1
|
Han X, Cheng Y, Jiang Z, Alu A, Ma X. Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024:1-19. [PMID: 39347954 DOI: 10.1142/s0192415x24500721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the Magnolia genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.
Collapse
Affiliation(s)
- Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Aqu Alu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Yan L, Liu S, Sun G, Ding B, Wang Z, Li H. Loss of SETD2-mediated downregulation of intracellular and exosomal miRNA-10b determines MAPK pathway activation and multidrug resistance in renal cancer. Mol Carcinog 2023; 62:1770-1781. [PMID: 37589422 DOI: 10.1002/mc.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
SET domain-containing 2 (SETD2) is the most frequently mutated gene among all the histone methyltransferases in clear cell renal cell carcinoma (ccRCC). Microarrays, RNA sequencing analysis and exosomes analysis of cellular supernatant were performed after transfection A498 cells with si-SETD2 or siRNA of negative control. Chromatin immunoprecipitation and Luciferase reporter assay were conducted to evaluate the interaction between SETD2 and miR-10b. Functional and drug experiments in vitro and in vivo were performed to verify the role of SETD2, miR-10b and MAP4K4. The results showed that loss of SETD2 mediated downregulation of intracellular and exosomal microRNA-10b. MAP4K4 were relevant to oncogenesis of ccRCC caused by loss of SETD2 and miR-10b. SETD2 could directly target miR-10b and regulate the expression of multidrug resistance (MDR)-1 (P-gp170) through JNK pathway, which was one of the downstream pathways of MAP4K4. The coordinated expression of SETD2/H3K36me3/miR-10b/MAPKs/JNK/MDR pathway was revealed to the progression of ccRCC.
Collapse
Affiliation(s)
- Libin Yan
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyue Liu
- Department of Endocrinology, School of Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, China
| | - Guoliang Sun
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Beichen Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhize Wang
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gao P, Li M, Lu J, Xiang D, Wang X, Xu Y, Zu Y, Guan X, Li G, Zhang C. IL-33 Downregulates Hepatic Carboxylesterase 1 in Acute Liver Injury via Macrophage-derived Exosomal miR-27b-3p. J Clin Transl Hepatol 2023; 11:1130-1142. [PMID: 37577217 PMCID: PMC10412689 DOI: 10.14218/jcth.2022.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims We previously reported that carboxylesterase 1 (CES1) expression was suppressed following liver injury. The study aimed to explore the role of interleukin (IL)-33 in liver injury and examine the mechanism by which IL-33 regulates CES1. Methods IL-33 and CES1 levels were determined in the livers of patients and lipopolysaccharide (LPS)-, acetaminophen (APAP)-treated mice. We constructed IL-33 and ST2 knockout (KO) mice. ST2-enriched immune cells in livers were screened to identify the responsible cells. Macrophage-derived exosome (MDE) activity was tested by adding exosome inhibitors. Micro-RNAs (miRs) were extracted from control and IL-33-stimulated MDEs (IL-33-MDEs) and subjected miR sequencing (miR-Seq). Candidate miR was tested in vitro and in vivo and its binding of a target gene was assessed by luciferase reporter assays. Lentivirus-vector cellular transfection and transcript silencing were used to examine pathways mediating IL-33 suppression of miR-27b-3p. Results Patient liver IL-33 and CES1 expression levels were inversely correlated. CES1 downregulation in liver injury was rescued in both IL-33-deficient and ST2 KO mice. Macrophages were shown to be responsible for IL-33 effects. IL-33-MDEs reduced CES1 levels in hepatocytes. Exosomal miR-Seq and qRT-PCR demonstrated increased miR-27b-3p levels in IL-33-MDEs; miR-27b-3p was implicated in Nrf2 targeting. IL-33 inhibition of miR-27b-3p was found to be GATA3-dependent. Conclusions IL-33-ST2-GATA3 pathway signaling increases miR-27b-3p content in MDEs, which upon being internalized by hepatocytes reduce CES1 expression by inhibiting Nrf2. The elucidation of this mechanism in this study contributes to a better understanding of CES1 dysregulation in liver injury.
Collapse
Affiliation(s)
- Ping Gao
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingli Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximin Wang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Xu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Zu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Guodong Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Franzin R, Stasi A, De Palma G, Picerno A, Curci C, Sebastiano S, Campioni M, Cicirelli A, Rizzo A, Di Lorenzo VF, Pontrelli P, Pertosa GB, Castellano G, Gesualdo L, Sallustio F. Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles. Cells 2023; 12:1655. [PMID: 37371125 DOI: 10.3390/cells12121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents strongly associated with nephrotoxicity. Tubular adult renal progenitor cells (tARPC) can regenerate functional tubules and participate in the repair processes after cisplatin exposition. This study investigated the molecular mechanisms underlying the protective effect of tARPC on renal epithelium during cisplatin nephrotoxicity. By performing a whole-genome transcriptomic analysis, we found that tARPC, in presence of cisplatin, can strongly influence the gene expression of renal proximal tubular cell [RPTEC] by inducing overexpression of CYP1B1, a member of the cytochrome P450 superfamily capable of metabolizing cisplatin and of hypoxia/cancer-related lncRNAs as MIR210HG and LINC00511. Particularly, tARPC exerted renoprotection and regeneration effects via extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p, a well-known CYP1B1 regulatory miRNA. The expression of CYP1B1 by tARPC was confirmed by analyzing biopsies of cisplatin-treated renal carcinoma patients that showed the colocalization of CYP1B1 with the tARPC marker CD133. CYP1B1 was also overexpressed in urinary EV purified from oncologic patients that presented nephrotoxicity episodes after cisplatin treatment. Interestingly CYP1B1 expression significantly correlated with creatinine and eGFR levels. Taken together, our results show that tARPC are able to counteract cisplatin-induced nephrotoxicity via CYP1B1 release through EV. These findings provide a promising therapeutic strategy for nephrotoxicity risk assessment that could be related to abundance of renal progenitors.
