1
|
Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J Enzyme Inhib Med Chem 2024; 39:2301772. [PMID: 38221792 PMCID: PMC10791089 DOI: 10.1080/14756366.2024.2301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Blahutová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lukáš Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Yin DH, Xin J, Chen S, Li SS, Li ZY, Meng JX, Lin YC, Yin BQ, Zhao C, Li J, Gao H, Tian J, Gao WC. Structure-guided design and photochemical synthesis of new carbamo(dithioperoxo)thioates with improved potencies to SARS-CoV-2 3CL pro. Bioorg Med Chem 2024; 114:117940. [PMID: 39442491 DOI: 10.1016/j.bmc.2024.117940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has triggered a protracted global pandemic from 2019 to 2022, and posed a significant threat to human health. One of the non-structural proteins 3CLpro of SARS-CoV-2 is considered as a validated target for the development of inhibitors against the virus. Disulfiram has been reported as a covalent inhibitor of 3CLpro; however, its structure lacks bonding site with active pockets of 3CLpro and its highly symmetric structure doesn't match well with the irregular cavity of the active center, limiting its therapeutic applications. To enhance their affinity for the 3CLpro target, in this study, two kinds of disulfiram derivatives, designed based on the reevaluation and optimization of disulfiram, have been synthesized through photoredox chemistry, and the novel carbamo(dithioperoxo)thioates 4g-m were found to display 5-17 folds potency against SARS-CoV-2 3CLpro compared to the parent disulfiram, with resulting half-maximal inhibitory concentration (IC50) values ranging from 0.14-0.47 μM. Carbamo(dithioperoxo)thioates 4i containing a 4-hydroxy piperidine and a 4-trifluoromethyl phenyl ring, was identified as the most potent inhibitor to both 3CLpro (IC50 = 0.14 μM) and PLpro (IC50 = 0.04 μM). Furthermore, molecular dynamics simulations, binding free energy analysis and mass analysis were performed and provided insights on the stability, conformational behavior, and interactions of 4g with 3CLpro. The green synthetic methodology, the privileged carbamo(dithioperoxo)thioate scaffold, and the molecular mechanisms presented might serve as a useful system for the further discovery of highly potent inhibitors targeting SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- De-Hang Yin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xin
- The People's Hospital of Feicheng, Feicheng 271600, China
| | - Shizhao Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuai-Shuai Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zi-Ying Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jin-Xi Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yue-Chi Lin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bing-Qian Yin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Cheng Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hang Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jun Tian
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen-Chao Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
3
|
Mawazi SM, Fathima N, Mahmood S, Al-Mahmood SMA. Antiviral therapy for COVID-19 virus: A narrative review and bibliometric analysis. Am J Emerg Med 2024; 85:98-107. [PMID: 39244809 DOI: 10.1016/j.ajem.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024] Open
Abstract
The COVID-19 epidemic has become a major international health emergency. Millions of people have died as a result of this phenomenon since it began. Has there been any successful pharmacological treatment for COVID-19 since the initial report on the virus? How many searches are undertaken to address the impact of the infection? What is the number of drugs that have undergone investigation? What are the mechanisms of action and adverse effects associated with the investigated pharmaceuticals used to treat COVID-19? Has the Food and Drug Administration (FDA) approved any medication to treat COVID-19? To date, our understanding is based on a restricted corpus of published investigations into the treatment of COVID-19. It is important to note that no single study comprehensively encompasses all pharmacological interventions for COVID-19. This paper provides an introductory summary of a bibliometric analysis conducted on the data about COVID-19, sourced explicitly from two platforms, namely PubMed and ScienceDirect. The analysis encompasses the period spanning from 2019 to 2022. Furthermore, this study examines the published literature about the pharmacological interventions for the novel coronavirus disease 2019 (COVID-19), explicitly focusing on the safety and effectiveness of different medications such as Remdesivir (marketed as Veklury®), Lopinavir/Ritonavir (commercially known as Kaletra® or Aluvia®), Ribavirin, Favipiravir (marketed as Avigan®), Ivermectin, Casirivimab and Imdevimab (branded as Ronapreve®), Sotrovimab (marketed as Xevudy®), Anakinra, Molnupiravir, Nirmatrelvir/Ritonavir (marketed as Paxlovid®), and Galidesivir. Findings indicate that while Remdesivir and Nirmatrelvir/Ritonavir show significant efficacy in reducing hospitalization and severe outcomes, drugs like Lopinavir/Ritonavir and Ivermectin have inconsistent results. Our insights suggest a multifaceted approach incorporating these therapies can significantly improve patient outcomes. Repurposing drugs has been critical in rapidly responding to COVID-19, allowing existing medications to be used in new ways to combat the virus. Combination therapies and further research are essential to optimize treatment strategies.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management & Science University (MSU), Section 13, 40100 Shah Alam, Selangor, Malaysia.
