1
|
Jiang W, Zhang J, Wang M, Zou Y, Liu Q, Song Y, Sun G, Gong Y, Zhang F, Jiang B. The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function. Acta Neuropathol Commun 2024; 12:188. [PMID: 39633474 PMCID: PMC11619648 DOI: 10.1186/s40478-024-01903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.
Collapse
Affiliation(s)
- Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Medical Morphology Teaching Laboratory, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Wu Q, Geng Z, Lu J, Wang S, Yu Z, Wang S, Ren X, Guan S, Liu T, Zhu C. Neddylation of protein, a new strategy of protein post-translational modification for targeted treatment of central nervous system diseases. Front Neurosci 2024; 18:1467562. [PMID: 39564524 PMCID: PMC11573765 DOI: 10.3389/fnins.2024.1467562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Neddylation, a type of protein post-translational modification that links the ubiquitin-like protein NEDD8 to substrate proteins, can be involved in various significant cellular processes and generate multiple biological effects. Currently, the best-characterized substrates of neddylation are the Cullin protein family, which is the core subunit of the Cullin-RING E3 ubiquitin ligase complex and controls many important biological processes by promoting ubiquitination and subsequent degradation of various key regulatory proteins. The normal or abnormal process of protein neddylation in the central nervous system can lead to a series of occurrences of normal functions and the development of diseases, providing an attractive, reasonable, and effective targeted therapeutic strategy. Therefore, this study reviews the phenomenon of neddylation in the central nervous system and summarizes the corresponding substrates. Finally, we provide a detailed description of neddylation involved in CNS diseases and treatment methods that may be used to regulate neddylation for the treatment of related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Lu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shisong Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Stier A, Gilberto S, Mohamed WI, Royall LN, Helenius J, Mikicic I, Sajic T, Beli P, Müller DJ, Jessberger S, Peter M. The CUL4B-based E3 ubiquitin ligase regulates mitosis and brain development by recruiting phospho-specific DCAFs. EMBO J 2023; 42:e112847. [PMID: 37365982 PMCID: PMC10476281 DOI: 10.15252/embj.2022112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Anna Stier
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Samuel Gilberto
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Monte Rosa TherapeuticsBaselSwitzerland
| | | | - Lars N Royall
- Brain Research InstituteUniversity of ZurichZurichSwitzerland
| | - Jonne Helenius
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | - Tatjana Sajic
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Present address:
Faculty Unit of Toxicology, CURML, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Petra Beli
- Institute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversityMainzGermany
| | - Daniel J Müller
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | | |
Collapse
|
4
|
CUL4B-associated epilepsy: Report of a novel truncating variant promoting drug-resistant seizures and systematic review of the literature. Seizure 2023; 104:32-37. [PMID: 36476360 DOI: 10.1016/j.seizure.2022.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cabezas syndrome is a rare X-linked disease caused by mutations in CUL4B and characterized by developmental delay/intellectual disability, somatic dysmorphisms, behavioural disorder, ataxia/tremors. Although seizures have been formerly reported, their clinical semiology, EEG features and long-term outcome are largely unknown. PURPOSE This study aims to expand knowledge on epilepsy associated with Cabezas syndrome and to understand whether different types of variants in the CUL4B gene or brain MRI abnormalities may influence seizure onset and epilepsy course. METHODS With this in mind, we characterised the epileptic phenotype of a 17-year-old adolescent harbouring a CUL4B novel variant and performed a systematic literature review of CUL4B-associated seizures, analysing mutation types and neuroimaging features as epilepsy predictors. RESULTS Our case observation indicates that CUL4B-associated epilepsy may also be drug-resistant and persist beyond infancy. Literature analysis shows that 43% of CUL4B patients develop seizures, with no statistically significant differences in epilepsy development according to mutation type and neuroimaging features. CONCLUSION Our study extends knowledge of CUL4B-associated epilepsy, offering new insights into disease progression.
Collapse
|
5
|
Bhat SA, Vasi Z, Adhikari R, Gudur A, Ali A, Jiang L, Ferguson R, Liang D, Kuchay S. Ubiquitin proteasome system in immune regulation and therapeutics. Curr Opin Pharmacol 2022; 67:102310. [PMID: 36288660 PMCID: PMC10163937 DOI: 10.1016/j.coph.2022.102310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
The ubiquitin proteasome system (UPS) is a proteolytic machinery for the degradation of protein substrates that are post-translationally conjugated with ubiquitin polymers through the enzymatic action of ubiquitin ligases, in a process termed ubiquitylation. Ubiquitylation of substrates precedes their proteolysis via proteasomes, a hierarchical feature of UPS. E3-ubiquitin ligases recruit protein substrates providing specificity for ubiquitylation. Innate and adaptive immune system networks are regulated by ubiquitylation and substrate degradation via E3-ligases/UPS. Deregulation of E3-ligases/UPS components in immune cells is involved in the development of lymphomas, neurodevelopmental abnormalities, and cancers. Targeting E3-ligases for therapeutic intervention provides opportunities to mitigate the unintended broad effects of 26S proteasome inhibition. Recently, bifunctional moieties such as PROTACs and molecular glues have been developed to re-purpose E3-ligases for targeted degradation of unwanted aberrant proteins, with a potential for clinical use. Here, we summarize the involvement of E3-ligases/UPS components in immune-related diseases with perspectives.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Asceal Ali
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Rachel Ferguson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - David Liang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago (UIC), Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Fan Y, Huo X, Guo B, Zhang X, Yang Y, Lian J, Meng X, Shao Y, Zou Y, Guo H, Wang H, Sun G, Dou H, Wang J, Shao C, Gong Y, Hu H. Cullin 4b-RING ubiquitin ligase targets IRGM1 to regulate Wnt signaling and intestinal homeostasis. Cell Death Differ 2022; 29:1673-1688. [PMID: 35197566 PMCID: PMC9433385 DOI: 10.1038/s41418-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Hierarchical organization of intestine relies on the self-renewal and tightly regulated differentiation of intestinal stem cells (ISCs). Although signals like Wnt are known to sustain the continued intestinal renewal by maintaining ISCs activity and lineage commitment, molecular mechanisms underlying ISCs ‘stemness’ and supportive niche have not been well understood. Here, we found that CUL4B-RING ubiquitin ligase (CRL4B) regulates intestinal homeostasis by targeting immunity-related GTPase family M member 1 (IRGM1) for proteasomal degradation. CUL4B was mainly expressed at ISCs zone. Deletion of Cul4b led to reduced self-renewal of ISCs and a decreased lineage differentiation towards secretory progenitors through downregulated Wnt signals. Besides, Cul4b-null mice exhibited impaired Paneth cells number and structure. Mechanistically, CRL4B complex were associated with WD40 proteins and targeted IRGM1 at K270 for ubiquitination and proteosomal degradation. Impaired intestinal function caused by CUL4B deletion was rescued by down-regulation of its substrate IRGM1. Our results identified CUL4B as a novel regulator of ISCs and revealed a new 26 S proteasome degradation mechanism in intestine self-renewal and lineage commitment. ![]()
Collapse
|
7
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|
9
|
Li W, Liu J, Ji L, Tang Y, Qin J, Zhao H, Cheng X, Tian M, Jin G, He H. MiR-674-5p Suppresses the Proliferation and Migration of Glioma Cells by Targeting Cul4b. Neurochem Res 2021; 47:679-691. [PMID: 34779995 DOI: 10.1007/s11064-021-03476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required. MicroRNAs (miRNAs) are a class of small, evolutionarily conserved noncoding RNAs and have emerged as the key regulators of many cancers. Here in this study, we showed that miR-674-5p was probably an important regulator of glioma cell growth. After the transfection with miR-674-5p mimic or inhibitor, we found that the expression level of miR-674-5p was negatively related with cell proliferation and migration in C6 cells. Based on the prediction of the target genes of miR-674-5p on the website, we chose Cullin 4B (Cul4b), a gene upregulated in GBM, and proved that it was a target of miR-674-5p. In addition, we explored the role of miR-674-5p in glioma growth in vivo. Taken together, the present study indicated that miR-674-5p suppressed glioma cell proliferation and migration by targeting Cul4b.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Ji
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yi Tang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong, Jiangsu, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong, Jiangsu, People's Republic of China.
| | - Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Wu K, Hopkins BD, Sanchez R, DeVita RJ, Pan ZQ. Targeting Cullin-RING E3 Ubiquitin Ligase 4 by Small Molecule Modulators. JOURNAL OF CELLULAR SIGNALING 2021; 2:195-205. [PMID: 34604860 PMCID: PMC8486283 DOI: 10.33696/signaling.2.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cullin-RING E3 ubiquitin ligase 4 (CRL4) plays an essential role in cell cycle progression. Recent efforts using high throughput screening and follow up hit-to-lead studies have led to identification of small molecules 33-11 and KH-4-43 that inhibit E3 CRL4's core ligase complex and exhibit anticancer potential. This review provides: 1) an updated perspective of E3 CRL4, including structural organization, major substrate targets and role in cancer; 2) a discussion of the challenges and strategies for finding the CRL inhibitor; and 3) a summary of the properties of the identified CRL4 inhibitors as well as a perspective on their potential utility to probe CRL4 biology and act as therapeutic agents.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Genetics and Genomics, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| |
Collapse
|
11
|
Roles of the ubiquitin ligase CUL4B and ADP-ribosyltransferase TiPARP in TCDD-induced nuclear export and proteasomal degradation of the transcription factor AHR. J Biol Chem 2021; 297:100886. [PMID: 34146543 PMCID: PMC8318916 DOI: 10.1016/j.jbc.2021.100886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.
Collapse
|
12
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
13
|
DCAF14 promotes stalled fork stability to maintain genome integrity. Cell Rep 2021; 34:108669. [PMID: 33503431 PMCID: PMC7941590 DOI: 10.1016/j.celrep.2020.108669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance. Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks.
Collapse
|
14
|
Ritelli M, Palagano E, Cinquina V, Beccagutti F, Chiarelli N, Strina D, Hall IF, Villa A, Sobacchi C, Colombi M. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency. Bone 2020; 140:115571. [PMID: 32768688 DOI: 10.1016/j.bone.2020.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Biallelic variants in neuroblastoma-amplified sequence (NBAS) cause an extremely broad spectrum of phenotypes. Clinical features range from isolated recurrent episodes of liver failure to multisystemic syndrome including short stature, skeletal osteopenia and dysplasia, optic atrophy, and a variable immunological, cutaneous, muscular, and neurological abnormalities. Hemizygous variants in CUL4B cause syndromic X-linked intellectual disability characterized by limitations in intellectual functions, developmental delays in gait, cognitive, and speech functioning, and other features including short stature, dysmorphism, and cerebral malformations. In this study, we report on a 4.5-month-old preterm infant with a complex phenotype mainly characterized by placental-related severe intrauterine growth restriction, post-natal growth failure with spontaneous bone fractures, which led to a suspicion of osteogenesis imperfecta, and lethal bronchopulmonary dysplasia with pulmonary hypertension. Whole exome sequencing identified compound heterozygosity for a known frameshift and a novel missense variant in NBAS and hemizygosity for a known CUL4B nonsense mutation. In vitro functional studies on the novel NBAS missense substitution demonstrated altered Golgi-to-endoplasmic reticulum retrograde vesicular trafficking and reduced collagen secretion, likely explaining part of the patient's phenotype. We also provided a comprehensive overview of the phenotypic features of NBAS and CUL4B deficiency, thus updating the recently emerging NBAS genotype-phenotype correlations. Our findings highlight the power of a genome-first approach for an early diagnosis of complex phenotypes.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Beccagutti
- Fondazione Poliambulanza, Department of Neonatal Intensive Care, 25124 Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | | | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
15
|
CRL4 Ubiquitin Pathway and DNA Damage Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:225-239. [PMID: 31898231 DOI: 10.1007/978-981-15-1025-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA damage occurs in a human cell at an average frequency of 10,000 incidences per day by means of external and internal culprits, damage that triggers sequential cellular responses and stalls the cell cycle while activating specific DNA repair pathways. Failure to remove DNA lesions would compromise genomic integrity, leading to human diseases such as cancer and premature aging. If DNA damage is extensive and cannot be repaired, cells undergo apoptosis. DNA damage response (DDR) often entails posttranslational modifications of key DNA repair and DNA damage checkpoint proteins, including phosphorylation and ubiquitination. Cullin-RING ligase 4 (CRL4) enzyme has been found to target multiple DDR proteins for ubiquitination. In this chapter, we will discuss key repair and checkpoint proteins that are subject to ubiquitin-dependent regulation by members of the CRL4 family during ultraviolet light (UV)-induced DNA damage.
