1
|
Yao Q, Wen J, Chen S, Wang Y, Wen X, Wang X, Li C, Zheng C, Li J, Ma Z, Zhan X, Xiao X, Bai Z. Shuangdan Jiedu Decoction improved LPS-induced acute lung injury by regulating both cGAS-STING pathway and inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118661. [PMID: 39159837 DOI: 10.1016/j.jep.2024.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.
Collapse
Affiliation(s)
- Qing Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xinru Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Congyang Zheng
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, PR China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Zhaofang Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| |
Collapse
|
2
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
3
|
Kannan G, Paul BM, Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: a comprehensive review. Inflammopharmacology 2025:10.1007/s10787-024-01635-4. [PMID: 39776026 DOI: 10.1007/s10787-024-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Nuclear factor kappa B (NF-kB) is a kind of transcription factor which resides in cytoplasm of each cell and on activation, it translocates to the nucleus. It is activated by a many inducible agents including endotoxins, inflammatory stimuli, carcinogens, pathogens, nicotine, and tumour promoters, etc. NF-kB is activated by canonical and non-canonical signalling pathways which has different signalling compounds and its biological functions. It controls the expression of 400 different genes including various enzymes, cytokines, viral proteins, regulatory molecules involved in the cell cycle etc. This pathway is linked with various ailments including respiratory diseases, inflammatory diseases, auto immune diseases, cancer and diabetes. NF-kB factor and signalling pathway are the mainstream of the innate and adaptive immune responses. Human subjects have been able to curb inflammation through inflammaging with the help of the phytomolecules interacting with the NF-κB pathway by adjusting the inflammation processes and alleviating aging stresses in cells. They successfully inhibit the activation of NF-κB, thereby curtailing chronic low-grade inflammation underlying both ageing and age-related disease processes. These phytocompounds discussed herewith not only down-regulate NF-κB-dependent pro-inflammatory pathways but also help build resilience at cellular levels, therefore, offering enhanced healthspan with late commencement of inflammaging pathogenesis. This review describes what stimulation and regulation of the Nuclear Factor kappa B (NF-kB) Pathway and its roles in the pathogenesis of human age related diseases. We also review the recent progress in attenuating the molecular mechanisms of the NF-kB Pathway by phytochemicals, which may open up novel therapeutic avenues.
Collapse
Affiliation(s)
- Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
4
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
5
|
Luo H, Lin S, Lv H, Tan W, Zhong J, Xiong J, Liu Z, Wu Q, Chen M, Cao K. Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03714-3. [PMID: 39755833 DOI: 10.1007/s00210-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis. In vitro assays confirmed CHE's non-toxic profile at concentrations below 20 μM and demonstrated a dose-dependent suppression of osteoclast differentiation. Notably, CHE treatment significantly reduced TRAP activity and bone resorption capacity in a dose-dependent manner. Furthermore, CHE markedly decreased ROS production by NOX-1 expression and modulated the NRF2/KEAP1 pathway to enhance ROS clearance. The compound also showed inhibitory effects on the NF-κB and MAPK signaling pathways, which are crucial for osteoclast activation. In an ovariectomized mouse model, administration of CHE mitigated bone loss, indicating its therapeutic potential in osteoporosis. Collectively, these findings establish CHE as a promising natural therapeutic agent for treating bone disorders characterized by excessive bone resorption, underscoring the need for further clinical investigation.
Collapse
Affiliation(s)
- Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Sijian Lin
- The Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wen Tan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - ZhiMing Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qin Wu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ming Chen
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|
6
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Blokhuis C, Leahy TR, Irvine AD, Browne F, Flinn AM. Baricitinib-Induced Remission of Alopecia Universalis in a Child with NFKB2-Associated Immune Dysregulation. J Clin Immunol 2025; 45:62. [PMID: 39746888 DOI: 10.1007/s10875-024-01852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Affiliation(s)
- C Blokhuis
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Department of Paediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| | - T R Leahy
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
- School of Medicine, University of Dublin, Trinity College, Dublin, Ireland
| | - A D Irvine
- Department of Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
- School of Medicine, University of Dublin, Trinity College, Dublin, Ireland
| | - F Browne
- Department of Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - A M Flinn
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- School of Medicine, University of Dublin, Trinity College, Dublin, Ireland.
| |
Collapse
|
8
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
9
|
Lang Y, Li J, Zhang L. O-GlcNAcylation dictates pyroptosis. Front Immunol 2024; 15:1513542. [PMID: 39742284 PMCID: PMC11685218 DOI: 10.3389/fimmu.2024.1513542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine to serine and threonine residues. This review emphasizes its role in regulating the signaling pathways of pyroptosis. Specifically, the O-GlcNAcylation of GSDMD is linked to the modulation of pyroptosis, suggesting that enhancing O-GlcNAcylation of GSDMD could be crucial for improving hypoperfusion in sepsis. Additionally, GSDME, another member of the gasdermin family, facilitates macrophage pyroptosis through O-GlcNAcylation induced by high glucose levels in the context of periodontitis. The review also examines the effects of O-GlcNAcylation on the NLRP3 inflammasome and its regulators, including NEK7 and NF-κB. Overall, this review emphasizes the role of O-GlcNAcylation in the pathogenesis of conditions such as sepsis, periodontitis, and osteoarthritis, identifying potential therapeutic targets for managing inflammatory responses through its targeted modulation.