| | - Nousheen Fathima
- Department of Pharmacology, Global College of Pharmacy, Jawaharlal Technology University, Hyderabad (Jntuh) 501504, India
| | - Syed Mahmood
- Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
4
|
De Clercq E. A scientific career from the early 1960s till 2023: A tale of the various protagonists. Biochem Pharmacol 2024; 228:116248. [PMID: 38701868 DOI: 10.1016/j.bcp.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
In this era spanning more than 60 years (from the early 1960s till today (2023), a broad variety of actors played a decisive role: Piet De Somer, Tom C. Merigan, Paul A. Janssen, Maurice Hilleman, and Georges Smets. Two protagonists (Antonín Holý and John C. Martin) formed with me a unique triangle (the Holý Trinity). Walter Fiers' group (with the help of Jean Content) contributed to the cloning of human β-interferon, and Piet Herdewijn accomplished the chemical synthesis of an array of anti-HIV 2',3'-dideoxynucleoside analogues. Rudi Pauwels, Masanori Baba, Dominique Schols, Johan Neyts, Lieve Naesens, Anita Van Lierde, Graciela Andrei, Robert Snoeck and Dirk Daelemans, as members of my team, helped me in achieving the intended goal, the development of a selective therapy for virus infections. The collaboration with "Lowie" (Guangdi Li) generated a new dimension for the future.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Cimafonte M, Esposito A, De Fenza M, Zaccaria F, D’Alonzo D, Guaragna A. Synthesis of Natural and Sugar-Modified Nucleosides Using the Iodine/Triethylsilane System as N-Glycosidation Promoter. Int J Mol Sci 2024; 25:9030. [PMID: 39201716 PMCID: PMC11354600 DOI: 10.3390/ijms25169030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The reagent system based on the combined use of Et3SiH/I2 acts as an efficient N-glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the Et3SiH/I2-mediated N-glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, I-80125 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Francesco Zaccaria
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| |
Collapse
|
7
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
8
|
Yoosefian M, Sabaghian H, Kermanshahaninezhad SO. The interplay of COVID-19 and HIV: A comprehensive review of clinical outcomes and demographic associations. J Natl Med Assoc 2024; 116:362-377. [PMID: 39138033 DOI: 10.1016/j.jnma.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
AIM The COVID-19 pandemic posed unprecedented challenges to global healthcare, particularly affecting respiratory systems and impacting individuals with pre-existing conditions, including those with HIV. METHOD HIV's impact on clinical outcomes was assessed in four Statistical Population, synchronized with control groups. The study also explored the influence of SARS-CoV-2 and COVID-19 treatments. Ultimately, a comparison was drawn between patients with and without HIV. RESULTS In the first Statistical Population of COVID-19 patients with HIV, predominantly African-American men with risk factors such as obesity, hypertension, and diabetes were present. Diagnostic results showed no significant differences between the two groups. In the second Statistical Population, half of the patients were asymptomatic, with diagnoses mostly based on clinical symptoms; 6 individuals developed severe respiratory illness. In the third Statistical Population, 81 % of patients were treated at home, and all hospitalized patients had CD4+ lymphocyte counts above 350 cells/mm³. Most patients improved, with fatalities attributed to comorbid conditions. In the fourth Statistical Population, HIV patients were less likely to benefit from antimicrobial drugs, and mortality was higher, though synchronized analysis did not reveal significant differences. CONCLUSION HIV patients are more susceptible to COVID-19, but the direct impact is less significant than other factors. Additional factors contribute to increased risk, while early improvement, accurate diagnosis, and intensive care reduce fatalities.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran; Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran.