Collapse
|
16
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
17
|
Song Y, Li P, Qin L, Xu Z, Jiang B, Ma C, Shao C, Gong Y. CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription. Cell Mol Immunol 2019; 18:339-349. [PMID: 31729464 DOI: 10.1038/s41423-019-0323-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) play critical roles in innate immunity and inflammation. The molecular mechanisms by which TLR signaling is fine-tuned remain to be completely elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING E3 ligase complex (CRL4B), has been shown to regulate diverse developmental and physiological processes by catalyzing monoubiquitination for histone modification or polyubiquitination for proteasomal degradation. Here, we identified the role of CUL4B as an intrinsic negative regulator of the TLR-triggered inflammatory response. Deletion of CUL4B in macrophages increased the production of proinflammatory cytokines and decreased anti-inflammatory cytokine IL-10 production in response to pathogens that activate TLR3, TLR4, or TLR2. Myeloid cell-specific Cul4b knockout mice were more susceptible to septic shock when challenged with lipopolysaccharide, polyinosinic-polycytidylic acid or Salmonella typhimurium infection. We further demonstrated that enhanced TLR-induced inflammatory responses in the absence of CUL4B were mediated by increased GSK3β activity. Suppression of GSK3β activity efficiently blocked the TLR-triggered increase in proinflammatory cytokine production and attenuated TLR-triggered death in Cul4b mutant mice. Mechanistically, CUL4B was found to negatively regulate TLR-triggered signaling by epigenetically repressing the transcription of Pten, thus maintaining the anti-inflammatory PI3K-AKT-GSK3β pathway. The upregulation of PTEN caused by CUL4B deletion led to uncontrolled GSK3β activity and excessive inflammatory immune responses. Thus, our findings indicate that CUL4B functions to restrict TLR-triggered inflammatory responses through regulating the AKT-GSK3β pathway.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhiliang Xu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
A novel CUL4B splice site variant in a young male exhibiting less pronounced features. Hum Genome Var 2019; 6:43. [PMID: 31645981 PMCID: PMC6804535 DOI: 10.1038/s41439-019-0074-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/20/2022] Open
Abstract
Patients with variants in CUL4B exhibit syndromic intellectual disability (MIM #300354). A seven-year-old boy presented with intellectual disability, a history of seizure, characteristic facial features, and short stature. Whole-exome sequencing detected a c.974+3A>G variant in CUL4B, which was subsequently confirmed to disrupt mRNA splicing. The current patient showed less pronounced phenotypic features compared with the previously reported cases. This report, therefore, provides evidence of genotype–phenotype correlations in CUL4B-related disorders.
Collapse
|
19
|
Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity. PLoS One 2019; 14:e0219782. [PMID: 31329620 PMCID: PMC6645535 DOI: 10.1371/journal.pone.0219782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Apoptotic protease-activating factor 1 (Apaf-1) is a component of apoptosome, which regulates caspase-9 activity. In addition to apoptosis, Apaf-1 plays critical roles in the intra-S-phase checkpoint; therefore, impaired expression of Apaf-1 has been demonstrated in chemotherapy-resistant malignant melanoma and nuclear translocation of Apaf-1 has represented a favorable prognosis of patients with non-small cell lung cancer. In contrast, increased levels of Apaf-1 protein are observed in the brain in Huntington’s disease. The regulation of Apaf-1 protein is not yet fully understood. In this study, we show that etoposide triggers the interaction of Apaf-1 with Cullin-4B, resulting in enhanced Apaf-1 ubiquitination. Ubiquitinated Apaf-1, which was degraded in healthy cells, binds p62 and forms aggregates in the cytosol. This complex of ubiquitinated Apaf-1 and p62 induces caspase-9 activation following MG132 treatment of HEK293T cells that stably express bcl-xl. These results show that ubiquitinated Apaf-1 may activate caspase-9 under conditions of proteasome impairment.
Collapse
|
20
|
Chen CY, Yu IS, Pai CH, Lin CY, Lin SR, Chen YT, Lin SW. Embryonic Cul4b is important for epiblast growth and location of primitive streak layer cells. PLoS One 2019; 14:e0219221. [PMID: 31260508 PMCID: PMC6602292 DOI: 10.1371/journal.pone.0219221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Cul4b-null (Cul4bΔ/Y) mice undergo growth arrest and degeneration during the early embryonic stages and die at E9.5. The pathogenic causes of this lethality remain incompletely characterized. However, it has been hypothesized that the loss of Cul4b function in extraembryonic tissues plays a key role. In this study, we investigated possible causes of death for Cul4b-null embryos, particularly in regard to the role of embryonic Cul4b. First, we show that the loss of embryonic Cul4b affects the growth of the inner cell mass in vitro and delays epiblast development during the gastrulation period at E6.5~E7.5 in vivo, as highlighted by the absence of the epiblastic transcription factor Brachyury from E6.5~E7.5. Additionally, at E7.5, strong and laterally expanded expression of Eomes and Fgf8 signaling was detected. Sectioning of these embryos showed disorganized primitive streak layer cells. Second, we observed that Mash2-expressing cells were present in the extraembryonic tissues of Cul4b-deficient embryos at E6.5 but were absent at E7.5. In addition, the loss of Cul4b resulted in decreased expression of cyclin proteins, which are required for the cell cycle transition from G1 to S. Taken together, these observations suggest that the embryonic expression of Cul4b is important for epiblast growth during E6.5~E7.5, and the loss of Cul4b results in either delayed growth of the epiblast or defective localization of primitive streak layer cells. As a result, the signaling activity mediated by the epiblast for subsequent ectoplacental cone development is affected, with the potential to induce growth retardation and lethality in Cul4bΔ/Y embryos.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsueh Pai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Cul4a promotes zebrafish primitive erythropoiesis via upregulating scl and gata1 expression. Cell Death Dis 2019; 10:388. [PMID: 31101894 PMCID: PMC6525236 DOI: 10.1038/s41419-019-1629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
CUL4A and CUL4B are closely related members in Cullin family and can each assemble a Cullin-RING E3 ligase complex (Cullin-RING Ligase 4A or 4B, CRL4A, or CRL4B) and participate in a variety of biological processes. Previously we showed that zebrafish cul4a, but not cul4b, is essential for cardiac and pectoral fin development. Here, we have identified cul4a as a crucial regulator of primitive erythropoiesis in zebrafish embryonic development. Depletion of cul4a resulted in a striking reduction of erythroid cells due to the inhibition of erythroid differentiation. Transcript levels for early hematopoietic regulatory genes including scl, lmo2, and gata1 are significantly reduced in cul4a-deficient embryos. Mechanistically, we demonstrated that scl and gata1, the central regulators of primitive hematopoiesis for erythroid determination, are transcriptionally upregulated by cul4a. These findings demonstrate an important role for cul4a in primitive erythropoiesis and may bear implications in regeneration medicine of anemia and related diseases.