Collapse
Affiliation(s)
- Yue Lang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jincheng Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Ghiasi M. Investigating the NF-κB signaling pathway in heart failure: Exploring potential therapeutic approaches. Heliyon 2024; 10:e40812. [PMID: 39717608 PMCID: PMC11664283 DOI: 10.1016/j.heliyon.2024.e40812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Heart failure (HF) syndrome is of great interest as an emerging epidemic. Due to the increasing elderly population worldwide, the total number of HF patients is increasing every day. This disease places a significant economic burden on the healthcare and treatment systems of developing societies, and this situation is very concerning. Despite many advances in the diagnosis and treatment of cardiovascular diseases, HF is still the main cause of death worldwide. This clinical syndrome has many cellular and molecular complications, which are often aggravated by increased levels of pro-inflammatory cytokines, which lead to adverse clinical outcomes. Nuclear factor kappa B (NF-κB), a pivotal family of transcription factors, plays a crucial role in various biological processes, particularly in inflammation, immune response, cell proliferation, and cell survival. Studies show that the NF-κB signaling pathway plays a role in modulating cardiac regeneration, apoptosis, and myocardial fibrosis. It has been found that the NF-κB signaling pathway can affect heart function and HF through the regulation of matrix metalloproteinases and fibrotic mediators. Also, the NF-κB pathway regulates cell activities in cardiac cardiomyocytes and regulates the function of this organ by establishing a precise interaction between apoptosis and pyroptosis. However, the exact molecular mechanisms of this influence have not been well defined and there are many scientific gaps in this matter. This review tries to highlights potential therapeutic strategies to target NF-κB, including the use of anti-inflammatory agents and genetic modulation, which may provide new ways to reduce cardiac fibrosis and improve outcomes in HF patients. Certainly, increasing understanding of the multifaceted role of NF-κB in HF can lead to innovative treatments aimed at reducing the growing number of patients worldwide.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
12
|
Li M, Tong W, Dai C, Lu G, Jin D, Deng F. Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway. Immunobiology 2024; 230:152862. [PMID: 39733737 DOI: 10.1016/j.imbio.2024.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation. The model of S-AKI induced by LPS (10 mg/kg) was assessed by histological examination. ELISA and Real-time PCR were used to detect the levels of inflammatory cytokines in the renal cortex. The role of shPSMB8 in LPS-induced apoptosis was detected by flow cytometry. Finally, western blot was performed to assess the NF-κB signaling pathway related proteins, and the nuclear translocation of NF-kB P65 was detected by immunofluorescence microscopy. PSMB8 knockdown substantially protected against renal injury by reducing blood urea nitrogen and creatinine levels and ameliorating inflammation. PSMB8 knockdown inhibited renal expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and COX-2 to improve inflammatory response. Mechanistic studies demonstrated that downregulation of PSMB8 blocked LPS-induced S-AKI phosphorylation and nuclear translocation of NF-κB P65. Collectively, our results suggest that inhibition of PSMB8 significantly contributes to S-AKI via regulation of NF-κB. These findings reveal the pathogenic role of PSMB8 in AKI and suggest a novel therapeutic target for the condition.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Wenjia Tong
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chao Dai
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Danqun Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China.
| | - Fang Deng
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China.
| |
Collapse
|
13
|
An N, Zhang X, Lin H, Xu Q, Dai Q, Kong Y, Han S, Li X, Yang X, Xing Y, Shang H. The role and mechanism of TXNDC5 in cardio-oncology: Killing two birds with one stone? Curr Probl Cardiol 2024; 50:102951. [PMID: 39643150 DOI: 10.1016/j.cpcardiol.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Cardio-oncology has emerged as a new translational and clinical field owing to the growing repertory of cancer therapy. To date, there is a lack of effective pharmacological therapy to target cardiotoxicity. Cardio-oncology, which began by investigating the negative effects of cancer medicines on cardiovascular system, has since grown to include research into the similarities between cardiovascular disease (CVD) and cancer. Thioredoxin domain-containing protein 5 (TXNDC5) belongs to the protein disulfide isomerase (PDI) family. Many diseases, including CVD and cancer, improperly express TXNDC5. This review provides a comprehensive analysis of the expression patterns of TXNDC5 in diseases. It outlines the processes via which TXNDC5 contributes to the advancement of malignant diseases such as CVD and cancer. Additionally, it summarizes prospective therapeutic approaches that can be used to target TXNDC5 for the treatment of these diseases. This will offer novel perspectives for enhancing anticancer therapy and advancing cardio-oncology research and drug development.
Collapse
Affiliation(s)
- Na An
- DongZhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qianqian Xu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianqian Dai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - YiFan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Li
- DongZhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
14
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
16
|
Hoblos R, Khalil K, Karam M, Bazzi S. The role of NF-κB transcription factor in the regulation of cytokine induced thermal hyperalgesia in a Leishmania major model in BALB/c mice. Exp Parasitol 2024; 267:108864. [PMID: 39577554 DOI: 10.1016/j.exppara.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Cutaneous leishmaniasis caused mainly by Leishmania major (L. major) is one of the trending models used to investigate induced hyperalgesia and the involved cytokines. Previous studies approached the role of several cytokines in the observed hyperalgesia, but the molecular mechanisms orchestrating such a response still needed to be addressed. In this study, we inspect the role of the NF-κB in the modulation of L. major-prompted hyperalgesia and cytokine expression in BALB/c mice by administering celastrol, a potent blocker of this transcription factor. Intraperitoneal injection of 0.5 mg/kg and 1 mg/kg of celastrol attenuated the L. major-induced thermal hyperalgesia in BALB/c mice for 15 days and 21 days, respectively, as detected by hot plate and tail flick behavioral assessments. Cytokine levels were quantified in the infected paws of BALB/c mice using Sandwich ELISA. The administration of 1 mg/kg celastrol decreased TNF-α levels in L. major infected mice for 23 days, and IL-1β expression declined significantly for 23 days using both celastrol dosages. However, no significant change was observed in the levels of IL-10 in our experimental groups. The activation of NF-κB was detected by observing the phosphorylation levels of the p65 subunit using PathScan phospho-ELISA. The level of NF-κB phosphorylation was elevated in L. major infected BALB/c mice. Only administering 1 mg/kg celastrol suppressed the phosphorylation of p65, thus inactivating NF-kB. In conclusion, our results provide new insights into the correlation between the activation of NF-kB, the induction of thermal hyperalgesia, and the expression of TNF-α and IL-1β in the L. major-induced hyperalgesia model.