| | - Hanieh Sabaghian
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | | |
Collapse
|
9
|
Jena NR, Pant S. Peptide inhibitors derived from the nsp7 and nsp8 cofactors of nsp12 targeting different substrate binding sites of nsp12 of the SARS-CoV-2. J Biomol Struct Dyn 2024; 42:7077-7089. [PMID: 37434315 DOI: 10.1080/07391102.2023.2235012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
SARS-COV-2 is responsible for the COVID-19 pandemic, which has infected more than 767 million people worldwide including about 7 million deaths till 5 June 2023. Despite the emergency use of certain vaccines, deaths due to COVID-19 have not yet stopped completed. Therefore, it is imperative to design and develop drugs that can be used to treat patients suffering from COVID-19. Here, two peptide inhibitors derived from nsp7 and nsp8 cofactors of nsp12 have been shown to block different substrate binding sites of nsp12 that are mainly responsible for the replication of the viral genome of SARS-CoV-2. By using the docking, molecular dynamics (MD), and MM/GBSA techniques, it is shown that these inhibitors can bind to multiple binding sites of nsp12, such as the interface of nsp7 and nsp12, interface of nsp8 and nsp12, RNA primer entry site, and nucleoside triphosphate (NTP) entry site. The relative binding free energies of the most stable protein-peptide complexes are found to lie between ∼-34.20 ± 10.07 to -59.54 ± 9.96 kcal/mol. Hence, it is likely that these inhibitors may bind to different sites of nsp12 to block the access of its cofactors and the viral genome, thereby affecting the replication. It is thus proposed that these peptide inhibitors may be further developed as potential drug candidates to suppress the viral loads in COVID-19 patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
10
|
Banka VK, Sainas S, Martino E, Wang J, Lolli ML, Ding YS. Radiosynthesis of [ 18F]brequinar for in vivo PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers. RSC Med Chem 2024:d4md00433g. [PMID: 39149561 PMCID: PMC11320022 DOI: 10.1039/d4md00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the de novo pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an in vivo imaging probe that is able to demonstrate in vivo target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate p-nitrobenzyl ester (4) or tributylstannate (tin) p-nitrobenzyl ester (5), chosen for their suitability as a precursor to [18F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [18F]brequinar, and a preliminary PET imaging study of DHODH in vivo. This study provides the strategies to create [18F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.
Collapse
Affiliation(s)
- Vinay Kumar Banka
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
| | - Stefano Sainas
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Elena Martino
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Jiacheng Wang
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
| | - Marco Lucio Lolli
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
- Department of Psychiatry, New York University School of Medicine New York NY USA
| |
Collapse
|
11
|
Bepler T, Barrera MD, Rooney MT, Xiong Y, Kuang H, Goodell E, Goodwin MJ, Harbron E, Fu R, Mihailescu M, Narayanan A, Cotten ML. Antiviral activity of the host defense peptide piscidin 1: investigating a membrane-mediated mode of action. Front Chem 2024; 12:1379192. [PMID: 38988727 PMCID: PMC11233706 DOI: 10.3389/fchem.2024.1379192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Outbreaks of viral diseases are on the rise, fueling the search for antiviral therapeutics that act on a broad range of viruses while remaining safe to human host cells. In this research, we leverage the finding that the plasma membranes of host cells and the lipid bilayers surrounding enveloped viruses differ in lipid composition. We feature Piscidin 1 (P1), a cationic host defense peptide (HDP) that has antimicrobial effects and membrane activity associated with its N-terminal region where a cluster of aromatic residues and copper-binding motif reside. While few HDPs have demonstrated antiviral activity, P1 acts in the micromolar range against several enveloped viruses that vary in envelope lipid composition. Notably, it inhibits HIV-1, a virus that has an envelope enriched in cholesterol, a lipid associated with higher membrane order and stability. Here, we first document through plaque assays that P1 boasts strong activity against SARS-CoV-2, which has an envelope low in cholesterol. Second, we extend previous studies done with homogeneous bilayers and devise cholesterol-containing zwitterionic membranes that contain the liquid disordered (Ld; low in cholesterol) and ordered (Lo, rich in cholesterol) phases. Using dye leakage assays and cryo-electron microscopy on vesicles, we show that P1 has dramatic permeabilizing capability on the Lo/Ld, an effect matched by a strong ability to aggregate, fuse, and thin the membranes. Differential scanning calorimetry and NMR experiments demonstrate that P1 mixes the lipid content of vesicles and alters the stability of the Lo. Structural studies by NMR indicate that P1 interacts with the Lo/Ld by folding into an α-helix that lies parallel to the membrane surface. Altogether, these results show that P1 is more disruptive to phase-separated than homogenous cholesterol-containing bilayers, suggesting an ability to target domain boundaries. Overall, this multi-faceted research highlights how a peptide that interacts strongly with membranes through an aromatic-rich N-terminal motif disrupt viral envelope mimics. This represents an important step towards the development of novel peptides with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Tristan Bepler