Collapse
Affiliation(s)
- Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Angela Picerno
- Department Interdisciplinary of Medicine (DIM), University of Bari, 70124 Bari, Italy
| | - Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Serena Sebastiano
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Monica Campioni
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Antonella Cicirelli
- Department Interdisciplinary of Medicine (DIM), University of Bari, 70124 Bari, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico 'Don Tonino Bello', IRCCS Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124 Bari, Italy
| | | | - Paola Pontrelli
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
7
|
Wen J, Huang Z, Wei Y, Xue L, Wang Y, Liao J, Liang J, Chen X, Chu L, Zhang B. Hsa-microRNA-27b-3p inhibits hepatocellular carcinoma progression by inactivating transforming growth factor-activated kinase-binding protein 3/nuclear factor kappa B signalling. Cell Mol Biol Lett 2022; 27:79. [PMID: 36138344 PMCID: PMC9502615 DOI: 10.1186/s11658-022-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in the development of hepatocellular carcinoma (HCC). Hsa-microRNA-27b-3p (hsa-miR-27b) is involved in the formation and progression of various cancers, but its role and clinical value in HCC remain unclear. Methods The expression of hsa-miR-27b in HCC was examined by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) assays of clinical samples. Cell Counting Kit-8 assays (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays, Transwell assays, filamentous actin (F-actin) staining and western blot analyses were used to determine the effects of hsa-miR-27b on HCC cells in vitro. Subcutaneous xenograft and lung metastatic animal experiments were conducted to verify the role of hsa-miR-27b in HCC in vivo. In silico prediction, qRT-PCR, western blot, anti-Argonaute 2 (AGO2) RNA immunoprecipitation (RIP) and dual luciferase reporter assays were applied to identify the target genes of hsa-miR-27b. To detect the impacts of hsa-miR-27b on nuclear factor kappa B (NF-кB) signalling cascades mediated by transforming growth factor-activated kinase-binding protein 3 (TAB3), we performed qRT-PCR, western blot assays, immunofluorescence staining, immunohistochemistry (IHC) and dual-luciferase reporter assays. Recombinant oncolytic adenovirus (OncoAd) overexpressing hsa-miR-27b was constructed to detect their therapeutic value in HCC. Results The expression of hsa-miR-27b was lower in HCC than in adjacent non-tumourous tissues (ANTs), and the reduced expression of hsa-miR-27b was associated with worse outcomes in patients with HCC. Hsa-miR-27b significantly inhibited the proliferation, migration, invasion, subcutaneous tumour growth and lung metastasis of HCC cells. The suppression of hsa-miR-27b promoted the nuclear translocation of NF-κB by upregulating TAB3 expression. TAB3 was highly expressed in HCC compared with ANTs and was negatively correlated with the expression of hsa-miR-27b. The impaired cell proliferation, migration and invasion by hsa-miR-27b overexpression were recovered by ectopic expression of TAB3. Recombinant OncoAd with overexpression of hsa-miR-27b induced anti-tumour activity compared with that induced by negative control (NC) OncoAd in vivo and in vitro. Conclusions By targeting TAB3, hsa-miR-27b acted as a tumour suppressor by inactivating the NF-кB pathway in HCC in vitro and in vivo, indicating its therapeutic value against HCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00370-4.
Collapse
Affiliation(s)
- Jingyuan Wen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yi Wei
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Lin Xue
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China.
| |
Collapse
|
8
|
Drug resistance in NSCLC is associated with tumor micro-environment. Reprod Biol 2022; 22:100680. [PMID: 35926330 DOI: 10.1016/j.repbio.2022.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Tumor cell resistance to chemotherapy is the most critical factor that influences the prognosis of cancer patients. It is generally believed that drug resistance is caused by genetic alterations in tumor cells; however, the relationship between drug resistance and the tumor microenvironment (TME) has not been adequately studied. Herein, we successfully identified drug resistance and sensitivity clusters using single-cell transcriptome sequencing data from GSE149383 and established a proportional hazards model to find genes that affected prognosis. The results showed that marker genes between resistant and sensitive clusters were significantly associated with the TME; additionally, the model showed good reliability. Furthermore, we used bulk RNA-seq data to analyze the expression of CD24 and CYP1B1, which revealed little difference in the levels of the two genes in normal and tumor tissues but a significant difference in their expression between drug-resistant and -sensitive cells. In conclusion, our study demonstrated a link between drug resistance and the TME, and we found that CD24 and CYP1B1 may be key regulators of drug resistance development in tumor cells via altering the TME.
Collapse
|
9
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
10
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
11
|
miR-27b inhibition contributes to cytotoxicity in patulin-exposed HEK293 cells. Toxicon 2022; 210:58-65. [PMID: 35217024 DOI: 10.1016/j.toxicon.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Patulin (PAT) is a mycotoxin produced by Penicillium and other fungi that contaminate fruit. PAT targets the kidney and is associated with nephrotoxicity. Micro-RNAs (miRNA) may offer new insights into PAT-induced nephrotoxicity. Cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), involved in metabolism of dietary toxins is negatively regulated by miR-27b and linked with the nuclear factor kappa B (NF-κB) pathway and peroxisome proliferator activated receptor gamma (PPARɣ) in renal fibrosis. This study investigated the effects of PAT on miR-27b, CYP1B1, PPARɣ and cytotoxicity in human kidney (HEK293) cells. HEK293 cells were exposed to PAT (2.5 μM, 24h). Protein expression of CYP1B1, PPARɣ, NF-κB (p65), pNF-κB (p65) (phospho-Ser563) and cleaved PARP-1 was quantified using western blotting. QPCR evaluated mRNA levels of CYP1B1, IL-6, miR-27b, OGG1, mtDNA, TFAM and UCP2. Mitochondrial membrane potential and phosphatidylserine (PS) externalization was evaluated by flow cytometry while levels of ATP and caspase -9, -8, -3/7 activity was measured using luminometry. PAT significantly decreased miR-27b levels (p = 0.0014) and increased CYP1B1 mRNA (p = 0.0015) and protein (p = 0.0013) levels. PPARɣ protein expression was significantly increased (p = 0.0002) and associated with decreased NF-κB activation (p = 0.0273) and IL-6 mRNA levels (p = 0.0265). Finally, PAT significantly compromised mitochondrial repair mechanisms and increased apoptotic biomarkers. PAT altered miR-27b levels and PPARɣ, with associated changes to NF-κB activation, downstream IL-6 and CYP1B1 expression. These results show that PAT impairs detoxification mechanisms leading to mitochondrial damage and apoptosis. In conclusion, PAT altered the epigenetic environment and impaired detoxification processes, supporting a mechanism for nephrotoxic outcomes.
Collapse
|
12
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
13
|
Hu XY, Song Z, Yang ZW, Li JJ, Liu J, Wang HS. Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst 2022; 147:2615-2632. [DOI: 10.1039/d2an00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MiRNAs are related to cancer drug resistance through various mechanisms. The advanced detection methods for the miRNAs are reviewed.
Collapse
Affiliation(s)
- Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wei Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia-Jing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|
16
|
Mao Q, Zhuang Q, Shen J, Chen Z, Xue D, Ding T, He X. MiRNA-124 regulates the sensitivity of renal cancer cells to cisplatin-induced necroptosis by targeting the CAPN4-CNOT3 axis. Transl Androl Urol 2021; 10:3669-3683. [PMID: 34733662 PMCID: PMC8511534 DOI: 10.21037/tau-21-777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Currently, drug-resistance is a major challenge in the treatment of renal cancer. Although microRNAs (miRNAs) have been reported to contribute to the incidence of drug resistance in renal cancer, the bio-functional roles and underlying regulatory mechanisms of novel miRNAs in cisplatin resistance remain largely unclear. Methods In this study, miRNA microarray analysis was applied to evaluate miRNA changes induced by cisplatin on RCC (renal cell carcinoma) cell lines. Then, Caki-1 and 786-0 cells were transfected with miR (miRNA)-124 mimics to observe cisplatin resistance in RCC cell lines after up-regulation of miR-124. TargetScan was used to identify putative protein-coding gene targets of miR-124. Further, the interaction between calpain small subunit 1 (Capn4) and CCR4-NOT transcription complex subunit 3 (CNOT3) was detected by quantitative real-time PCR (qPCR) and western blotting, and confirmed by co-immunoprecipitation. The effect of Capn4 and/or CNOT3 on cell viability and half maximal inhibitory concentration (IC50) value of miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated using the Cell Counting Kit-8 (CCK-8) assay. And the effect of Capn4 and/or CNOT3 on the level of necroptosis in miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated by flow cytometric analysis. Then, four groups of 786-0 cells (miR-124, miR-124+ Capn4, miR-124+ CNOT3, miR-124+ Capn4+ CNOT3) were inoculated into nude mice to observe the effect of cisplatin on tumor formation. Results miR-124 was found to be markedly elevated in renal cancer cells by cisplatin. Functionally, the overexpression of miR-124 reduced the sensitivity of renal cancer cells to cisplatin and CAPN4 was found to be a direct target of miR-124, which can negatively regulated CAPN4 expression. Moreover, ectopic expression of CAPN4 reversed the impairment of miR-124 on cisplatin-sensitivity and cisplatin-induced necroptosis. Mechanically, the present study revealed that CAPN4 could directly interact with CNOT3 and promote its degradation, and that the cisplatin-resistant phenotype was reversed by up-regulation of CNOT3. Conclusions Therefore, miR-124 is an important inhibitor in cisplatin-induced necroptosis, and the miR-124-CAPN4-CNOT3 signaling axis plays a critical role in the emergence of cisplatin-resistance.
