to-mesenchymal transition (EMT) process is associated with tumor stemness, metastasis, and chemotherapy resistance. However, the epigenomic basis for TGF-β-induced EMT remains largely unknown. Here we reveal that HDAC1-mediated global histone deacetylation and the gain of specific histone H3 lysine 27 acetylation (H3K27ac)-marked enhancers are essential for the TGF-β-induced EMT process. Enhancers gained upon TGF-β treatment are linked to gene activation of EMT markers and cancer metastasis. Notably, dynamic enhancer gain or loss mainly occurs within pre-existing topologically associated domains (TADs) in epithelial cells, with minimal three-dimensional (3D) genome architecture reorganization. Through motif enrichment analysis of enhancers that are lost or gained upon TGF-β stimulation, we identify FOXA2 as a key factor to activate epithelial-specific enhancer activity, and we also find that TEAD4 forms a complex with SMAD2/3 to mediate TGF-β signaling-triggered mesenchymal enhancer reprogramming. Together, our results implicate that key transcription-factor (TF)-mediated enhancer reprogramming modulates the developmental transition in TGF-β signaling-associated cancer metastasis.
Collapse
Affiliation(s)
- Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Zejian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianxiang Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jie Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
45
|
Dorn A, Glaß M, Neu CT, Heydel B, Hüttelmaier S, Gutschner T, Haemmerle M. LINC00261 Is Differentially Expressed in Pancreatic Cancer Subtypes and Regulates a Pro-Epithelial Cell Identity. Cancers (Basel) 2020; 12:cancers12051227. [PMID: 32414223 PMCID: PMC7281485 DOI: 10.3390/cancers12051227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor β (TGFβ) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFβ-mediated epithelial–mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome.
Collapse
Affiliation(s)
- Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Beate Heydel
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Tony Gutschner
- Junior Research Group ‘RNA biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| |
Collapse
|
46
|
Jin S, He J, Zhou Y, Wu D, Li J, Gao W. LncRNA FTX activates FOXA2 expression to inhibit non-small-cell lung cancer proliferation and metastasis. J Cell Mol Med 2020; 24:4839-4849. [PMID: 32176463 PMCID: PMC7176842 DOI: 10.1111/jcmm.15163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/26/2019] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer leads to the highest mortality among all cancer types in the world, and non–small‐cell lung cancer (NSCLC) occupies over 80% of the lung cancer cases. Numerous studies have demonstrated that long non‐coding RNA (lncRNA) is involved in various human diseases including cancer. LncRNA FTX was firstly identified in Xist gene locus and was dysregulated in many human cancers. However, the function of FTX in NSCLC is still unclear. Here, we report that long non‐coding RNA FTX expression level is down‐regulated in NSCLC clinical tissue samples and cell lines. Ectopic expression of FTX inhibits proliferation and metastasis of lung cancer cells in vitro and in vivo. Furthermore, we find that FTX overexpression activates the expression of transcription factor FOXA2, an important regulator in lung cancer progression, and we reveal a novel FTX/miR‐200a‐3p/FOXA2 competing endogenous RNA regulatory axis in lung cancer cells. Our results provide new insights and directions for exploring the function of FTX in lung cancer progression.