- New York Structural Biology Center, New York, NY, United States
| | - Michael D. Barrera
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mary T. Rooney
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Chemistry, Hofstra University, Hempstead, NY, United States
| | - Yawei Xiong
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, United States
| | - Evan Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
| | - Matthew J. Goodwin
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Elizabeth Harbron
- Department of Chemistry, William & Mary, Williamsburg, VA, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Manassas, VA, United States
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA, United States
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Yengoyan A, Gomktsyan T, Pivazyan V, Ghazaryan E, Shainova R, Karapetyan A, Avetyan D, Aslanyan L, Baroyan K, Tuzikov A, Sargsyan M, Baghdasaryan B, Bayramyan N, Hakobyan S, Poghosyan A, Avetisyan A, Avagyan H, Hakobyan L, Zaven K. Study of different heterocycles showing significant anti-severe acute respiratory syndrome 2 activity in vitro and in vivo. Vet World 2024; 17:1281-1290. [PMID: 39077461 PMCID: PMC11283614 DOI: 10.14202/vetworld.2024.1281-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim With the emergence of severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), antiviral drug development has gained increased significance due to the high incidence and potentially severe complications of the resulting coronavirus infection. Heterocycle compounds, acting as antimetabolites of DNA and RNA monomers, rank among the most effective antiviral drugs. These compounds' antiviral effects on various SARS-CoV-2 isolates, as found in existing data collections, form the basis for further research. The aim of this study was to examine the possible antiviral effect of some originally synthesized heterocyclic compounds. Materials and Methods The main methods were cell culturing, cytotoxicity assay, qRT-PCR assay, tissue and blood cells analysis, and micro-computed tomography (micro-CT) imaging. Results In both in vitro and in vivo conditions, the elimination of SARS-Cov-2 occurred significantly earlier after administration of the compounds compared to the control group. In hamsters, the primary symptoms of coronavirus disease disappeared following administration of heterocycle compounds. Conclusion Using delta and omicron strains of the SARS-CoV-2 virus, newly created heterocycle compound analogs dramatically reduced SARS-CoV-2 multiplication, resulting in a drop in viral RNA load in the supernatant under in vitro conditions. Improvements in pathological manifestations in the blood, bone marrow, and internal organs of hamsters demonstrated that heterocycle compounds inhibited SARS-CoV-2 replication both in vitro and in vivo.
Collapse
Affiliation(s)
- Aleksandr Yengoyan
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
- Department of Chemistry Laboratory of Structural Bioinformatics, Russian-Armenian University, H. Emin, 123, Yerevan, 0051, Armenia
| | - Tiruhi Gomktsyan
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
| | - Vergush Pivazyan
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
| | - Emma Ghazaryan
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
| | - Roza Shainova
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
| | - Armen Karapetyan
- Department of Pesticides Synthesis and Expertise National Agrarian University of Armenia, Teryan 74, Yerevan, 0009, Armenia
| | - Diana Avetyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Levon Aslanyan
- Department of Mathematics, Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
| | - Karine Baroyan
- Department of Anatomy, Yerevan State Medical University after M. Heratsi, Armenia Yerevan, Armenia
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Belarus
| | - Mariam Sargsyan
- Department of Epidemiology and Parasitology, Armenian National Agrarian University, Yerevan, Armenia
| | - Bagrat Baghdasaryan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Nane Bayramyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Sona Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Arpine Poghosyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Aida Avetisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
- Department of Human Anatomy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Hranush Avagyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
- Department of Human Anatomy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Lina Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
| | - Karalyan Zaven
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, 0014, Armenia
- Department of Human Anatomy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| |
Collapse
|
13
|
Peralta-Moreno MN, Mena Y, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Pinto M, Granadino-Roldán JM, Santos Tomas M, Perez JJ, Rubio-Martinez J. Shedding Light on Dark Chemical Matter: The Discovery of a SARS-CoV-2 M pro Main Protease Inhibitor through Intensive Virtual Screening and In Vitro Evaluation. Int J Mol Sci 2024; 25:6119. [PMID: 38892306 PMCID: PMC11172690 DOI: 10.3390/ijms25116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 μM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - Yago Mena