Collapse
Affiliation(s)
- Qingyan Mao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tao Ding
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
17
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
18
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Lin YC, Chen TH, Huang YM, Wei PL, Lin JC. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines 2021; 9:biomedicines9040343. [PMID: 33805515 PMCID: PMC8065716 DOI: 10.3390/biomedicines9040343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) function as the post-transcriptional factor that finetunes the gene expression by targeting to the specific candidate. Mis-regulated expression of miRNAs consequently disturbs gene expression profile, which serves as the pivotal mechanism involved in initiation or progression of human malignancy. Cancer-relevant miRNA is potentially considered the therapeutic target or biomarker toward the precise treatment of cancer. Nevertheless, the regulatory mechanism underlying the altered expression of miRNA in cancer is largely uncovered. Detailed knowledge regarding the influence of miRNAs on solid cancer is critical for exploring its potential of clinical application. Herein, we elucidate the regulatory mechanism regarding how miRNA expression is manipulated and its impact on the pathogenesis of distinct solid cancer.
Collapse
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tso-Hsiao Chen
- Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Yu-Min Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| |
Collapse
|
20
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Cheng H, Sharen G, Wang Z, Zhou J. LncRNA UCA1 Enhances Cisplatin Resistance by Regulating CYP1B1-mediated Apoptosis via miR-513a-3p in Human Gastric Cancer. Cancer Manag Res 2021; 13:367-377. [PMID: 33469378 PMCID: PMC7813468 DOI: 10.2147/cmar.s277399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chemoresistance contributes to treatment failure of gastric cancer (GC) patients but the molecular mechanism of chemoresistance in GC is still unclear. Long-chain noncoding RNA (lncRNA) urothelial cancer associated 1 (UCA1) is associated with resistance to chemotherapy drugs. Methods We detected the expression of UCA1 in 53 pairs of GC tumor tissue and adjacent normal tissue, human normal gastric mucosa cells (GES-1) and human GC cells (HGC-27, SNU-5, AGS, SGC-7901, and NCI-N87) using RT-qPCR. Small RNA interference technology was used to knock down the expression of UCA1 in gastric cancer cells. CCK8 solution was used to detect cell viability. Flow cytometry was used to detect apoptosis, and Western blotting was used to detect protein expression. Results UCA1 was highly expressed in GC tissues and cells, and knockdown of UCA1 increased chemosensitivity to cisplatin by inducing cell apoptosis. Furthermore, UCA1 promoted CYP1B1 expression by binding to miR-513a-3p in human GC cells in vitro, and UCA1/CYP1B1 expression was negatively related to miR-513a-3p expression, while UCA1 expression was positively related to CYP1B1 expression in human GC tissues. Moreover, overexpression of miR-513a-3p or knockdown of CYP1B1 increased chemosensitivity to cisplatin, and knockdown of miR-513a-3p or overexpression of CYP1B1 decreased chemosensitivity to cisplatin by inducing cell apoptosis in human GC cells. Importantly, overexpression of CYP1B1 reduced chemosensitivity to cisplatin which increased by knockdown of UCA1, and knockdown of CYP1B1 increased chemosensitivity to cisplatin which decreased by knockdown of miR-513a-3p in human GC cells. Conclusion The lncRNA UCA1/miR-513a-3p/CYP1B1 axis regulates cisplatin resistance in human GC cells; hence, it is a potential target for treating chemoresistance in GC.
Collapse
Affiliation(s)
- Haidong Cheng
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Gaowa Sharen
- Department of Pathological Anatomy, College of Basic Medicine of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Zhaoyang Wang
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| | - Jing Zhou
- Department of Pharmacology, College of Basic Medicine of Inner Mongolia Medical University, Hohhot 010059, People's Republic of China
| |
Collapse
|
22
|
MiR-27b-3p promotes migration and invasion in colorectal cancer cells by targeting HOXA10. Biosci Rep 2020; 39:221323. [PMID: 31763673 PMCID: PMC6900470 DOI: 10.1042/bsr20191087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Dysregulation of microRNAs (miRNAs) contributes to tumor progression via the regulation of the expression of specific oncogenes and tumor suppressor genes. One such example, miR-27b-3p, has reportedly been involved in tumor progression in many types of cancer. The aim of the present study was to delve into the role and the underlying mechanism of miR-27b-3p in colorectal cancer (CRC) cells. Methods: In the present study, we detected the expression level of miR-27b-3p by RT-PCR. The effect of miR-27b-3p overexpression on cell proliferation in CRC cells was evaluated by cell counting and Edu assays. Transwell migration and invasion assays were used to examine the effects of cell migration and invasion. Bioinformatics, luciferase reporter assay and western blot assay were performed to identify the target of miR-27b-3p. Results: Here, we have demonstrated that although miR-27b-3p can affect cell morphology, it has no observable effect on the proliferation of CRC cells. However, it significantly promotes the migration and invasion of CRC cells. We discovered that HOXA10 was a newly identified target of miR-27b-3p in CRC cells, as confirmed by bioinformatics, western blots and dual luciferase reporter assay. Furthermore, the overexpression of miR-27b-3p or the suppression of HOXA10 can activate the integrin β1 signaling pathway. In conclusion, our results reveal a new function of miR-27b-3p that demonstrates its ability to promote CRC cell migration and invasion by targeting the HOXA10/integrin β1 cell signal axis. Conclusion: This may provide a mechanism to explain why miR-27b-3p promotes CRC cell migration and invasion.