Collapse
Affiliation(s)
- Reem Hoblos
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| | - Karl Khalil
- Lebanese American University, School of Medicine, Lebanon.
| | - Marc Karam
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| | - Samer Bazzi
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| |
Collapse
|
17
|
Htike K, Yoshida K, Eguchi T, Takebe K, Li X, Qu Y, Sakai E, Tsukuba T, Okamoto K. Herbal medicine Ninjinyoeito inhibits RANKL-induced osteoclast differentiation and bone resorption activity by regulating NF-κB and MAPK pathway. J Oral Biosci 2024; 66:49-57. [PMID: 39366652 DOI: 10.1016/j.job.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Osteoporosis is a systemic bone metabolism disorder characterized by decreased bone mass and strength. Osteoclasts (OCs) are giant multinucleated cells that regulate bone homeostasis by degrading bone matrix. Excessive OC differentiation and activity can lead to serious bone metabolic disorders including osteoporosis. Current treatments, including antiresorptive drugs, exert considerable adverse effects, including jaw osteonecrosis. Herbal medicines, such as Ninjinyoeito (NYT), may also offer efficacy, but with fewer adverse effects. In this study, we investigated NYT's effects on osteoclastogenesis. METHODS Tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assays were performed to examine NYT's effects on OC differentiation and function. OC-related gene expression at mRNA and protein levels was investigated to confirm NYT's inhibitory action against osteoclastogenesis. We also demonstrated involvement of signaling pathways mediated by IκBα and mitogen-activated protein kinases (MAPK) [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38] and showed nuclear translocation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and nuclear factor kappa B (NF-κB) p65 during osteoclastogenesis. RESULTS TRAP staining and bone resorption assays confirmed that NYT significantly inhibited OC differentiation and function. Western blot and RT-PCR results showed that NYT ameliorated osteoclastogenesis by suppressing mRNA and protein level expression of OC-related genes. Moreover, blots and immunocytochemistry (ICC) data clarified that NYT abrogates signaling pathways mediated by IκBα and MAPK (ERK, JNK, p38), and demonstrated nuclear translocation of NFATc1 and NF-κB p65 during OC differentiation. CONCLUSIONS These findings suggest NYT is an alternative therapeutic candidate for treating osteoporosis.
Collapse
Affiliation(s)
- Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Katsuki Takebe
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Xueming Li
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yaxin Qu
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
18
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
19
|
De Paolis V, Troisi V, Bordin A, Pagano F, Caputo V, Parisi C. Unconventional p65/p52 NF-κB module regulates key tumor microenvironment-related genes in breast tumor-associated macrophages (TAMs). Life Sci 2024; 357:123059. [PMID: 39278618 DOI: 10.1016/j.lfs.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The complex heterogeneity of tumor microenvironment (TME) of triple-negative breast cancer (TNBC) presents a significant obstacle to cytotoxic immune response and successful treatment, building up one of the most hostile oncological phenotypes. Among the most abundant TME components, tumor-associated macrophages (TAMs) have pivotal pro-tumoral functions, involving discordant roles for the nuclear factor kappa-B (NF-κB) transcription factors and directing to higher levels of pathway complexity. In both resting macrophages and TAMs, we recently revealed the existence of the uncharacterized NF-κB p65/p52 dimer. In the present study, we demonstrated its enhanced active nuclear localization in TAMs and validated selected immune target genes as directly regulated by dimer binding on DNA sequences. We demonstrated by ChIP-qPCR that p65/p52 enrichment on HSPG2 and CSF-1 regulatory regions is strictly dependent on macrophage polarization and tumor environment. Our data provide novel mechanisms of transcriptional regulation in TAMs, orchestrated by the varied and dynamic nature of NF-κB combinations, which needs to be considered when targeting this pathway in cancer therapies. Our results offer p65/p52, together with identified regulatory regions on genes impacting macrophage behavior and tumor biology, as novel molecular targets for TNBC, aimed at modulating TAMs functions towards anti-tumoral phenotypes and thus improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Veronica De Paolis
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Virginia Troisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy.