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Timothy M. Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Instituto de investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG, Computational Drug Discovery, Knollstrasse, 67061 Ludwigshafen, Germany;
| | - José M. Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus “Las Lagunillas” s/n, 23071 Jaén, Spain;
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya (UPC), Av. Diagonal 649, 08028 Barcelona, Spain;
| | - Juan J. Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona Tech. Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| |
Collapse
|
14
|
Wu K, Guo Y, Xu T, Huang W, Guo D, Cao L, Lei J. Structure-Based Virtual Screening for Methyltransferase Inhibitors of SARS-CoV-2 nsp14 and nsp16. Molecules 2024; 29:2312. [PMID: 38792173 PMCID: PMC11124212 DOI: 10.3390/molecules29102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Kejue Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Yinfeng Guo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Weifeng Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
- Guangzhou Laboratory, Bio-Island, Guangzhou 510320, China
| | - Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| |
Collapse
|
15
|
Nazir MS, Ahmad M, Aslam S, Rafiq A, Al-Hussain SA, Zaki MEA. A Comprehensive Update of Anti-COVID-19 Activity of Heterocyclic Compounds. Drug Des Devel Ther 2024; 18:1547-1571. [PMID: 38737333 PMCID: PMC11088867 DOI: 10.2147/dddt.s450499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Desconsi D, Araujo JP, Furtado MD, Pimenta RA, Zani AV. Relationship between gastrointestinal symptoms and COVID-19 infection in the pediatric population: a scoping review. Rev Esc Enferm USP 2024; 58:e20230365. [PMID: 38743953 PMCID: PMC11126237 DOI: 10.1590/1980-220x-reeusp-2023-0365en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To map the evidence in the literature about the relationship between gastrointestinal symptoms and COVID-19 in the pediatric population. METHOD This is a scoping review following the recommendations of the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. The search was carried out on the following bases: Embase, Google Scholar, PubMed, Scopus, LILACS, CINAHL, Scielo, Web of Science and Virtual Health Library Portal, between July and August 2023. Original studies available in full, in any language, were included. RESULTS Ten studies were chosen that pointed to three premises: (1) the ACE2 receptor is found in the epithelial cells of the gastrointestinal tract; (2) gastrointestinal symptoms are mediated by stress and infection is justified by the gut-brain axis; (3) it develops the process of Multisystem Inflammatory Syndrome in children, affecting the gastrointestinal tract. CONCLUSION The synthesis of evidence provided three assumptions which guide the origin of gastrointestinal symptoms. The identification of gastrointestinal symptoms in children affected by COVID-19 can assist in the clinical approach and management of care and treatments.
Collapse
|
17
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
18
|
Majrashi TA, El Hassab MA, Mahmoud SH, Mostafa A, Wahsh EA, Elkaeed EB, Hassan FE, Eldehna WM, Abdelgawad SM. In vitro biological evaluation and in silico insights into the antiviral activity of standardized olive leaves extract against SARS-CoV-2. PLoS One 2024; 19:e0301086. [PMID: 38662719 PMCID: PMC11045091 DOI: 10.1371/journal.pone.0301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 μg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Engy A. Wahsh
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
19
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
20
|
Avilés-Alía AI, Zulaica J, Perez JJ, Rubio-Martínez J, Geller R, Granadino-Roldán JM. The Discovery of inhibitors of the SARS-CoV-2 S protein through computational drug repurposing. Comput Biol Med 2024; 171:108163. [PMID: 38417382 DOI: 10.1016/j.compbiomed.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 μ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.
Collapse
Affiliation(s)
- Ana Isabel Avilés-Alía
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech, 08028, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028, Barcelona, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica. Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain.
| |
Collapse
|
21
|
Zhang H, Li B, Yang H, Tan Y, Tan X, Tang Y. Total Synthesis of Carolacton and Demethylcarolactons with Potent Antiviral Activity. Org Lett 2024; 26:370-375. [PMID: 38170945 DOI: 10.1021/acs.orglett.3c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Carolacton, a naturally occurring MTHFD1 inhibitor, exhibits potent inhibitory activity against various RNA viruses including SARS-CoV-2. Herein, we present a concise total synthesis of carolacton, featuring the Krische allylation, Marshall coupling, NHK coupling, and RCM reaction as key elements. Additionally, we have synthesized three simplified carolacton analogues, one of which, namely, 14-demethyl-carolacton, exhibited notable antiviral activity. The present work paves the way for further exploration of the therapeutic potential of carolacton and its analogues.