Collapse
Affiliation(s)
- Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Dang HX, White NM, Rozycki EB, Felsheim BM, Watson MA, Govindan R, Luo J, Maher CA. Long non-coding RNA LCAL62 / LINC00261 is associated with lung adenocarcinoma prognosis. Heliyon 2020; 6:e03521. [PMID: 32181394 PMCID: PMC7062942 DOI: 10.1016/j.heliyon.2020.e03521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background More than half of non-small cell lung cancer (NSCLC) patients present with metastatic disease at initial diagnosis with an estimated five-year survival rate of ~5%. Despite advances in understanding primary lung cancer oncogenesis metastatic disease remains poorly characterized. Recent studies demonstrate important roles of long non-coding RNAs (lncRNAs) in tumor physiology and as prognostic markers. Therefore, we present the first transcriptome analysis to identify lncRNAs altered in metastatic lung adenocarcinoma leading to the discovery and characterization of the lncRNA LCAL62 as a prognostic biomarker. Patients and methods RNA-Seq, microarray, nanoString expression, and clinical data from 1,116 LUAD patients across six independent cohorts and 83 LUAD cell lines were used to discover and evaluate the survival association of metastasis associated lncRNAs. Coexpression and gene set enrichment analyses were used to establish gene regulatory networks and implicate metastasis associated lncRNAs in specific biological processes. Results Our integrative analysis discovered LCAL62 as the most down-regulated lncRNA in metastasis. Further low LCAL62 expression promoted aggressive phenotypes and regulated genes associated with metastasis (such as metastasis repressor FOXA2). Low LCAL62 expression corresponded to poor overall patient survival across five independent lung adenocarcinoma cohorts (n = 881) including our own nanoString validation cohort. Conclusion We discovered that LCAL62 was down-regulated in lung cancer progression to promote invasive phenotypes, and lower expression was significantly associated with poor patient outcome and aggressive lung adenocarcinoma.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brooke M Felsheim
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Watson
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ramaswamy Govindan
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Yamak A, Hu D, Mittal N, Buikema JW, Ditta S, Lutz PG, Moog-Lutz C, Ellinor PT, Domian IJ. Loss of Asb2 Impairs Cardiomyocyte Differentiation and Leads to Congenital Double Outlet Right Ventricle. iScience 2020; 23:100959. [PMID: 32179481 PMCID: PMC7078385 DOI: 10.1016/j.isci.2020.100959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV. Flna removal partially rescues embryonic lethality of Asb2-heart-specific knockout AHF-Asb2 knockouts harboring one Flna allele have double outlet right ventricle Asb2-Flna regulate TGFβ-Smad2 signaling in the heart Conserved role of Asb2 in heart morphogenesis between mice and humans
Collapse
Affiliation(s)
- Abir Yamak
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Nikhil Mittal
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA
| | - Jan W Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Sheraz Ditta
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Pierre G Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ibrahim J Domian
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Tao L, Shu-Ling W, Jing-Bo H, Ying Z, Rong H, Xiang-Qun L, Wen-Jie C, Lin-Fu Z. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelialmesenchymal transition (EMT) through targeting c-Myc. Biomed Pharmacother 2020; 125:109962. [PMID: 32106373 DOI: 10.1016/j.biopha.2020.109962] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is still a major obstacle for lung cancer treatment. Increasing studies have demonstrated that microRNAs (miRNAs) are essential meditators of chemoresistance during cancer progression. MiR-451a is reported to be a tumor suppressor during cancer development. However, its effects on lung cancer and drug resistance in lung cancer are still unclear. In the study, the results showed that miR-451a exhibited a significant role in suppressing the drug resistance in lung cancer cells when treated with doxorubicin (DOX) through alleviating epithelialmesenchymal transition (EMT), as evidenced by the markedly reduced expression of N-cadherin and Vimentin, while the enhanced expression of E-cadherin. In addition, miR-451a over-expression markedly promoted the sensitivity of lung cancer cells to DOX treatments, and also disrupted the EMT of lung cancer cells. Mechanistically, miR-451a was found to directly target c-Myc to affect the EMT and drug resistance in lung cancer cells in response to DOX incubation. Furthermore, c-Myc knockdown markedly elevated the sensitivity of lung cancer cells to DOX, whereas over-expressing c-Myc markedly reversed the anti-tumor role of DOX, which was slightly diminished by miR-451a mimic. The in vivo experiments confirmed that miR-451a promoted the sensitivity of lung cancer cells-derived tumors to DOX treatment by reducing c-Myc. Therefore, our results revealed a new insight into DOX resistance of lung cancer cells and miR-451a could be considered as a potential therapeutic target to overcome drug resistance in lung cancer.
Collapse
Affiliation(s)
- Li Tao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wang Shu-Ling
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Hao Jing-Bo
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhang Ying
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Hu Rong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, China
| | - Liu Xiang-Qun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Cui Wen-Jie
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhou Lin-Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
50
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|