Collapse
|
22
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
He YM, Xiao YS, Wei L, Zhang JQ, Peng CH. CUL4B promotes metastasis and proliferation in pancreatic cancer cells by inducing epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. J Cell Biochem 2018; 119:5308-5323. [PMID: 29274277 DOI: 10.1002/jcb.26643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
This study determines whether cullin 4B (CUL4B) promotes pancreatic cancer (PC) metastasis by inducing epithelial-mesenchymal transition (EMT) via the Wnt/β-catenin signaling pathway. A total of 64 PC patients were enrolled in this study. Human PC cell lines were distributed into blank, negative control, shCUL4B, PLOC, PLOC-CUL4B, and PLOC-CUL4B + siRNA-β-catenin groups. The expressions of CUL4B, Wnt/β-catenin signaling pathway-related proteins, and EMT-related proteins were determined using RT-qPCR and Western blotting. The positive expressions of CUL4B and β-catenin protein in tissues were detected by immunohistochemistry. MTT assay and flow cytometry was performed for cell proliferation and cell cycle, scratch test, and transwell assay for cell migration and invasion ability. CUL4B and β-catenin were expressed at a higher level in PC tissues than in paracancerous tissues though paracancerous tissues had higher expressions of CUL4B and β-catenin than normal tissues. The PLOC-CUL4B group showed increased CUL4B, Wnt, β-catenin, LEF-1, c-Jun, Cyclin D1, N-cadherin, Vimentin, Snail, and ZEB1 expression; decreased E-cadherin expression; accelerated cell proliferation; increased S-phase cell percentages; increased cell migration ability; more liver metastases; and enlarged tumor than the PLOC and PLOC-CUL4B + siRNA-β-catenin groups. The shCUL4B group showed decreased CUL4B, Wnt, β-catenin, LEF-1, c-Jun, Cyclin D1, N-cadherin, Vimentin, Snail, and ZEB1 expression; increased E-cadherin expression; decelerated cell proliferation; decreased S-phase cell percentages; reduced cell migration ability; less liver metastases; and decreased tumor weight than the blank and negative control groups. We demonstrate that CUL4B promotes PC metastasis by inducing EMT via the Wnt/β-catenin signaling pathway. Therefore, CUL4B might be the clinical target for treating PC.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Lei Wei
- Department of Hepato-Pancreato-Bililary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Jia-Qiang Zhang
- Department of General Surgery, Ruijin Hospital, Zhejiang Xiaoshan Hospital, Hangzhou, P.R. China
| | - Cheng-Hong Peng
- Department of General Surgery, Ruijin Hospital, Zhejiang Xiaoshan Hospital, Hangzhou, P.R. China
| |
Collapse
|
24
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
25
|
Abstract
Cullin 4B (CUL4B) is a scaffold of the Cullin4B-Ring E3 ligase complex (CRL4B) that plays an important role in proteolysis and is implicated in tumorigenesis. Aberrant expression of CUL4B has been reported in various types of human diseases. Recently, studies have shown that CUL4B was overexpressed in a multitude of solid neoplasms and affect the expression of several tumor suppressor genes. In this review, we aim to summarize the biological function of CUL4B in order to better understand its pathogenesis in human cancers.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong People's Republic of China.,Shandong University School of Medicine, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
26
|
Li Q, Cui M, Yang F, Li N, Jiang B, Yu Z, Zhang D, Wang Y, Zhu X, Hu H, Li PS, Ning SL, Wang S, Qi H, Song H, He D, Lin A, Zhang J, Liu F, Zhao J, Gao L, Yi F, Xue T, Sun JP, Gong Y, Yu X. A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions. J Clin Invest 2017; 127:2631-2646. [PMID: 28604389 DOI: 10.1172/jci91348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
Somatostatin secreted by pancreatic δ cells mediates important paracrine interactions in Langerhans islets, including maintenance of glucose metabolism through the control of reciprocal insulin and glucagon secretion. Disruption of this circuit contributes to the development of diabetes. However, the precise mechanisms that control somatostatin secretion from islets remain elusive. Here, we found that a super-complex comprising the cullin 4B-RING E3 ligase (CRL4B) and polycomb repressive complex 2 (PRC2) epigenetically regulates somatostatin secretion in islets. Constitutive ablation of CUL4B, the core component of the CRL4B-PRC2 complex, in δ cells impaired glucose tolerance and decreased insulin secretion through enhanced somatostatin release. Moreover, mechanistic studies showed that the CRL4B-PRC2 complex, under the control of the δ cell-specific transcription factor hematopoietically expressed homeobox (HHEX), determines the levels of intracellular calcium and cAMP through histone posttranslational modifications, thereby altering expression of the Cav1.2 calcium channel and adenylyl cyclase 6 (AC6) and modulating somatostatin secretion. In response to high glucose levels or urocortin 3 (UCN3) stimulation, increased expression of cullin 4B (CUL4B) and the PRC2 subunit histone-lysine N-methyltransferase EZH2 and reciprocal decreases in Cav1.2 and AC6 expression were found to regulate somatostatin secretion. Our results reveal an epigenetic regulatory mechanism of δ cell paracrine interactions in which CRL4B-PRC2 complexes, Cav1.2, and AC6 expression fine-tune somatostatin secretion and facilitate glucose homeostasis in pancreatic islets.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Na Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Baichun Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Zhen Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Daolai Zhang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yijing Wang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xibin Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Huili Hu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Pei-Shan Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Shang-Lei Ning
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Si Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Haibo Qi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Hechen Song
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Dongfang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology.,Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina, USA
| | - Jingjing Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tian Xue
- Hefei National Laboratory for Physical Science at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Peng Sun
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China.,Duke University, School of Medicine, Durham, North Carolina, USA
| | - Yaoqin Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| |
Collapse
|
27
|
Mi J, Zou Y, Lin X, Lu J, Liu X, Zhao H, Ye X, Hu H, Jiang B, Han B, Shao C, Gong Y. Dysregulation of the miR-194-CUL4B negative feedback loop drives tumorigenesis in non-small-cell lung carcinoma. Mol Oncol 2017; 11:305-319. [PMID: 28164432 PMCID: PMC5527444 DOI: 10.1002/1878-0261.12038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, is overexpressed in many types of cancers and represses many tumor suppressors through epigenetic mechanisms. However, the mechanisms by which CUL4B is upregulated remain to be elucidated. Here, we show that CUL4B is upregulated in non‐small‐cell lung carcinoma (NSCLC) tissues and is critically required for cell proliferation and migration in vitro and for xenograft tumor formation in vivo. We found that microRNA‐194 (miR‐194) and CUL4B protein were inversely correlated in cancer specimens and demonstrated that miR‐194 could downregulate CUL4B by directly targeting its 3′‐UTR. We also showed that CUL4B could be negatively regulated by p53 in a miR‐194‐dependent manner. miR‐194 was further shown to attenuate the malignant phenotype of lung cancer cells by downregulating CUL4B. Interestingly, CRL4B also epigenetically represses miR‐194 by catalyzing monoubiquitination at H2AK119 and by coordinating with PRC2 to promote trimethylation at H3K27 at the gene clusters encoding miR‐194. RBX1, another component in CRL4B complex, is also targeted by miR‐194 in NSCLC cells. Our results thus establish a double‐negative feedback loop between miR‐194 and CRL4B, dysregulation of which contributes to tumorigenesis. The function of miR‐194 as a negative regulator of CUL4B has therapeutic implications in lung cancer.