| |
Collapse
|
20
|
Xu X, Miao C, Yang S, Xiao L, Gao Y, Wu F, Xu J. Investigating potential drug targets for IgA nephropathy and membranous nephropathy through multi-queue plasma protein analysis: a Mendelian randomization study based on SMR and co-localization analysis. BioData Min 2024; 17:49. [PMID: 39516845 PMCID: PMC11545554 DOI: 10.1186/s13040-024-00405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Membranous nephropathy (MN) and IgA nephropathy (IgAN) pose challenges in clinical treatment with existing therapies primarily focusing on symptom relief and often yielding unsatisfactory outcomes. The search for novel drug targets remains crucial to address the shortcomings in managing both kidney diseases. METHODS Utilizing GWAS data for MN (ncase = 2150, ncontrol = 5829) and IgAN (ncase = 15587, ncontrol = 462197), instrumental variables for plasma proteins were derived from recent GWAS. Sensitivity analysis involved bidirectional Mendelian randomization analysis, MR Steiger, Bayesian co-localization, and Phenotype scanning. The SMR analysis using eQTL data from the eQTLGen Consortium was conducted to assess the availability of selected protein targets. The PPI network was constructed to reveal potential associations with existing drug treatment targets. RESULTS The study, subjected to the stringent Bonferroni correction, revealed significant associations: four proteins with MN and three proteins with IgAN. In plasma protein cis-pQTL data from two cohorts, an increase in one standard deviation in PLA2R1 (OR = 2.01, 95%CI = 1.83-2.21), AIF1 (OR = 9.04, 95%CI = 4.69-17.41), MLN (OR = 3.79, 95%CI = 2.12-6.78), and NFKB1 (OR = 29.43, 95%CI = 7.73-112.0) was associated with an increased risk of MN. Additionally, in plasma protein cis-pQTL data, a standard deviation increase in FCGR3B (OR = 1.15, 95%CI = 1.09-1.22) and BTN3A1 (OR = 4.05, 95%CI = 2.65-6.19) correlated with elevated IgAN risk, while AIF1 (OR = 0.58, 95%CI = 0.46-0.73) exhibited IgAN protection. Bayesian co-localization indicated that PLA2R1 (coloc.abf-PPH4 = 0.695), NFKB1 (coloc.abf-PPH4 = 0.949), FCGR3B (coloc.abf-PPH4 = 0.909), and BTN3A1 (coloc.abf-PPH4 = 0.685) share the same variants associated with MN and IgAN. The SMR analysis indicated a causal link between NFKB1 and BTN3A1 plasma protein eQTL in both conditions, and BTN3A1 was validated externally. CONCLUSION Genetically influenced plasma levels of PLA2R1 and NFKB1 impact MN risk, while FCGR3B and BTN3A1 levels are causally linked to IgAN risk, suggesting potential drug targets for further clinical exploration, notably BTN3A1 for IgAN.
Collapse
Affiliation(s)
- Xinyi Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changhong Miao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shirui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Ying Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangying Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianbo Xu
- Department of Clinical Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, 321000, China.
| |
Collapse
|
21
|
Wang J, Ye J, Liu R, Chen C, Wang W. TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. Biol Direct 2024; 19:106. [PMID: 39516831 PMCID: PMC11546413 DOI: 10.1186/s13062-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
22
|
Rohan P, Binato R, Abdelhay E. NF-ΚB Activation as a Key Driver in Chronic Lymphocytic Leukemia Evolution to Richter's Syndrome: Unraveling the Influence of Immune Microenvironment Dynamics. Genes (Basel) 2024; 15:1434. [PMID: 39596634 PMCID: PMC11593636 DOI: 10.3390/genes15111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and it can progress to Richter's syndrome (RS), a more aggressive condition. The NF-κB pathway is pivotal in CLL pathogenesis, driven mainly by B-cell receptor (BCR) signaling. However, recent evidence indicates that BCR signaling is reduced in RS, raising questions about whether and how NF-κB activity is maintained in RS. This study aims to elucidate the triggers and dynamics of NF-κB activation and the progression from CLL to RS. Methods: Integrated single-cell RNA sequencing data from peripheral blood samples of four CLL-RS patients were analyzed. NF-κB pathway activity and gene expression profiles were assessed to determine changes in NF-κB components and their targets. Tumor microenvironment composition and cell-cell communication patterns were inferred to explore NF-κB regulatory mechanisms. Results: RS samples showed increased proportions of malignant cells expressing NF-κB components, including NFKB1, NFKB2, RELA, IKBKG, MAP3K14, CHUK, and IKBKB, with significantly higher expression levels than in CLL. Enhanced NF-κB pathway activity in RS cells was associated with targets involved in immune modulation. The tumor microenvironment in RS displayed significant compositional changes, and signaling inference revealed enhanced cell-cell communication via BAFF and APRIL pathways, involving interactions with receptors such as BAFF-R and TACI on RS cells. Conclusions: The findings from this study reveal an active state of NF-κB in RS and suggest that this state plays a critical role in the evolution of CLL to RS, which is modulated by alternative signaling pathways and the influence of the tumor microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Signal Transduction/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Male
- Female
- Disease Progression
- Middle Aged
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Single-Cell Analysis
Collapse
Affiliation(s)
| | | | - Eliana Abdelhay
- Stem Cell Laboratory, Specialized Laboratories Division, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.R.); (R.B.)