Collapse
|
23
|
Lim S, Kim Y, Lee SB, Kang HG, Kim DH, Park JW, Chung D, Kong H, Yoo KH, Kim Y, Han W, Chun KH, Park JH. Inhibition of Chk1 by miR-320c increases oxaliplatin responsiveness in triple-negative breast cancer. Oncogenesis 2020; 9:91. [PMID: 33041328 PMCID: PMC7548284 DOI: 10.1038/s41389-020-00275-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) expression is enhanced in most cancers owing to oncogenic activation and constant replicative stress. Chk1 inactivation is a promising cancer therapy, as its inactivation leads to genomic instability, chromosomal catastrophe, and cancer cell death. Herein, we observed that miR-320c, downregulated in triple-negative breast cancer (TNBC) patients, can target Chk1. In addition, downregulated miR-320c expression was associated with poor overall survival in TNBC patients. As Chk1 was associated with the DNA damage response (DDR), we investigated the effect of miR-320c on DDR in TNBC cells. To induce DNA damage, we used platinum-based drugs, especially oxaliplatin, which is most effective with miR-320c. We observed that overexpression of miR-320c in TNBC regulated the oxaliplatin responsiveness by mediating DNA damage repair through the negative regulation of Chk1 in vitro. Furthermore, using a xenograft model, a combination of miR-320c mimic and oxaliplatin effectively inhibited tumor progression. These investigations indicate the potential of miR-320c as a marker of oxaliplatin responsiveness and a therapeutic target to increase the efficacy of chemotherapy in TNBC.
Collapse
Affiliation(s)
- Sera Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Won Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Daeun Chung
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyunkyung Kong
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Bi Q, Liu J, Wang X, Sun F. Downregulation of miR-27b promotes skin wound healing in a rat model of scald burn by promoting fibroblast proliferation. Exp Ther Med 2020; 20:63. [PMID: 32952653 PMCID: PMC7485298 DOI: 10.3892/etm.2020.9191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the effect and mechanism of action of microRNA (miR)-27b on skin wound healing in rats with deep second-degree scald burns and in BJ human skin fibroblast cells. Rat models with deep second-degree scald burns were constructed and injected with miR-27b mimics and inhibitors at the wound site daily for 21 days. Healing of burned skin tissues was observed at 0, 3, 7, 14 and 21 days following modeling. H&E and Masson staining were used to observe the pathological structure and degree of collagen fibers in the burned skin tissues. The effects of miR-27b on BJ cell proliferation and migration were determined by MTT and scratch assays. Matrix metalloproteinase-1 (MMP-1), α-smooth muscle actin (α-SMA), collagen I and collagen III expression in rat skin tissues and BJ cells were measured via reverse transcription-quantitative PCR and western blot analysis. The results of the in vivo experiments demonstrated that miR-27b inhibition accelerated scalded skin healing and induced fibroblast growth. Furthermore, the in vitro experiments revealed that miR-27b inhibition increased BJ cell proliferation and migration. Furthermore, miR-27b inhibition upregulated MMP-1, α-SMA, collagen I and collagen III expression in the skin tissues and cells, while the overexpression of miR-27b demonstrated the opposite effect. In conclusion, the results of the present study revealed that miR-27b inhibition increased fibroblast proliferation, thereby accelerating scald wound healing in rats.
Collapse
Affiliation(s)
- Qingxia Bi
- Department of Burn and Cosmetology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jingyan Liu
- Department of Burn and Cosmetology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xueming Wang
- Department of Burn and Cosmetology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Furong Sun
- Department of Burn and Cosmetology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol 2020; 72:1732-1749. [PMID: 32783235 DOI: 10.1111/jphp.13351] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a type of small noncoding RNA employed by the cells for gene regulation. A single miRNA, typically 22 nucleotides in length, can regulate the expression of numerous genes. Over the past decade, the study of miRNA biology in the context of cancer has led to the development of new diagnostic and therapeutic opportunities. KEY FINDINGS MicroRNA dysregulation is commonly associated with cancer, in part because miRNAs are actively involved in the mechanisms like genomic instabilities, aberrant transcriptional control, altered epigenetic regulation and biogenesis machinery defects. MicroRNAs can regulate oncogenes or tumour suppressor genes and thus when altered can lead to tumorigenesis. Expression profiling of miRNAs has boosted the possibilities of application of miRNAs as potential cancer biomarkers and therapeutic targets, although the feasibility of these approaches will require further validation. SUMMARY In this review, we will focus on how miRNAs regulate tumour development and the potential applications of targeting miRNAs for cancer therapy.
Collapse
Affiliation(s)
- Vandit Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
26
|
Liu CH, Jing XN, Liu XL, Qin SY, Liu MW, Hou CH. Tumor-suppressor miRNA-27b-5p regulates the growth and metastatic behaviors of ovarian carcinoma cells by targeting CXCL1. J Ovarian Res 2020; 13:92. [PMID: 32782028 PMCID: PMC7418439 DOI: 10.1186/s13048-020-00697-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs (miRNAs) play crucial functions in the progression of ovarian cancer. MicroRNA-27b-5p (miR-27b-5p) has been identified as a cancer-associated miRNA. Nevertheless, the expression profile of miR-27b-5p and its functions in ovarian cancer are unexplored. Methods qRT-PCR and western blot analysis were used to detect the levels of miR-27b-5p and C-X-C motif chemokine ligand 1 (CXCL1). The impact of miR-27b-5p on ovarian cancer cells proliferation, migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The expression of matrix metalloprotein-2/9 (MMP-2/9) were measured using immunofluorescence staining. Bioinformatics and luciferase reporter analysis were used to predict the target of miR-27b-5p. The growth of ovarian cancer cells in vivo was evaluated using transplanted tumor model. Results Here, we demonstrated that miR-27b-5p was downregulated in ovarian carcinoma cells and clinical specimens. Higher expression of miR-27b-5p was associated with an unfavorable overall survival in patients with ovarian cancer. Upregulation of miR-27b-5p decreased the viability, migration ability and invasion capacity of SKOV3 and OVCAR3 cell. MiR-27b-5p also inhibited the growth of SKOV3 cell in nude mice. Additionally, we verified that CXCL1 was a target of miR-27b-5p in ovarian carcinoma cells. Restoring the expression of CXCL1 abolished the inhibitory impacts of miR-27b-5p in ovarian cancer carcinoma cells. Conclusion This research revealed that miR-27b-5p restrained the progression of ovarian carcinoma possibly via targeting CXCL1.
Collapse
Affiliation(s)
- Chun Hua Liu
- Obstetrics Department, Jiaozhou Central Hospital of Qingdao, Jiaozhou, Shandong, China
| | - Xue Ning Jing
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiao Lan Liu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Shan Yong Qin
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Min Wei Liu
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Chun Hong Hou
- Gynecology Ward, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, Shandong, China.