Collapse
Affiliation(s)
- Jun Mi
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University School of Stomatology, Jinan, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiaohua Lin
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Juanjuan Lu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Hui Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiang Ye
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Bo Han
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Changshun Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Genetics/Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Jia L, Yan F, Cao W, Chen Z, Zheng H, Li H, Pan Y, Narula N, Ren X, Li H, Zhou P. Dysregulation of CUL4A and CUL4B Ubiquitin Ligases in Lung Cancer. J Biol Chem 2016; 292:2966-2978. [PMID: 27974468 DOI: 10.1074/jbc.m116.765230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
The Cullin-RING ubiquitin ligase 4 (CRL4) is implicated in controlling cell cycle, DNA damage repair, and checkpoint response based on studies employing cell lines and mouse models. CRL4 proteins, including CUL4A and CUL4B, are often highly accumulated in human malignancies. Elevated CRL4 attenuates DNA damage repair and increases genome instability that is believed to facilitate tumorigenesis. However, this has yet to be evaluated in human patients with cancer. In our study, 352 lung cancer and 62 normal lung specimens of Asian origin were constructed into tissue microarrays of four distinct lung cancer subtypes. Expression of CUL4A, CUL4B, and their substrates was detected by immunohistochemistry and analyzed statistically for their prognostic value and association with DNA damage response and genomic instability. Our results show that both CUL4A and CUL4B are overexpressed in the majority of lung carcinomas (PCUL4A <0.001 and PCUL4B <0.001) and significantly associated with tumor size (PCUL4A <0.001 and PCUL4B = 0.002), lymphatic invasion (PCUL4A = 0.004 and PCUL4B <0.001), metastasis (PCUL4A = 0.019 and PCUL4B = 0.006), and advanced TNM stage (PCUL4A <0.001 and PCUL4B <0.001), which parallels gene amplification and abnormal activation of the canonical WNT signaling. Moreover, overexpression of CUL4A, but not CUL4B, is significantly associated with tobacco smoking (p = 0.01) and is inversely correlated with XPC and P21, both of which are substrates of CUL4A (PCUL4A = 0.019 and PCUL4B = 0.006). Higher levels of CUL4A or CUL4B are significantly associated with the overall survival of patients (PCUL4A <0.001 and PCUL4B <0.001) and progression-free survival (PCUL4A <0.001 and PCUL4B = 0.001). Our findings revealed that CUL4A and CUL4B are differentially associated with etiologic factors for pulmonary malignancies and are independent prognostic markers for the survival of distinct lung cancer subtypes.
Collapse
Affiliation(s)
- Lei Jia
- From the Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy
| | - Fan Yan
- From the Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy.,the Departments of Pathology and Laboratory Medicine and
| | - Wenfeng Cao
- Department of Pathology, Key Laboratory of Tianjin Cancer Prevention and Treatment
| | - Zhengming Chen
- Healthcare Policy and Research, Weill Cornell Medical College, New York, New York 10065
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, and
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, and
| | - Yi Pan
- Department of Pathology, Key Laboratory of Tianjin Cancer Prevention and Treatment
| | - Navneet Narula
- the Departments of Pathology and Laboratory Medicine and
| | - Xiubao Ren
- From the Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy,
| | - Hui Li
- From the Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, .,the Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and
| | - Pengbo Zhou
- From the Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, .,the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
29
|
Chen LJ, Xu WM, Yang M, Wang K, Chen Y, Huang XJ, Ma QH. HUWE1 plays important role in mouse preimplantation embryo development and the dysregulation is associated with poor embryo development in humans. Sci Rep 2016; 6:37928. [PMID: 27901130 PMCID: PMC5128802 DOI: 10.1038/srep37928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022] Open
Abstract
HUWE1 is a HECT domain containing ubiquitin ligase implicated in neurogenesis, spermatogenesis and cancer development. The purpose of the current study is to investigate the role of HUWE1 in early embryo development. Here we demonstrate that Huwe1 is expressed in both nucleus and cytoplasm of preimplantation mouse embryos as well as gametes. Hypoxia (5% O2) treatment could significantly increase Huwe1 expression during mouse embryo development process. HUWE1 knockdown inhibited normal embryonic development and reduced blastocyst formation, and increased apoptotic cell numbers were observed in the embryos of HUWE1 knockdown group. Human embryo staining result showed that reduced HUWE1 staining was observed in the poor-quality embryos. Furthermore, Western blot result showed that significantly reduced expression of HUWE1 was observed in the villi of miscarriage embryos compared with the normal control, indicating that reduced expression of HUWE1 is related to poor embryo development. Oxidative reagent, H2O2 inhibited HUWE1 expression in human sperm, indicating that HUWE1 expression in sperm is regulated by oxidative stress. In conclusion, these results suggest that HUWE1 protein could contribute to preimplantation embryo development and dysregulated expression of HUWE1 could be related to poor embryo development and miscarriage in IVF clinic.