| |
Collapse
|
23
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
25
|
Xu K, Kessler A, Nichetti F, Hoffmeister-Wittmann P, Scherr AL, Nader L, Kelmendi E, Schmitt N, Schwab M, García-Beccaria M, Sobol B, Nieto OA, Isele H, Gärtner U, Vaquero-Siguero N, Volk J, Korell F, Mock A, Heide D, Ramadori P, Lenoir B, Albrecht T, Hüllein J, Jäger D, Fröhling S, Springfeld C, Jackstadt R, Heikenwälder M, Dill MT, Roessler S, Goeppert B, Köhler BC. Lymphotoxin beta-activated LTBR/NIK/RELB axis drives proliferation in cholangiocarcinoma. Liver Int 2024; 44:2950-2963. [PMID: 39164890 DOI: 10.1111/liv.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the intrahepatic (iCCA) or extrahepatic (eCCA) bile ducts with poor prognosis and limited treatment options. Prior evidence highlighted a significant contribution of the non-canonical NF-κB signalling pathway in initiation and aggressiveness of different tumour types. Lymphotoxin-β (LTβ) stimulates the NF-κB-inducing kinase (NIK), resulting in the activation of the transcription factor RelB. However, the functional contribution of the non-canonical NF-κB signalling pathway via the LTβ/NIK/RelB axis in CCA carcinogenesis and progression has not been established. METHODS Human CCA-derived cell lines and organoids were examined to determine the expression of NF-κB pathway components upon activation or inhibition. Proliferation and cell death were analysed using real-time impedance measurement and flow cytometry. Immunoblot, qRT-PCR, RNA sequencing and in situ hybridization were employed to analyse gene and protein expression. Four in vivo models of iCCA were used to probe the activation and regulation of the non-canonical NF-κB pathway. RESULTS Exposure to LTα1/β2 activates the LTβ/NIK/RelB axis and promotes proliferation in CCA. Inhibition of NIK with the small molecule inhibitor B022 efficiently suppresses RelB expression in patient-derived CCA organoids and nuclear co-translocation of RelB and p52 stimulated by LTα1/β2 in CCA cell lines. In murine CCA, RelB expression is significantly increased and LTβ is the predominant ligand of the non-canonical NF-κB signalling pathway. CONCLUSIONS Our study confirms that the non-canonical NF-κB axis LTβ/NIK/RelB drives cholangiocarcinogenesis and represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of RadioOncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Madrid Institute for Advanced Study (MIAS), Madrid, Spain
| | - Benjamin Sobol
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Osama Azzam Nieto
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Volk
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Albrecht
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty, University Clinic Tübingen (UKT), Tübingen, Germany
| | - Michael T Dill
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Experimental Hepatology, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
26
|
Shaharudin NS, Surindar Singh GK, Kek TL, Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol Clin Oncol 2024; 21:81. [PMID: 39301125 PMCID: PMC11411607 DOI: 10.3892/mco.2024.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/β-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.
Collapse
Affiliation(s)
- Nur Shahirah Shaharudin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Brain Degeneration and Therapeutics Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Teh Lay Kek
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Sadia Sultan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Biotransformation Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
27
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
28
|
Xiao Y, Gao X, Yuan J. Comparative Study of an Antioxidant Compound and Ethoxyquin on Feed Oxidative Stability and on Performance, Antioxidant Capacity, and Intestinal Health in Starter Broiler Chickens. Antioxidants (Basel) 2024; 13:1229. [PMID: 39456482 PMCID: PMC11505240 DOI: 10.3390/antiox13101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Concerns over the safety of ethoxyquin (EQ) highlight the need for safer, more effective feed antioxidants. This study investigated a healthier antioxidant compound (AC) as a potential alternative to EQ in broilers. A total of 351 one-day-old Arbor Acres Plus male broilers were randomly assigned to three treatments for 21 days: control (CON), EQ group (200 g/ton EQ at 60% purity), and AC group (200 g/ton AC containing 18% butylated hydroxytoluene, 3% citric acid, and 1% tertiary butylhydroquinone). AC supplementation reduced the acid value, peroxide value, and malondialdehyde content in stored feed, decreased feed intake and the feed conversion ratio without affecting body weight gain, and enhanced antioxidant capacity (liver total antioxidant capacity and superoxide dismutase; intestinal catalase and glutathione peroxidase 7). It improved intestinal morphology and decreased barrier permeability (lower diamine oxidase and D-lactate), potentially by promoting ZO-1, Occludin, and Mucin2 expression. The AC also upregulated NF-κB p50 and its inhibitor (NF-κB p105), enhancing immune regulation. Additionally, the AC tended to increase beneficial gut microbiota, including Lactobacillus, and reduced Bacteroides, Corprococcus, and Anaeroplasma. Compared to EQ, the AC further enhanced feed oxidative stability, the feed conversion ratio, intestinal morphology and barrier functions, and inflammatory status, suggesting its potential as a superior alternative to EQ for broiler diets.
Collapse
Affiliation(s)
| | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (X.G.)
| |
Collapse
|
29
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
30
|
Zheng X, Meng D, Chen D, Wong WK, To KH, Zhu L, Wu J, Liang Y, Leung KS, Wong MH, Cheng L. scCaT: An explainable capsulating architecture for sepsis diagnosis transferring from single-cell RNA sequencing. PLoS Comput Biol 2024; 20:e1012083. [PMID: 39432561 PMCID: PMC11527285 DOI: 10.1371/journal.pcbi.1012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Sepsis is a life-threatening condition characterized by an exaggerated immune response to pathogens, leading to organ damage and high mortality rates in the intensive care unit. Although deep learning has achieved impressive performance on prediction and classification tasks in medicine, it requires large amounts of data and lacks explainability, which hinder its application to sepsis diagnosis. We introduce a deep learning framework, called scCaT, which blends the capsulating architecture with Transformer to develop a sepsis diagnostic model using single-cell RNA sequencing data and transfers it to bulk RNA data. The capsulating architecture effectively groups genes into capsules based on biological functions, which provides explainability in encoding gene expressions. The Transformer serves as a decoder to classify sepsis patients and controls. Our model achieves high accuracy with an AUROC of 0.93 on the single-cell test set and an average AUROC of 0.98 on seven bulk RNA cohorts. Additionally, the capsules can recognize different cell types and distinguish sepsis from control samples based on their biological pathways. This study presents a novel approach for learning gene modules and transferring the model to other data types, offering potential benefits in diagnosing rare diseases with limited subjects.