Collapse
Affiliation(s)
- Haoyu Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Bingsong Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ya Tan
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Mihalovits LM, Kollár L, Bajusz D, Knez D, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones. Chemphyschem 2024; 25:e202300596. [PMID: 37888491 DOI: 10.1002/cphc.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Levente Kollár
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Damijan Knez
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tímea Imre
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Stanislav Gobec
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
23
|
Wang Y, Lai Y. The Interrelationship between HIV Infection and COVID-19: A Review of the Literature. Curr HIV Res 2024; 22:6-15. [PMID: 38151836 DOI: 10.2174/011570162x282739231222062830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to significant morbidity and mortality in patients and put a strain on healthcare systems worldwide. The clinical characteristics and results of COVID-19 in immunosuppressed patients, such as people living with human immunodeficiency virus (PLWH), considered at higher risk of severe disease, are not well-characterized. Accumulated evidence indicates that COVID-19 and the human immunodeficiency virus (HIV) can interact in various ways. This review explored the similarities and differences in virology between SARS-CoV-2 and HIV, the effect of the COVID-19 vaccine on PLWH, the impact of the COVID-19 pandemic on PLWH care and prevention, and the influence of HIV-related factors on COVID-19. Discovering the potential link between HIV and COVID-19 may provide a novel way to avoid the factors of HIV and SARS-CoV-2 co-infection and advance future research.
Collapse
Affiliation(s)
- Yiyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
24
|
Dou X, Sun Q, Liu Y, Lu Y, Zhang C, Xu G, Xu Y, Huo T, Zhao X, Su L, Xing Y, Lai L, Jiao N. Discovery of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as SARS-CoV-2 main protease inhibitors through virtual screening and biological evaluation. Bioorg Med Chem Lett 2024; 97:129547. [PMID: 37944867 DOI: 10.1016/j.bmcl.2023.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 caused by SARS-CoV-2 has led to a global pandemic that continues to impact societies and economies worldwide. The main protease (Mpro) plays a crucial role in SARS-CoV-2 replication and is an attractive target for anti-SARS-CoV-2 drug discovery. Herein, we report a series of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as non-peptidomimetic inhibitors targeting SARS-CoV-2 Mpro through structure-based virtual screening and biological evaluation. Further similarity search and structure-activity relationship study led to the identification of compound M56-S2 with the enzymatic IC50 value of 4.0 μM. Moreover, the molecular simulation and predicted ADMET properties, indicated that non-peptidomimetic inhibitor M56-S2 might serve as a useful starting point for the further discovery of highly potent inhibitors targeting SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yihong Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China.
| |
Collapse
|
25
|
Shiryaev V, Klimochkin Y. Computer-aided Design of Wide-spectrum Coronavirus Helicase NSP13 Cage Inhibitors: A Molecular Modelling Approach. Curr Comput Aided Drug Des 2024; 20:1027-1041. [PMID: 37921184 DOI: 10.2174/0115734099247900231016055626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The coronavirus helicase NSP13 plays a critical role in its life cycle. The found NSP13 inhibitors have been tested only in vitro but they definitely have the potential to become antiviral drugs. Thus, the search for NSP13 inhibitors is of great importance. OBJECTIVES The goal of the present work was to develop a general approach to the design of ligands of coronaviral NSP13 helicase and to propose on its basis potential inhibitors. METHODS The structure of the NSP13 protein was refined by molecular dynamics and the cavity, responsible for RNA binding, was chosen as the inhibitor binding site. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. RESULTS A number of potential NSP13 inhibitors were identified and the binding modes and probable mechanism of action of potential inhibitors was clarified. CONCLUSION Using the molecular dynamics and molecular docking techniques, we have refined the structure of the coronavirus NSP13 helicase, a number of potential inhibitors, containing cage fragment were proposed and their probable mechanism of action was clarified. The proposed approach is also suitable for the design of ligands interacting with other viral helicases.