Collapse
Affiliation(s)
- L J Chen
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - W M Xu
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - M Yang
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - K Wang
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Y Chen
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - X J Huang
- College of Animal Science &Technology, Nanjing Agriculture University, Nanjing, China
| | - Q H Ma
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
30
|
Sang Y, Yan F, Ren X. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget 2016; 6:42590-602. [PMID: 26460955 PMCID: PMC4767455 DOI: 10.18632/oncotarget.6052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
CRLs (Cullin-RING E3 ubiquitin ligases) are the largest E3 ligase family in eukaryotes, which ubiquitinate a wide range of substrates involved in cell cycle regulation, signal transduction, transcriptional regulation, DNA damage response, genomic integrity, tumor suppression and embryonic development. CRL4 E3 ubiquitin ligase, as one member of CRLs family, consists of a RING finger domain protein, cullin4 (CUL4) scaffold protein and DDB1–CUL4 associated substrate receptors. The CUL4 subfamily includes two members, CUL4A and CUL4B, which share extensively sequence identity and functional redundancy. Aberrant expression of CUL4 has been found in a majority of tumors. Given the significance of CUL4 in cancer, understanding its detailed aspects of pathogenesis of human malignancy would have significant value for the treatment of cancer. Here, the work provides an overview to address the role of CRL4 E3 ubiquitin ligase in cancer development and progression, and discuss the possible mechanisms of CRL4 ligase involving in many cellular processes associated with tumor. Finally, we discuss its potential value in cancer therapy.
Collapse
Affiliation(s)
- Youzhou Sang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Fan Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
31
|
Yuan J, Jiang B, Zhang A, Qian Y, Tan H, Gao J, Shao C, Gong Y. Accelerated hepatocellular carcinoma development in CUL4B transgenic mice. Oncotarget 2016; 6:15209-21. [PMID: 25945838 PMCID: PMC4558146 DOI: 10.18632/oncotarget.3829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
Cullin 4B (CUL4B) is a component of the Cullin 4B-Ring E3 ligase (CRL4B) complex that functions in proteolysis and in epigenetic regulation. CUL4B possesses tumor-promoting properties and is markedly upregulated in many types of human cancers. To determine the role of CUL4B in liver tumorigenesis, we generated transgenic mice that expressed human CUL4B in livers and other tissues and evaluated the development of spontaneous and chemically-induced hepatocellular carcinomas. We observed that CUL4B transgenic mice spontaneously developed liver tumors at a high incidence at old ages and exhibited enhanced DEN-induced hepatocarcinogenesis. There was a high proliferation rate in the livers of CUL4B transgenic mice that was accompanied by increased levels of Cdk1, Cdk4 and cyclin D1 and decreased level of p16. The transgenic mice also exhibited increased compensatory proliferation after DEN-induced liver injury, which was accompanied by activation of Akt, Erk, p38 and NF-κB. We also found that Prdx3 was downregulated and that DEN induced a higher level of reactive oxygen species in the livers of transgenic mice. Together, our results demonstrate a critical role of CUL4B in hepatocarcinogenesis in mice.
Collapse
Affiliation(s)
- Jupeng Yuan
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Aizhen Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Life Science, Jinan, China
| | - Yanyan Qian
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Haining Tan
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Jiangang Gao
- Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Life Science, Jinan, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
32
|
Yin Y, Liu L, Yang C, Lin C, Veith GM, Wang C, Sutovsky P, Zhou P, Ma L. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis. J Biol Chem 2016; 291:6923-35. [PMID: 26846852 DOI: 10.1074/jbc.m115.699660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis.
Collapse
Affiliation(s)
- Yan Yin
- From the Division of Dermatology, Department of Medicine and
| | - Liren Liu
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Chenyi Yang
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Congxing Lin
- From the Division of Dermatology, Department of Medicine and
| | | | - Caihong Wang
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter Sutovsky
- the Division of Animal Sciences and the Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Pengbo Zhou
- the Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, and
| | - Liang Ma
- From the Division of Dermatology, Department of Medicine and
| |
Collapse
|
33
|
Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility. Sci Rep 2016; 6:20227. [PMID: 26832838 PMCID: PMC4735749 DOI: 10.1038/srep20227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/23/2015] [Indexed: 01/21/2023] Open
Abstract
In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4b(Δ)/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis.
Collapse
|
34
|
SCF(β-TRCP) promotes cell growth by targeting PR-Set7/Set8 for degradation. Nat Commun 2015; 6:10185. [PMID: 26666832 PMCID: PMC4682171 DOI: 10.1038/ncomms10185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
The Set8/PR-Set7/KMT5a methyltransferase plays critical roles in governing transcriptional regulation, cell cycle progression and tumorigenesis. Although CRL4(Cdt2) was reported to regulate Set8 stability, deleting the PIP motif only led to partial resistance to ultraviolet-induced degradation of Set8, indicating the existence of additional E3 ligase(s) controlling Set8 stability. Furthermore, it remains largely undefined how DNA damage-induced kinase cascades trigger the timely destruction of Set8 to govern tumorigenesis. Here, we report that SCF(β-TRCP) earmarks Set8 for ubiquitination and degradation in a casein kinase I-dependent manner, which is activated by DNA-damaging agents. Biologically, both CRL4(Cdt2) and SCF(β-TRCP)-mediated pathways contribute to ultraviolet-induced Set8 degradation to control cell cycle progression, governing the onset of DNA damage-induced checkpoints. Therefore, like many critical cell cycle regulators including p21 and Cdt1, we uncover a tight regulatory network to accurately control Set8 abundance. Our studies further suggest that aberrancies in this delicate degradation pathway might contribute to aberrant elevation of Set8 in human tumours.
Collapse
|
35
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|
36
|
Li Q, Li Y, Gu B, Fang L, Zhou P, Bao S, Huang L, Dai X. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation. J Biol Chem 2015; 290:21553-67. [PMID: 26170450 DOI: 10.1074/jbc.m115.639419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 01/16/2023] Open
Abstract
Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression.