Collapse
Affiliation(s)
- Xubin Zheng
- School of Computing and Information Technology, Great Bay University, Guangdong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medicine College of Jinan University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Guangzhou, China
| | - Dian Meng
- School of Computing and Information Technology, Great Bay University, Guangdong, China
| | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Nosocomial Infection Prevention and Control, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wan-Ki Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Ho To
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lei Zhu
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Yining Liang
- Southern University of Science and Technology, Guangdong, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Applied Data Science, Shue Yan University, North Point, Hong Kong
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People’s Hospital, the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medicine College of Jinan University, Shenzhen, China
| |
Collapse
|
31
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
32
|
Khopanlert W, Choochuen P, Maneechai K, Jangphattananont N, Ung S, Okuno S, Steinberger P, Leitner J, Sangkhathat S, Viboonjuntra P, Terakura S, Julamanee J. Co-stimulation of CD28/CD40 signaling molecule potentiates CAR-T cell efficacy and stemness. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200837. [PMID: 39050989 PMCID: PMC11268112 DOI: 10.1016/j.omton.2024.200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
CD19 chimeric antigen receptor T (CD19CAR-T) cells have achieved promising outcomes in relapsed/refractory B cell malignancies. However, recurrences occur due to the loss of CAR-T cell persistence. We developed dual T/B cell co-stimulatory molecules (CD28 and CD40) in CAR-T cells to enhance intense tumoricidal activity and persistence. CD19.28.40z CAR-T cells promoted pNF-κB and pRelB downstream signaling while diminishing NFAT signaling upon antigen exposure. CD19.28.40z CAR-T cells demonstrated greater proliferation, which translated into effective anti-tumor cytotoxicity in long-term co-culture assay. Repetitive weekly antigen stimulation unveiled continuous CAR-T cell expansion while preserving central memory T cell subset and lower expression of exhaustion phenotypes. The intrinsic genes underlying CD19.28.40z CAR-T cell responses were compared with conventional CARs and demonstrated the up-regulated genes associated with T cell proliferation and memory as well as down-regulated genes related to apoptosis, exhaustion, and glycolysis pathway. Enrichment of genes toward T cell stemness, particularly SELL, IL-7r, TCF7, and KLF2, was observed. Effective and continuing anti-tumor cytotoxicity in vivo was exhibited in both B cell lymphoblastic leukemia and B cell non-Hodgkin lymphoma xenograft models while demonstrating persistent T cell memory signatures. The functional enhancement of CD37.28.40z CAR-T cell activities against CD37+ tumor cells was further validated. The modification of dual T/B cell signaling molecules remarkably maximized the efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Nawaphat Jangphattananont
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Socheatraksmey Ung
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| |
Collapse
|
33
|
Chen G, Yao Y, Liu Y, Zhang R, Wen C, Zhou Q, Xu Y, Wang W, Jiang H, Tao Z, Chen W, Qiu Z, Chen X. IKKα-STAT3-S727 axis: a novel mechanism in DOX-induced cardiomyopathy. Cell Mol Life Sci 2024; 81:406. [PMID: 39287798 PMCID: PMC11408453 DOI: 10.1007/s00018-024-05439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug, but its use can lead to cardiomyopathy, which is the leading cause of mortality among cancer patients. Macrophages play a role in DOX-induced cardiomyopathy (DCM), but the mechanisms undlerlying this relationship remain unclear. This study aimed to investigate how IKKα regulates macrophage activation and contributes to DCM in a mouse model. Specifically, the role of macrophage IKKα was evaluated in macrophage-specific IKKα knockout mice that received DOX injections. The findings revealed increased expression of IKKα in heart tissues after DOX administration. In mice lacking macrophage IKKα, myocardial injury, ventricular remodeling, inflammation, and proinflammatory macrophage activation worsened in response to DOX administration. Bone marrow transplant studies confirmed that IKKα deficiency exacerbated cardiac dysfunction. Macrophage IKKα knockout also led to mitochondrial damage and metabolic dysfunction in macrophages, thereby resulting in increased cardiomyocyte injury and oxidative stress. Single-cell sequencing analysis revealed that IKKα directly binds to STAT3, leading to the activation of STAT3 phosphorylation at S727. Interestingly, the inhibition of STAT3-S727 phosphorylation suppressed both DCM and cardiomyocyte injury. In conclusion, the IKKα-STAT3-S727 signaling pathway was found to play a crucial role in DOX-induced cardiomyopathy. Targeting this pathway could be a promising therapeutic strategy for treating DOX-related heart failure.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Ruoyu Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Chenghao Wen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Qiang Zhou
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Wuwei Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China
| | - Zhonghao Tao
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China.
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China.
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, P.R. China.
| |
Collapse
|
34
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Xie C, Dong JZ, Lu BS, Yan PY, Zhao YS, Ding XY, Lv CE, Zheng X. Pharmacology and therapeutic potential of agarwood and agarwood tree leaves in periodontitis. Front Pharmacol 2024; 15:1468393. [PMID: 39323637 PMCID: PMC11422227 DOI: 10.3389/fphar.2024.1468393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
The main bioactive components of agarwood, derived from Aquilaria sinensis, include sesquiterpenes, 2-(2-phenethyl) chromone derivatives, aromatic compounds, and fatty acids, which typically exert anti-inflammatory, antioxidant, immune-modulating, hypoglycemic, and antitumor pharmacological effects in the form of essential oils. Agarwood tree leaves, rich in flavonoids, 2-(2-phenethyl) chromone compounds, and flavonoid compounds, also exhibit significant anti-inflammatory, antioxidant, and immune-modulating effects. These properties are particularly relevant to the treatment of periodontitis, given that inflammatory responses, oxidative stress, and immune dysregulation are key pathological mechanisms of the disease, highlighting the substantial potential of agarwood and agarwood tree leaves in this therapeutic area. However, the low solubility and poor bioavailability of essential oils present challenges that necessitate the development of improved active formulations. In this review, we will introduce the bioactive components, extraction methods, pharmacological actions, and clinical applications of agarwood and agarwood tree leaves, analyzing its prospects for the treatment of periodontitis.