| |
Collapse
|
27
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
28
|
Wang S, Zheng W, Ji A, Zhang D, Zhou M. Overexpressed miR-122-5p Promotes Cell Viability, Proliferation, Migration And Glycolysis Of Renal Cancer By Negatively Regulating PKM2. Cancer Manag Res 2019; 11:9701-9713. [PMID: 31814765 PMCID: PMC6863119 DOI: 10.2147/cmar.s225742] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Renal cancer is one of the most deadly urological malignancies. Currently, there is still a lack of effective treatment. Our purpose was to explore the mechanisms of miR-122-5p in renal cancer. Methods The expression levels of miR-122-5p and pyruvate kinase M2 (PKM2) in renal cancer cells were detected by RT-qPCR and Western blot analyses, respectively. Then, we measured the cell viability after knockdown of miR-122-5p and PKM2 using CCK-8 assay. Moreover, flow cytometry was used to investigate cell cycle and apoptosis of renal cancer cells. The cell migration of renal cancer cells transfected by miR-122-5p inhibitor and siPKM2 was then detected by wound healing assay. Furthermore, glucose consumption and lactate production were measured. Autophagy-related protein LCII/I was detected by Western blot. Results MiR-122-5p was upregulated in renal cancer cells compared to HK2 cells, especially in 786-O cells. We found that silencing miR-122-5p promoted PKM2 expression in 786-O cells. After transfection of siPKM2 or miR-122-5p inhibitor, the cell viability of 786-O cells was significantly reduced. Furthermore, the G1 phase of 786-O cells was significantly blocked, and the S phase was significantly increased. In addition, knockdown of miR-122-5p or PKM2 promoted renal cancer cell apoptosis and inhibited cell migration. Glucose consumption of 786-O cells was significantly increased after transfection by siPKM2. Silencing miR-122-5p significantly promoted the expression levels of LCII/I. Conclusion Our findings revealed that overexpressed miR-122-5p promotes renal cancer cell viability, proliferation, migration, glycolysis and autophagy by negatively regulating PKM2, which provide a new insight for the development of renal cancer therapy.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Wei Zheng
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Alin Ji
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Mi Zhou
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| |
Collapse
|
29
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
31
|
Yan L, Ding B, Liu H, Zhang Y, Zeng J, Hu J, Yao W, Yu G, An R, Chen Z, Ye Z, Xing J, Xiao K, Wu L, Xu H. Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. Theranostics 2019; 9:8377-8391. [PMID: 31754403 PMCID: PMC6857066 DOI: 10.7150/thno.37628] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
SMYD2 is a histone methyltransferase that has been reported to be an important epigenetic regulator. This study aims to investigate SMYD2 as a prognostic indicator of clear cell renal cell carcinoma (ccRCC) and explore its role in tumorigenesis and multi-drug resistance. Methods: Tumor specimens, clinicopathologic information, and prognostic outcomes of 186 ccRCC patients from three hospitals in China were collected for SMYD2 immunohistochemistry staining, Kaplan-Meier analysis, and Cox proportional hazards-regression analysis. MicroRNA (miRNA)-microarray profiling identified differentially expressed miRNAs in renal cancer cells subjected to SMYD2 knockdown or treatment with the SMYD2 inhibitor AZ505. The effects of SMYD2 and candidate SMYD2-mediated miRNAs on renal cancer cell proliferation, migration, clonogenicity, and tumorigenicity were determined via cell-function assays and murine xenograft experiments. The half-inhibitory concentrations (IC50) of five antineoplastic drugs (cisplatin, doxorubicin, fluorouracil, docetaxel, and sunitinib) in AZ505-treated and control cells were calculated, and the effects of SMYD2 inhibition on P-glycoprotein (P-gP) expression and multiple-drug resistance were verified. Results: SMYD2 was overexpressed and acted as an oncogene in ccRCC. High SMYD2 expression correlated with a high TNM stage (P = 0.007) and early tumor relapse (P = 0.032). SMYD2 independently predicted a worse overall survival (P = 0.022) and disease-free survival (P = 0.048). AZ505 inhibited the binding of SMYD2 to the miR-125b promoter region (based on chromatin immunoprecipitation assays) and suppressed ccRCC cell migration and invasion by inhibiting the SMYD2/miR-125b/DKK3 pathway. SMYD2 and miR-125b inhibition acted synergistically with anticancer drugs via P-gP suppression in vitro and in vivo. Conclusions: These findings suggested that SMYD2 plays an important role in ccRCC development and could be a potential biomarker for the treatment and prognosis of RCC.
Collapse
|
32
|
Jang SY, Chae MK, Lee JH, Lee EJ, Yoon JS. MicroRNA-27 inhibits adipogenic differentiation in orbital fibroblasts from patients with Graves' orbitopathy. PLoS One 2019; 14:e0221077. [PMID: 31415657 PMCID: PMC6695164 DOI: 10.1371/journal.pone.0221077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Background To investigate the role of microRNA (miR)-27a and miR-27b in adipogenesis in an in vitro model of Graves’ orbitopathy (GO). Methods Orbital fat tissues were harvested from GO and non-GO participants for primary orbital fibroblast cultures. The expression levels of miR-27a and miR-27b between GO and non-GO orbital fat tissues were compared. During adipogenesis of GO orbital fibroblasts, the expression levels of miR-27a and miR-27b were determined, and the effects of mimics of miR-27a and miR-27b transfection on adipogenesis of GO orbital fibroblast were investigated. Results Real time-polymerase chain reaction showed significantly more decreases in miR-27a and miR-27b levels in orbital fat tissues in GO participants than in non-GO participants (p < 0.05). The expression of both miR-27a and miR-27b was highest in orbital fibroblasts at day 0 and declined gradually after the induction of adipogenic differentiation. The expression levels of PPARγ, CCAAT/enhancer binding protein (C/EBP)α and C/EBPβ were decreased and Oil Red O-stained lipid droplets were lower in GO orbital fibroblasts transfected with miR-27a and miR-27b mimics than in negative controls. Conclusions Our results indicated that miR-27a and miR-27b inhibited adipogenesis in orbital fibroblasts from GO patients. Further studies are required to examine the potential of miR-27a and miR-27b as targets for therapeutic strategies.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon H. Lee
- Myung-Gok Eye Research Institute, Konyang University College of Medicine, Seoul, Republic of Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Anderson G, Reiter RJ. Glioblastoma: Role of Mitochondria N-acetylserotonin/Melatonin Ratio in Mediating Effects of miR-451 and Aryl Hydrocarbon Receptor and in Coordinating Wider Biochemical Changes. Int J Tryptophan Res 2019; 12:1178646919855942. [PMID: 31244524 PMCID: PMC6580708 DOI: 10.1177/1178646919855942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
A wide array of different factors and processes have been linked to the biochemical underpinnings of glioblastoma multiforme (GBM) and glioblastoma stem cells (GSC), with no clear framework in which these may be integrated. Consequently, treatment of GBM/GSC is generally regarded as very poor. This article provides a framework that is based on alterations in the regulation of the melatonergic pathways within mitochondria of GBM/GSC. It is proposed that the presence of high levels of mitochondria-synthesized melatonin is toxic to GBM/GSC, with a number of processes in GBM/GSC acting to limit melatonin’s synthesis in mitochondria. One such factor is the aryl hydrocarbon receptor, which increases cytochrome P450 (CYP)1b1 in mitochondria, leading to the ‘backward’ conversion of melatonin to N-acetylserotonin (NAS). N-acetylserotonin has some similar, but some important differential effects compared with melatonin, including its activation of the tyrosine receptor kinase B (TrkB) receptor. TrkB activation is important to GBM/GSC survival and proliferation. A plethora of significant, but previously disparate, data on GBM/GSC can then be integrated within this framework, including miR-451, AMP-activated protein kinase (AMPK)/mTOR, 14-3-3 proteins, sirtuins, tryptophan 2,3-dioxygenase, and the kynurenine pathways. Such a conceptualization provides a framework for the development of more effective treatment for this poorly managed condition.