Collapse
Affiliation(s)
- Qiuling Li
- From the Department of Biological Chemistry, the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yuewei Li
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Bingnan Gu
- From the Department of Biological Chemistry
| | - Lei Fang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
| | - Pengbo Zhou
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Shilai Bao
- the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697,
| | - Xing Dai
- From the Department of Biological Chemistry,
| |
Collapse
|
37
|
Zhao W, Jiang B, Hu H, Zhang S, Lv S, Yuan J, Qian Y, Zou Y, Li X, Jiang H, Liu F, Shao C, Gong Y. Lack of CUL4B leads to increased abundance of GFAP-positive cells that is mediated by PTGDS in mouse brain. Hum Mol Genet 2015; 24:4686-97. [PMID: 26025376 DOI: 10.1093/hmg/ddv200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Glial fibrillary acidic protein (GFAP) is regarded as a hallmark of mature astrocytes, though some GFPA-positive cells may act as neural stem cells. Missense heterozygous mutations in GFAP cause Alexander disease that manifests leukodystrophy and intellectual disability. Here, we show that CUL4B, a scaffold protein that assembles E3 ubiquitin ligase, represses the expression of GFAP in neural progenitor cells (NPCs) during brain development. Lack of Cul4b in NPCs in cultures led to increased generation of astrocytes, marked by GFAP and S100β. The GFAP+ cells were also found to be more abundant in the brains of nervous system-specific Cul4b knockout mice in vivo. Moreover, we demonstrated that the increased generation of GFAP+ cells from Cul4b-null NPCs was mediated by an upregulation of prostaglandin D2 synthase PTGDS. We showed that the increased GFAP expression can be attenuated by pharmacological inhibition of the PTGDS enzymatic activity or by shRNA-mediated knockdown of Ptgds. Importantly, exogenously added PTGDS could promote the generation of GFAP+ cells from wild-type NPCs. We further observed that Ptgds is targeted and repressed by the CUL4B/PRC2 complex. Together, our results demonstrate CUL4B as a negative regulator of GFAP expression during neural development.
Collapse
Affiliation(s)
- Wei Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Shuqian Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Shuaishuai Lv
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jupeng Yuan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yanyan Qian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xi Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hong Jiang
- Institute of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, China and
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | - Changshun Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China,
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China,
| |
Collapse
|
38
|
Zhang Q, Yu S, Huang X, Tan Y, Zhu C, Wang YL, Wang H, Lin HY, Fu J, Wang H. New insights into the function of Cullin 3 in trophoblast invasion and migration. Reproduction 2015; 150:139-49. [PMID: 26021998 DOI: 10.1530/rep-15-0126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/28/2015] [Indexed: 12/27/2022]
Abstract
Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Song Yu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xing Huang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yi Tan
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Cheng Zhu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yan-Ling Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hai-Yan Lin
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiejun Fu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongmei Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
39
|
Zha Z, Han X, Smith MD, Liu Y, Giguère PM, Kopanja D, Raychaudhuri P, Siderovski DP, Guan KL, Lei QY, Xiong Y. A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation. Mol Cell 2015; 58:794-803. [PMID: 25982117 DOI: 10.1016/j.molcel.2015.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 02/17/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors, regulate a wide range of physiological processes, and are the major targets of pharmaceutical drugs. Canonical signaling from GPCRs is relayed to intracellular effector proteins by trimeric G proteins, composed of α, β, and γ subunits (Gαβγ). Here, we report that G protein β subunits (Gβ) bind to DDB1 and that Gβ2 targets GRK2 for ubiquitylation by the DDB1-CUL4A-ROC1 ubiquitin ligase. Activation of GPCR results in PKA-mediated phosphorylation of DDB1 at Ser645 and its dissociation from Gβ2, leading to increase of GRK2 protein. Deletion of Cul4a results in cardiac hypertrophy in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a non-canonical function of the Gβ protein as a ubiquitin ligase component and a mechanism of feedback regulation of GPCR signaling.
Collapse
Affiliation(s)
- Zhengyu Zha
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; School of Life Sciences, Fudan University 200032, People's Republic of China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoran Han
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; School of Life Sciences, Fudan University 200032, People's Republic of China
| | - Matthew D Smith
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yang Liu
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick M Giguère
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL 60607, USA
| | - David P Siderovski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China.
| | - Yue Xiong
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China; Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
41
|
Autosomal Recessive Ataxias Due to Defects in DNA Repair. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Zhao X, Jiang B, Hu H, Mao F, Mi J, Li Z, Liu Q, Shao C, Gong Y. Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Hum Mol Genet 2014; 24:853-64. [PMID: 25274780 DOI: 10.1093/hmg/ddu503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CUL4A and CUL4B are closely related cullin family members and can each assemble a Cullin-RING E3 ligase complex (CRL) and participate in a variety of biological processes. While the CRLs formed by the two cullin members may have common targets, the two appeared to have very different consequences when mutated or disrupted in mammals. We here investigated the roles of cul4a and cul4b during zebrafish embryogenesis by using the morpholino knockdown approach. We found that cul4a is essential for cardiac development as well as for pectoral fin development. Whereas cul4a morphants appeared to be unperturbed in chamber specification, they failed to undergo heart looping. The failures in heart looping and pectoral fin formation in cul4a morphants were accompanied by greatly reduced proliferation of cardiac cells and pectoral fin-forming cells. We demonstrated that tbx5a, a transcription factor essential for heart and limb development, is transcriptionally upregulated by cul4a and mediates the function of cul4a in cardiac and pectoral fin development. In contrast to the critical importance of cul4a, cul4b appeared to be dispensable for zebrafish development and was incapable of compensating for the loss of cul4a. This work provides the first demonstration of an essential role of cul4a, but not cul4b, in cardiac development and in the regulation of tbx5a in zebrafish. These findings justify exploring the functional role of CUL4A in human cardiac development.