Collapse
Affiliation(s)
- Chen Xie
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Jing-Zhe Dong
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Bing-Shuai Lu
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Peng-Yao Yan
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Yun-Shan Zhao
- Integrated Department, Hainan Stomatological Hospital, Haikou, China
| | - Xin-Yue Ding
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Cheng-En Lv
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Xu Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
36
|
Msweli S, Pakala SB, Syed K. NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals. Int J Mol Sci 2024; 25:9793. [PMID: 39337282 PMCID: PMC11432056 DOI: 10.3390/ijms25189793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100.
Collapse
Affiliation(s)
- Siphesihle Msweli
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| | - Suresh B. Pakala
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500-046, India
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| |
Collapse
|
37
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
39
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
O'Leary B, Skinner H, Schoenfeld JD, Licitra L, Le Tourneau C, Esdar C, Schroeder A, Salmio S, Psyrri A. Evasion of apoptosis and treatment resistance in squamous cell carcinoma of the head and neck. Cancer Treat Rev 2024; 129:102773. [PMID: 38878677 DOI: 10.1016/j.ctrv.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/18/2024]
Abstract
Combinations of surgery, radiotherapy and chemotherapy can eradicate tumors in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), but a significant proportion of tumors progress, recur, or do not respond to therapy due to treatment resistance. The prognosis for these patients is poor, thus new approaches are needed to improve outcomes. Key resistance mechanisms to chemoradiotherapy (CRT) in patients with LA SCCHN are alterations to the pathways that mediate apoptosis, a form of programmed cell death. Targeting dysregulation of apoptotic pathways represents a rational therapeutic strategy in many types of cancer, with a number of proteins, including the pro-survival B-cell lymphoma 2 family and inhibitors of apoptosis proteins (IAPs), having been identified as druggable targets. This review discusses the mechanisms by which apoptosis occurs under physiological conditions, and how this process is abnormally restrained in LA SCCHN tumor cells, with treatment strategies aimed at re-enabling apoptosis in LA SCCHN also considered. In particular, the development of, and future opportunities for, IAP inhibitors in LA SCCHN are discussed, in light of recent encouraging proof-of-concept clinical trial data.
Collapse
Affiliation(s)
| | | | | | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Italy
| | | | | | | | | | - Amanda Psyrri
- Attikon University Hospital, National Kapodistrian University of Athens, Greece
| |
Collapse
|
41
|
Chen Z, Lang G, Xu X, Liang X, Han Y, Han Y. The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis-a narrative review. PeerJ 2024; 12:e17953. [PMID: 39221277 PMCID: PMC11366231 DOI: 10.7717/peerj.17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual's quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.
Collapse
Affiliation(s)
- Zhonglan Chen
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Guangping Lang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Xi Xu
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Xinghua Liang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Yalin Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Yingying Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| |
Collapse
|
42
|
Thapa R, Moglad E, Goyal A, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Ali H, Oliver BG, MacLoughlin R, Dureja H, Singh SK, Dua K, Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI JOURNAL 2024; 23:991-1017. [PMID: 39253534 PMCID: PMC11382301 DOI: 10.17179/excli2024-7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024]
Abstract
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2137 Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94 Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77 Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40 Ireland
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Center for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
43
|
Kong EQZ, Subramaniyan V, Lubau NSA. Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways. Animal Model Exp Med 2024; 7:444-459. [PMID: 38853347 PMCID: PMC11369036 DOI: 10.1002/ame2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic-pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
Collapse
Affiliation(s)
- Eason Qi Zheng Kong
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
- Center for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| |
Collapse
|
44
|
Esmaealzadeh N, Miri MS, Mavaddat H, Peyrovinasab A, Ghasemi Zargar S, Sirous Kabiri S, Razavi SM, Abdolghaffari AH. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology 2024; 32:2125-2151. [PMID: 38769198 DOI: 10.1007/s10787-024-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Neurodegenerative diseases are part of the central nervous system (CNS) disorders that indicate their presence with neuronal loss, neuroinflammation, and increased oxidative stress. Several pathophysiological factors and biomarkers are involved in this inflammatory process causing these neurological disorders. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an inflammation element, which induced transcription and appears to be one of the important players in physiological procedures, especially nervous disorders. NF-κB can impact upon series of intracellular actions and induce or inhibit many inflammation-related pathways. Multiple reports have focused on the modification of NF-κB activity, controlling its expression, translocation, and signaling pathway in neurodegenerative disorders and injuries like Alzheimer's disease (AD), spinal cord injuries (SCI), and Parkinson's disease (PD). Curcumin has been noted to be a popular anti-oxidant and anti-inflammatory substance and is the foremost natural compound produced by turmeric. According to various studies, when playing an anti-inflammatory role, it interacts with several modulating proteins of long-standing disease signaling pathways and has an unprovocative consequence on pro-inflammatory cytokines. This review article determined to figure out curcumin's role in limiting the promotion of neurodegenerative disease via influencing the NF-κB signaling route. Preclinical studies were gathered from plenty of scientific platforms including PubMed, Scopus, Cochrane, and Google Scholar to evaluate this hypothesis. Extracted findings from the literature review explained the repressing impact of Curcumin on the NF-κB signaling pathway and, occasionally down-regulating the cytokine expression. Yet, there is an essential need for further analysis and specific clinical experiments to fully understand this subject.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdis Sadat Miri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Helia Mavaddat
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Amirreza Peyrovinasab
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Sara Ghasemi Zargar
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Shirin Sirous Kabiri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Seyed Mehrad Razavi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
45
|
Jung DE, Seo MK, Jo JH, Kim K, Kim C, Kang H, Park SB, Lee HS, Kim S, Song SY. PUM1-TRAF3 fusion protein activates non-canonical NF-κB signaling via rescued NIK in biliary tract cancer. NPJ Precis Oncol 2024; 8:170. [PMID: 39090283 PMCID: PMC11294552 DOI: 10.1038/s41698-024-00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Discovery and verification of diagnostic or therapeutic biomarkers for biliary tract cancer (BTC) is challenging owing to the low prevalence of the disease. Here, we identified and investigated the clinical impact of a fusion gene, Pumilio1-tumor necrosis factor receptor-associated factor 3 (PUM1-TRAF3), caused by 1;14 chromosomal translocation in BTC. PUM1-TRAF3 was initially identified in the RNA-sequencing of five BTC surgical tissues and confirmed by fluorescence in situ hybridization. Expression of the fusion gene was validated in an expanded cohort (5/55, 9.1%). Establishment and molecular assessment of PUM1-TRAF3 expressing BTC cells revealed that PUM1-TRAF3 activates non-canonical NF-κB signaling via NF-κB-inducing kinase (NIK). Abnormal TRAF3 activity, driven by competitive binding of PUM1-TRAF3 and TRAF3 to NIK, led to NIK rescue followed by P52/RelB nuclear translocation, all of which were reverted by an NIK inhibitor. The elevated expression of NIK and activated NF-κB signaling was observed in the PUM1-TRAF3-expressing regions of patient tissues. Expression of the PUM1-TRAF3 fusion was significantly correlated with strong NIK expression, which is associated with a poorer prognosis for patients with BTC. Overall, our study identifies a new fusion gene, PUM1-TRAF3, that activates NIK and non-canonical NF-κB signaling, which may be beneficial for developing precise treatment strategies for BTC.