Collapse
Affiliation(s)
- George Anderson
- Department of Clinical Research, CRC Scotland & London, London, UK
| | - Russell J Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
34
|
Chen J, Du G, Chang Y, Wang Y, Shi L, Mi J, Tang G. Downregulated miR‐27b promotes keratinocyte proliferation by targeting
PLK
2 in oral lichen planus. J Oral Pathol Med 2019; 48:326-334. [DOI: 10.1111/jop.12826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/07/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Junjun Chen
- Department of Oral MedicineShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai China
- Department of Biochemistry & Molecular Cell BiologyShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Guanhuan Du
- Department of Oral MedicineShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuzhou Chang
- Shanghai Institute of Immunology & Department of Immunology and MicrobiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationFaculty of Basic MedicineShanghai Jiao Tong University School of Medicine Shanghai China
| | - Yufeng Wang
- Department of Oral MedicineShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai China
| | - Linjun Shi
- Department of Oral MedicineShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jun Mi
- Department of Biochemistry & Molecular Cell BiologyShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Guoyao Tang
- Department of Oral MedicineShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
35
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
36
|
Zhang J, Song J, Liang X, Yin Y, Zuo T, Chen D, Shen Q. Hyaluronic acid-modified cationic nanoparticles overcome enzyme CYP1B1-mediated breast cancer multidrug resistance. Nanomedicine (Lond) 2019; 14:447-464. [DOI: 10.2217/nnm-2018-0244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Enzyme CYP1B1 (CYP1B1) is usually overexpressed in multidrug resistance (MDR) breast cancer cells, which could metabolically inactivate docetaxel (DTX). Materials & methods: The cationic core–shell nanoparticles (hyaluronic acid/polyethyleneimine nanoparticles [HA/PEI NPs]) modified with hyaluronic acid (HA) were developed and coloaded with DTX and α-napthtoflavone (ANF, a CYP1B1 inhibitor) to overcome MDR in breast cancer induced by CYP1B1. Physicochemical characterization, MDR reversing effect in vitro and pharmacokinetics in vivo of HA/PEI NPs were evaluated. Results: The HA/PEI NPs exhibited spherical morphology with size of (193.6 ± 3.1) nm. The HA/PEI NPs could reverse MDR effectively by downregulating the expression of CYP1B1. The HA/PEI NPs improved the bioavailability of DTX. Conclusion: The HA/PEI NPs might be a promising strategy to overcome CYP1B1-mediated breast cancer MDR.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jia Song
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao Liang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunzhi Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
37
|
Jasinski-Bergner S, Kielstein H. Adipokines Regulate the Expression of Tumor-Relevant MicroRNAs. Obes Facts 2019; 12:211-225. [PMID: 30999294 PMCID: PMC6547259 DOI: 10.1159/000496625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing prevalence of obesity requires the investigation of respective comorbidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors with hormone-like functions, the adipokines, and is therefore categorized as an endocrine organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. METHODS Literature was analyzed for adipokine-regulated miRs. Many of these adipokine upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. RESULTS The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. This effect is not only true for the pure number of regulated miRs, it is also the case by consideration of the abundance of the respective miR expression based on actual data sets derived from next-generation sequencing. CONCLUSION The link of obesity and cancer is analyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR abundance is considered as a regulatory variable. This context offers new strategies for tumor therapy and diagnostics.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
38
|
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, Shu Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:233-243. [PMID: 30317163 PMCID: PMC6190501 DOI: 10.1016/j.omtn.2018.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.
Collapse
Affiliation(s)
- Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Pimenta RCA, Viana NI, Amaral GQ, Park R, Morais DR, Pontes J, Guimaraes VR, Camargo JA, Leite KRM, Nahas WC, Srougi M, Reis ST. MicroRNA-23b and microRNA-27b plus flutamide treatment enhances apoptosis rate and decreases CCNG1 expression in a castration-resistant prostate cancer cell line. Tumour Biol 2018; 40:1010428318803011. [DOI: 10.1177/1010428318803011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The acquisition of a castration-resistant prostate cancer phenotype by prostate cancer cells is the alteration that has the worst prognosis for patients. The aim of this study was to evaluate the role of the microRNAs-23b/-27b as well as the possible CCNG1 target gene in tissue samples from patients with localized prostate cancer that progressed to castration-resistant prostate cancer and in a castration-resistant prostate cancer cell line (PC-3). The microRNAs and target gene expression levels of the surgical specimens were analyzed by quantitative real-time polymerase chain reaction. The prostate cancer cell line, PC-3, was transfected with pre-miR-23b, pre-miR-27b, and their respective controls using Lipofectamine RNAiMAX and exposed or not to flutamide. After transfections, expression levels of both the microRNAs and the gene, CCNG1, were analyzed by quantitative real-time polymerase chain reaction. The apoptosis and cell cycle assays were performed on the mini MUSE cytometer. MicroRNAs-23b/-27b were underexpressed in surgical specimens of prostate cancer; however, their target gene, CCNG1, was overexpressed in 69% of the cases. After transfection with the microRNAs-23b/-27b and flutamide, we observed a reduction in gene expression compared with cells that were treated only with microRNAs or only with flutamide. In the apoptosis assay, we demonstrated cell sensitization following transfection with microRNAs-23b/-27b and potentiation when co-administered with flutamide. The number of cells in apoptosis was almost three times higher with the simultaneous treatments (miR + flutamide) compared with the control (p < 0.05). In the cell cycle assay, only flutamide treatment showed better results; a higher number of cells were found in the G0-G1 phase, and a lower percentage of cells completed the final phase of the cycle (p < 0.05). We conclude that microRNAs-23b/-27b are downexpressed in prostate cancer, and their target gene, CCNG1, is overexpressed. We postulated that microRNAs-23b/-27b sensitize the PC-3 cell line and that after the addition of flutamide in the apoptosis assay, we would observe synergism in the treatments between miR and flutamide. In the cell cycle assay, the use of flutamide was sufficient to decrease the number of cells in mitosis. Therefore, we postulate that microRNAs, along with other drugs, may become very useful therapeutic tools in the treatment of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ruan CA Pimenta
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nayara I Viana
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Gabriela Q Amaral
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Rubens Park
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Denis R Morais
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - José Pontes
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Vanessa R Guimaraes
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Juliana A Camargo
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Kátia RM Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - William C Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
40
|
Non-coding RNA in drug resistance of hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180915. [PMID: 30224380 PMCID: PMC6177555 DOI: 10.1042/bsr20180915] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been one of the most highly lethal cancers. The acquisition of drug resistance accounts for the majority of poor effects of chemotherapy in HCC. Non-coding RNAs (ncRNAs) including miRNAs, long ncRNAs (lncRNAs), and circular RNA (circRNA) have been well-documented to participate in cancer occurrence and progression. Recently, multiple studies have highlighted the key roles of ncRNAs in chemoresistance of HCC. In addition, accumulating evidence has demonstrated that they can serve as biomarkers in diagnosis, treatment, and prognosis of HCC. In this review, we first overviewed up-to-date findings regarding miRNA and lncRNA in drug resistance of HCC, then summarized specific mechanisms that they modulate chemoresistance of HCC, and finally discussed their potential clinical application in overcoming the obstacle of HCC chemoresistance in the future.