Collapse
Affiliation(s)
- Xiaohan Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Fei Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jun Mi
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Zhaohui Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qiji Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Changshun Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
43
|
Ji Q, Hu H, Yang F, Yuan J, Yang Y, Jiang L, Qian Y, Jiang B, Zou Y, Wang Y, Shao C, Gong Y. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J Cell Sci 2014; 127:4679-91. [PMID: 25189618 DOI: 10.1242/jcs.154245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
CUL4B, a scaffold protein that assembles the CRL4B ubiquitin ligase complex, participates in the regulation of a broad spectrum of biological processes. Here, we demonstrate a crucial role of CUL4B in driving cell cycle progression. We show that loss of CUL4B results in a significant reduction in cell proliferation and causes G1 cell cycle arrest, accompanied by the upregulation of the cyclin-dependent kinase (CDK) inhibitors (CKIs) p21 and p57 (encoded by CDKN1A and CDKN1C, respectively). Strikingly, CUL4B was found to negatively regulate the function of p21 through transcriptional repression, but not through proteolysis. Furthermore, we demonstrate that CRL4B and SIN3A-HDAC complexes interact with each other and co-occupy the CDKN1A and CDKN1C promoters. Lack of CUL4B led to a decreased retention of SIN3A-HDAC components and increased levels of acetylated H3 and H4. Interestingly, the ubiquitylation function of CRL4B is not required for the stable retention of SIN3A-HDAC on the promoters of target genes. Thus, in addition to directly contributing to epigenetic silencing by catalyzing H2AK119 monoubiquitylation, CRL4B also facilitates the deacetylation function of SIN3A-HDAC. Our findings reveal a coordinated action between CRL4B and SIN3A-HDAC complexes in transcriptional repression.
Collapse
Affiliation(s)
- Qinghong Ji
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Fan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Jupeng Yuan
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Yang Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Liangqian Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Yanyan Qian
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Yan Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, 250012, China
| |
Collapse
|
44
|
Enhanced LPS-induced peritonitis in mice deficiency of cullin 4B in macrophages. Genes Immun 2014; 15:404-12. [PMID: 24898386 DOI: 10.1038/gene.2014.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022]
Abstract
Cullin 4B (CUL4B), a member of the cullin protein family, is a scaffold protein of the CUL4B-RING-E3 ligase complex that ubiquitinates intracellular proteins.CUL4B's targets include cell cycle-regulated proteins and DNA replication-related molecules. In this study, we generated myeloid-specific Cul4b-deficient mice (Cul4b(f/y);LysM-Cre(KI/KI)) to investigate the influence of Cul4b deficiency on innate immunity, especially on the function of macrophages. Our results show that an intraperitoneal injection of lipopolysaccharide (LPS) led to a significant decrease in body weights and increased leukocyte infiltrates with increased chemokines in the peritoneal cavity of Cul4b(f/y);LysM-Cre(KI/KI) mice. However, the proinflammatory cytokines, IL-6 and TNF-α did not increase in LPS-injected Cul4b(f/y);LysM-Cre(KI/KI) mice. Furthermore, bone marrow-derived macrophages from Cul4b(f/y);LysM-Cre(KI/KI) mice secreted higher levels of chemokines but lower levels of TNF-α and IL-6 upon LPS stimulation. Of note, increased proliferation of Cul4b-deficient macrophages was also observed. These results show that myeloid-specific Cul4b deficiency worsens LPS-induced peritonitis. In addition, Cul4b deficiency leads to enhanced DNA replication and proliferation, increased production of chemokines but a decreased production of proinflammatory cytokines of macrophages. Our data highlight a new role of cullin family, CUL4B, in the immune system.
Collapse
|
45
|
Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem 2014; 390:93-100. [PMID: 24452595 DOI: 10.1007/s11010-014-1960-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/10/2014] [Indexed: 01/29/2023]
Abstract
Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability.
Collapse
Affiliation(s)
- Anand Thirunavukarasou
- Stem Cell Laboratory, Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, 605014, Pondicherry, India
| | | | | | | | | |
Collapse
|
46
|
Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013; 19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
47
|
Pan WW, Zhou JJ, Yu C, Xu Y, Guo LJ, Zhang HY, Zhou D, Song FZ, Fan HY. Ubiquitin E3 ligase CRL4(CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer. J Biol Chem 2013; 288:29680-91. [PMID: 23995842 DOI: 10.1074/jbc.m113.495069] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4(CDT2) repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4(CDT2) is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.
Collapse
Affiliation(s)
- Wei-Wei Pan
- From the Life Sciences Institute, Zhejiang University, Hangzhou 310058
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang S, Zhao H, Darzynkiewicz Z, Zhou P, Zhang Z, Lee EYC, Lee MYWT. A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase δ in response to DNA damage and during the S phase. J Biol Chem 2013; 288:29550-61. [PMID: 23913683 DOI: 10.1074/jbc.m113.490466] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participate in gap filling during DNA repair. We demonstrate that CRL4(Cdt2), a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4(Cdt2) included demonstration that p12 possesses a proliferating cell nuclear antigen-interacting protein-degron (PIP-degron) and that knockdown of the components of the CRL4(Cdt2) complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of overexpressed wild type p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented by mutation of p12. Thus, CRL4(Cdt2) also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4(Cdt2), i.e. the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.
Collapse
Affiliation(s)
- Sufang Zhang
- From the Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | | | | | | | | | | | | |
Collapse
|
49
|
Hannah J, Zhou PB. The CUL4A ubiquitin ligase is a potential therapeutic target in skin cancer and other malignancies. CHINESE JOURNAL OF CANCER 2013; 32:478-82. [PMID: 23845142 PMCID: PMC3845565 DOI: 10.5732/cjc.012.10279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cullin 4A (CUL4A) is an E3 ubiquitin ligase that directly affects DNA repair and cell cycle progression by targeting substrates including damage-specific DNA-binding protein 2 (DDB2), xeroderma pigmentosum complementation group C (XPC), chromatin licensing and DNA replication factor 1 (Cdt1), and p21. Recent work from our laboratory has shown that Cul4a-deficient mice have greatly reduced rates of ultraviolet-induced skin carcinomas. On a cellular level, Cul4a-deficient cells have great capacity for DNA repair and demonstrate a slow rate of proliferation due primarily to increased expression of DDB2 and p21, respectively. This suggests that CUL4A promotes tumorigenesis (as well as accumulation of skin damage and subsequent premature aging) by limiting DNA repair activity and expediting S phase entry. In addition, CUL4A has been found to be up-regulated via gene amplification or overexpression in breast cancers, hepatocellular carcinomas, squamous cell carcinomas, adrenocortical carcinomas, childhood medulloblastomas, and malignant pleural mesotheliomas. Because of its oncogenic activity in skin cancer and up-regulation in other malignancies, CUL4A has arisen as a potential candidate for targeted therapeutic approaches. In this review, we outline the established functions of CUL4A and discuss the E3 ligase's emergence as a potential driver of tumorigenesis.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| | | |
Collapse
|
50
|
XLID CUL4B mutants are defective in promoting TSC2 degradation and positively regulating mTOR signaling in neocortical neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1832:585-93. [DOI: 10.1016/j.bbadis.2013.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
|