Collapse
Affiliation(s)
- Dawoon E Jung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| | - Mi-Kyoung Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kahee Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chanyang Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyundeok Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sangwoo Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
46
|
Scherr AL, Nader L, Xu K, Elssner C, Ridder DA, Nichetti F, Mastel M, Fritzsche S, Kelmendi E, Schmitt N, Hoffmeister-Wittmann P, Weiler SME, Korell F, Albrecht T, Schwab M, Isele H, Kessler A, Hüllein J, Seretny A, Ye L, Urbanik T, Welte S, Leblond AL, Heilig CE, Rahbari M, Ali A, Gallage S, Lenoir B, Wilhelm N, Gärtner U, Ogrodnik SJ, Springfeld C, Tschaharganeh D, Fröhling S, Longerich T, Schulze-Bergkamen H, Jäger D, Brandl L, Schirmacher P, Straub BK, Weber A, De Toni EN, Goeppert B, Heikenwalder M, Jackstadt R, Roessler S, Breuhahn K, Köhler BC. Etiology-independent activation of the LTβ-LTβR-RELB axis drives aggressiveness and predicts poor prognosis in HCC. Hepatology 2024; 80:278-294. [PMID: 37916976 DOI: 10.1097/hep.0000000000000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND AIMS HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTβR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.
Collapse
Affiliation(s)
- Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Christin Elssner
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk A Ridder
- Department of General Pathology, University Hospital Mainz, Mainz, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnieszka Seretny
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Liangtao Ye
- Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Welte
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nina Wilhelm
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Simon J Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Darjus Tschaharganeh
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Lydia Brandl
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Beate K Straub
- Department of General Pathology, University Hospital Mainz, Mainz, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Enrico N De Toni
- Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, University Clinic Tübingen (UKT), Medical faculty, Tübingen, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Bisanti L, La Corte C, Dara M, Bertini F, Vizioli J, Parisi MG, Cammarata M, Parrinello D. The Interplay of TLR-NFκB Signalling Pathway and Functional Immune-Related Enzymes in the Inflammatory Response of Ciona robusta. Animals (Basel) 2024; 14:2169. [PMID: 39123695 PMCID: PMC11310991 DOI: 10.3390/ani14152169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The close phylogenetic relationship between ascidians (Tunicata) and vertebrates makes them a powerful model for studying the innate immune system. To better understand the nature and dynamics of immune responses and the mechanisms through which bacterial infections are detected and translated into inflammation in Ciona robusta, we applied an approach combining in vivo lipopolysaccharide (LPS) stimulation, immune-labelling techniques and functional enzymatic analyses. The immunohistochemistry showed that Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NFκB) were expressed during the inflammatory pharynx response 4 h post-LPS, with the formation of nodules in pharynx vessel lumen. Also, the endothelium vessels were involved in the inflammatory response. Observations of histological sections from naive and buffer-inoculated ascidians confirmed an immuno-positive response. Enzyme immune parameters-which included the activity of phenoloxidase, glutathione peroxidase, lysozyme, alkaline phosphatase and esterase-showed up-modulation 4 h after LPS injection, confirming their participation during ascidian inflammatory response. These findings provide new insights into the mechanisms underlying the LPS-induced C. robusta response and suggest that a broad innate immune mechanism, as in vertebrates, is involved in the regulation of inflammatory responses. Further findings in this direction are needed to cover knowledge gaps regarding the organized set of molecular and cellular networks involved in universal immune interactions with pathogens.
Collapse
Affiliation(s)
- Luca Bisanti
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Federica Bertini
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Jacopo Vizioli
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (Inserm U1192), Département de Biologie, Université de Lille, F-59000 Lille, France
| | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
49
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
50
|
Hu Q, Zhang B, Jing Y, Ma S, Hu L, Li J, Zheng Y, Xin Z, Peng J, Wang S, Cheng B, Qu J, Zhang W, Liu GH, Wang S. Single-nucleus transcriptomics uncovers a geroprotective role of YAP in primate gingival aging. Protein Cell 2024; 15:612-632. [PMID: 38577810 PMCID: PMC11259548 DOI: 10.1093/procel/pwae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024] Open
Abstract
Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Bin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jianmin Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|