Collapse
|
41
|
Huang S, Feng L, An G, Zhang X, Zhao Z, Han R, Lei F, Zhang Y, Luo A, Jing X, Zhao L, Gu S, Zhao X, Zhang L. Ribosome display and selection of single-chain variable fragments effectively inhibit growth and progression of microspheres in vitro and in vivo. Cancer Sci 2018; 109:1503-1512. [PMID: 29575477 PMCID: PMC5980252 DOI: 10.1111/cas.13574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Distinguishing the surface markers of cancer stem cells (CSCs) is a useful method for early diagnosis and treatment of tumors, as CSCs may participate in tumorigenesis and metastasis by migrating into the circulatory system. However, the potential targets of CSCs are expressed at low levels in the natural state and are always changing. Thus, dynamic screening has been reported to be an effective measure for exploring CSC markers. In recent years, diverse single-chain variable fragments (scFvs) have been widely used in immunotherapy. In this study, we determined that the scFvs, screened using RD, had a high affinity to microspheres and could inhibit their progression. We also observed that the selected scFvs underwent evolution in vitro, and antitumor-associated proteins were successfully expressed. Combined with chemotherapy, the scFvs had a synergistic effect on the inhibition of the microspheres' progression in vitro and in vivo, which could be ascribed to their high affinity for stem-like cells and the inhibition of the microspheres' collective behaviors. In addition, proteins inhibiting CD44+ /CD24+ and MAPK were involved. Our data indicated that dynamic screening of the scFvs in a natural state was of great significance in the inhibition of the microspheres in vitro and in vivo.
Collapse
Affiliation(s)
- Shangke Huang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Feng
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gaili An
- Department of Clinical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaojin Zhang
- Department of The Medical School of Shaoxing University, Shaoxing, China
| | - Zixuan Zhao
- Elite Property Management Ltd., Saskatoon, SK, Canada
| | - Rui Han
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuxi Lei
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Luo
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Jing
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanzhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingxiao Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Matuszcak C, Lindner K, Eichelmann AK, Hussey DJ, Haier J, Hummel R. microRNAs: Key regulators of chemotherapy response and metastatic potential via complex control of target pathways in esophageal adenocarcinoma. Surg Oncol 2018; 27:392-401. [PMID: 30217293 DOI: 10.1016/j.suronc.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Incidence of esophageal adenocarcinoma (EAC) increased significantly over the last decades. Lack of response to chemotherapy is a major problem in the treatment of this disease. This study aims to assess the biological relevance of characteristic microRNA profiles of chemotherapy resistant EAC cells with regards to response to chemotherapy and biological behavior. METHODS We selected 3 microRNAs from characteristic microRNA profiles of resistant EAC (miR-27b-3p, miR-200b-3p, and miR-148a-3p). Expression of microRNAs was modified in 6 EAC cell lines. Effects on chemotherapy, adhesion, migration, apoptosis and cell cycle were assessed using standard assays. Target analyses were performed using Western Blot and Luciferase techniques. RESULTS MiR-27b-3p significantly sensitized cells to 5FU and Cisplatin in 83% respectively in 33% of cell lines, miR-148a-3p in 67% respectively 33% of cases. MiR-200b-3p increased sensitivity only towards 5FU in 50% of cases. Co-transfections with miR-27b-3p/miR-148a-3p showed an additive effect on response to chemotherapy in 50% of cases. Upregulation of miR-148a-3p reduced protein expression levels of DNMT-1, MSK-1, Bcl-2 and Bim, and miR-27b upregulation led to downregulation of Sp1 and PPARy proteins implicating a potential negative post-transcriptional control via the respective microRNAs. Finally, we were able to confirm Bcl-2 for the first time as direct target of miR-148a-3p in EAC. CONCLUSION This study demonstrates that specific microRNA profiles of chemotherapy resistant EAC in fact determine their response to chemotherapy and biological behavior. Our data further show that microRNA-mediated regulation of chemotherapy resistance is complex, and several microRNAs seem to "co-operate" at various steps within a broad number of pathways what fits very well to our recently proposed understanding of microRNA-mediated regulation as function of cellular functional complexes. These data highlight the promising potential of microRNAs to predict or monitor treatment response to chemotherapy in EAC, and to potentially modulate tumor biology in a therapeutic approach.
Collapse
Affiliation(s)
- Christiane Matuszcak
- University Cancer Centre Hamburg (UCCH), University Hospital of Hamburg-Eppendorf, Martinistr. 52 (O24), 20246 Hamburg, Germany.
| | - Kirsten Lindner
- Department of Surgery, University of Schleswig-Holstein, Lübeck, Germany.
| | - Ann-Kathrin Eichelmann
- Department of General and Visceral Surgery, University Hospital of Münster, Waldeyerstrasse 1, 48149 Münster, Germany.
| | - Damian J Hussey
- Department of Surgery, Flinders Medical Centre, Flinders University Adelaide, Flinders Drive, Bedford Park 5042 SA, Australia.
| | - Jörg Haier
- The Nordakademie, Van-der-Smissen Str. 9, 22767 Hamburg, Germany.
| | - Richard Hummel
- Department of Surgery, University of Schleswig-Holstein, Lübeck, Germany.
| |
Collapse
|
43
|
Zhang R, Liu C, Cao Y, Jamal M, Chen X, Zheng J, Li L, You J, Zhu Q, Liu S, Dai J, Cui M, Fu ZF, Cao G. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication. Oncotarget 2018; 8:43822-43837. [PMID: 28388579 PMCID: PMC5546443 DOI: 10.18632/oncotarget.16517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/13/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuangang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunzi Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamal
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfang Zheng
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Liu
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, Ma J, Li YP, Wang L. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ 2018. [PMID: 29523871 PMCID: PMC6219484 DOI: 10.1038/s41418-018-0083-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of GATA-binding protein 4 (GATA4) in neural crest cells (NCCs) is poorly defined. Here we showed that mouse NCCs lacking GATA4 exhibited developmental defects in craniofacial bone, teeth, and heart. The defects likely occurred due to decreased cell proliferation at the developmental stage. The in vitro results were consistent with the mouse model. The isobaric tags for relative and absolute quantitation assay revealed that BARX1 is one of the differentially expressed proteins after GATA4 knockdown in NCCs. On the basis of the results of dual-luciferase, electro-mobility shift, and chromatin immunoprecipitation assays, Barx1 expression is directly regulated by GATA4 in NCCs. In zebrafish, gata4 knockdown affects the development of NCCs derivatives. However, the phenotype in zebrafish could be partly rescued by co-injection of gata4 morpholino oligomers and barx1 mRNA. This study identified new downstream targets of GATA4 in NCCs and uncovered additional evidence of the complex regulatory functions of GATA4 in NCC development.
Collapse
Affiliation(s)
- Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Boulevard, Birmingham, AL, 35294-2182, USA.
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
45
|
Arid1a regulates response to anti-angiogenic therapy in advanced hepatocellular carcinoma. J Hepatol 2018; 68:465-475. [PMID: 29113912 DOI: 10.1016/j.jhep.2017.10.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/24/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS AT-rich interaction domain 1a (Arid1a), a component of the chromatin remodeling complex, has emerged as a tumor suppressor gene. It is frequently mutated in hepatocellular carcinoma (HCC). However, it remains unknown how Arid1a suppresses HCC development and whether Arid1a deficiency could be exploited for therapy, we aimed to explore these questions. METHODS The expression of Arid1a in human and mouse HCCs was determined by immunohistochemical (IHC) staining. Gene expression was determined by quantitative PCR, ELISA or western blotting. Arid1a knockdown HCC cell lines were established by lentiviral-based shRNA. Tumor angiogenesis was quantified based on vessel density. The regulation of angiopoietin (Ang2) expression by Arid1a was identified by chromatin immunoprecipitation (ChIP) assay. The tumor promoting function of Arid1a loss was studied with a xenograft model in nude mice and diethylnitrosamine (DEN)-induced HCC in Arid1a conditional knockout mice. The therapeutic values of Ang2 antibody and sorafenib treatment were evaluated both in vitro and in vivo. RESULTS We demonstrate that Arid1a deficiency, occurring in advanced human HCCs, is associated with increased vessel density. Mechanistically, loss of Arid1a causes aberrant histone H3K27ac deposition at the angiopoietin-2 (Ang2) enhancer and promoter, which eventually leads to ectopic expression of Ang2 and promotes HCC development. Ang2 blockade in Arid1a-deficient HCCs significantly reduces vessel density and tumor progression. Importantly, sorafenib treatment, which suppresses H3K27 acetylation and Ang2 expression, profoundly halts the progression of Arid1a-deficient HCCs. CONCLUSIONS Arid1a-deficiency activates Ang2-dependent angiogenesis and promotes HCC progression. Loss of Arid1a in HCCs confers sensitivity to Ang2 blockade and sorafenib treatment. LAY SUMMARY AT-rich interaction domain 1a (Arid1a), is a tumor suppressor gene. Arid1a-deficiency promotes Ang2-dependent angiogenesis leading to hepatocellular carcinoma progression. Arid1a-deficiency also sensitizes tumors to Ang2 blockade by sorafenib treatment.
Collapse
|
46
|
miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9:188. [PMID: 29416005 PMCID: PMC5833695 DOI: 10.1038/s41419-017-0211-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Drug resistance remains a major problem in the treatment of conventional chemotherapeutic agents in breast cancers. Owing to heterogeneity and complexity of chemoresistance mechanisms, most efforts that focus on a single pathway were unsuccessful, and exploring novel personalized therapeutics becomes urgent. By a system approach, we identified that microRNA-27b-3p (miR-27b), a miRNA deleted in breast cancer tissues and cell lines, has a master role in sensitizing breast cancer cells to a broad spectrum of anticancer drugs in vitro and in vivo. Mechanistic analysis indicated that miR-27b enhanced responses to PTX by directly targeting CBLB and GRB2 to inactivate both PI3K/Akt and MAPK/Erk signaling pathways. Further, miR-27b was identified as a promising molecular biomarker in chemoresistance, clinicopathological features, and prognosis for breast cancer patients. In conclusion, we propose that combinational use of miR-27b and chemotherapeutic agents might be a promising therapeutic strategy to increase long-term drug responses in breast cancers.
Collapse
|
47
|
The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget 2018; 7:59070-59086. [PMID: 27487138 PMCID: PMC5312296 DOI: 10.18632/oncotarget.10887] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular targeted therapy is a standard treatment for patients with advanced renal cell carcinoma (RCC). Sunitinib is one of the most common molecular-targeted drugs for metastatic RCC. Molecular mechanisms of sunitinib resistance in RCC cells is still ambiguous. The microRNA (miRNA) expression signature of patients with sunitinib failure in RCC was constructed using a polymerase chain reaction (PCR)-based array. Several miRNAs that were aberrantly expressed in RCC tissues from patients treated with sunitinib were identified in this analysis. MicroRNA-101 (miR- 101) was markedly suppressed in sunitinib treated RCC tissues. Restoration of miR-101 significantly inhibited cell migration and invasion in Caki-1 and 786-O cells. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) was directly suppressed by miR-101 in RCC cells, and overexpression of UHRF1 was confirmed in sunitinib-treated RCC tissues. The pathways of nucleotide excision repair and mismatch repair were significantly suppressed by knockdown of UHRF1. Our findings showed that antitumor miR-101- mediated UHRF1 pathways may be suppressed by sunitinib treatment.
Collapse
|
48
|
Kanthaje S, Makol A, Chakraborti A. Sorafenib response in hepatocellular carcinoma: MicroRNAs as tuning forks. Hepatol Res 2018; 48:5-14. [PMID: 29055114 DOI: 10.1111/hepr.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/08/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver malignancy that contributes towards the second most common cause of cancer-related mortality. The targeted chemotherapeutic agent, sorafenib, is known to show a statistically significant but limited overall survival advantage in advanced HCC. However, the individual patient response towards sorafenib varies drastically, with most experiencing stable disease and few with partial response; complete response is very rare. Progressive disease despite the treatment is also evident in many patients, indicating drug resistance. These varied responses have been linked with the modulation of several intracellular signaling pathways. Notably, the regulation of these pathways through diverse operating biomolecules, including microRNAs (miRNAs), is the focus of recent studies. MicroRNAs are tiny, non-coding RNA molecules that regulate the expression of several target genes. In addition, miRNAs are known to play a role in the progression of HCC carcinogenesis. Interestingly, miRNAs have also been identified to play differential roles in terms of sorafenib response in HCC such as biomarkers and functional modulation of cellular response to sorafenib, hence, they are also being therapeutically evaluated. This review outlines the role of reported miRNAs in different aspects of sorafenib response in HCC.
Collapse
Affiliation(s)
- Shruthi Kanthaje
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Makol
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
49
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
50
|
Si W, Shen J, Du C, Chen D, Gu X, Li C, Yao M, Pan J, Cheng J, Jiang D, Xu L, Bao C, Fu P, Fan W. A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance. Cell Death Differ 2017; 25:406-420. [PMID: 29125598 PMCID: PMC5762853 DOI: 10.1038/cdd.2017.176] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
Abstract
Chemoresistance often leads to the failure of breast cancer treatment. MicroRNAs (miRNAs) play an important role in the progression and chemoresistance of cancer. However, because of the complexity of the mechanisms of chemoresistance and the specificity of miRNA regulation in different cell types, the function of miR-20a in breast cancer chemoresistance is still unclear. Here, by using miRNA microarray and high-content screening techniques, we found that miR-20a/b were significantly downregulated in breast cancer tissues compared with normal breast tissues, and low miR-20a/b expression was correlated with poor survival in breast cancer patients. Ectopic overexpression of miR-20a sensitized breast cancer cells to a broad spectrum of chemotherapy drugs and suppress their proliferation both in vitro and in vivo. Further study demonstrated that miR-20a directly targeted the 3'untranslated region of MAPK1, and thus downregulated the expression of P-gp and c-Myc by inhibiting the MAPK/ERK signaling pathway, whereas c-Myc can bind to the promoter region of the miR-20a gene to promote the expression of miR-20a. Together, our study identified a novel miR-20a/MAPK1/c-Myc feedback loop that regulates breast cancer growth and chemoresistance. These findings suggest that miR-20a synergizing with anticancer drugs will be a promising treatment strategy, especially for chemoresistant patients.
Collapse
Affiliation(s)
- Wengong Si
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chengyong Du
- Breast Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xidong Gu
- Department of Breast Surgery, the First Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Chenggong Li
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Minya Yao
- Breast Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Junchi Cheng
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Donghai Jiang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.,Clinical Research Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Peifen Fu
- Breast Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|