Collapse
Affiliation(s)
- Vadim Shiryaev
- Department of Organic Chemistry, Faculty of Chemical Technology, Samara State Technical University, 443100, Samara, Russia
| | - Yuri Klimochkin
- Department of Organic Chemistry, Faculty of Chemical Technology, Samara State Technical University, 443100, Samara, Russia
| |
Collapse
|
26
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
27
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
28
|
Alagarsamy V, Solomon VR, Murugesan S, Sundar PS, Muzaffar-Ur-Rehman MD, Chandu A, Aishwarya AD, Narendhar B, Sulthana MT, Ravikumar V. In Silico Screening of Some Active Phytochemicals to Identify Promising Inhibitors Against SARS-CoV-2 Targets. Curr Drug Discov Technol 2024; 21:73-89. [PMID: 37861016 DOI: 10.2174/0115701638243222230920051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND There are very few small-molecule drug candidates developed against SARS-CoV-2 that have been revealed since the epidemic began in November 2019. The typical medicinal chemistry discovery approach requires more than a decade of the year of painstaking research and development and a significant financial guarantee, which is not feasible in the challenge of the current epidemic. OBJECTIVE This current study proposes to find and identify the most effective and promising phytomolecules against SARS-CoV-2 in six essential proteins (3CL protease, Main protease, Papain- Like protease, N-protein RNA binding domain, RNA-dependent RNA polymerase, and Spike receptor binding domain target through in silico screening of 63 phytomolecules from six different Ayurveda medicinal plants. METHODS The phytomolecules and SARS-CoV-2 proteins were taken from public domain databases such as PubChem and RCSB Protein Data Bank. For in silico screening, the molecular interactions, binding energy, and ADMET properties were investigated. RESULTS The structure-based molecular docking reveals some molecules' greater affinity towards the target than the co-crystal ligand. Our results show that tannic acid, cyanidin-3-rutinoside, zeaxanthin, and carbolactone are phytomolecules capable of inhibiting SARS-CoV-2 target proteins in the least energy conformations. Tannic acid had the least binding energy of -8.8 kcal/mol, which is better than the binding energy of its corresponding co-crystal ligand (-7.5 kcal/mol) against 3 CL protease. Also, it has shown the least binding energy of -9.9 kcal/mol with a more significant number of conventional hydrogen bond interactions against the RdRp target. Cyanidin-3-rutinoside showed binding energy values of -8.8 and -7.6 kcal/mol against Main protease and Papain-like protease, respectively. Zeaxanthin was the top candidate in the N protein RBD with a binding score of - 8.4 kcal/mol, which is slightly better when compared to a co-crystal ligand (-8.2 kcal/mol). In the spike, carbolactone was the suitable candidate with the binding energy of -7.2 kcal/mol and formed a conventional hydrogen bond and two hydrophobic interactions. The best binding affinity-scored phytomolecules were selected for the MD simulations studies. CONCLUSION The present in silico screening study suggested that active phytomolecules from medicinal plants could inhibit SARS-CoV-2 targets. The elite docked compounds with drug-like properties have a harmless ADMET profile, which may help to develop promising COVID-19 inhibitors.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | - S Murugesan
- Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | | | - A Chandu
- Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Gr. Hyderabad, 502 294, India
| | - V Ravikumar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy - 502 294, Gr. Hyderabad, India
| |
Collapse
|
29
|
Lv Y, Huang L, Wang J, He H, Song L, He J, Xu L, Yu C, Mei Y, Gao Q. A community study of neutralizing antibodies against SARS-CoV-2 in China. Front Immunol 2023; 14:1282612. [PMID: 38143749 PMCID: PMC10748485 DOI: 10.3389/fimmu.2023.1282612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The immune background of the overall population before and after the outbreak of SARS-CoV-2 in China remains unexplored. And the level of neutralizing antibodies is a reliable indicator of individual immunity. Objectives This study aimed to assess the immune levels of different population groups during a viral outbreak and identify the factors influencing these levels. Methods We measured the levels of neutralizing antibodies in 12,137 participants using the COVID19 Neutralizing Antibody Detection kit. The dynamics of neutralizing antibodies were analyzed using a generalized additive model, while a generalized linear model and multi-factor analysis of variance were employed to investigate the influencing factors. Additionally, statistical methods were used to compare neutralizing antibody levels among subgroups of the real-world population. Results Participants who received booster doses exhibited significantly higher levels of neutralizing antibodies compared to those who received only one or two doses (p<0.001). Both elderly [22.55 (5.12, 62.03) IU/mL, 55%] and minors [21.41 (8.15, 45.06) IU/mL, 56%] showed lower positivity rates and neutralizing antibody levels compared to young adults [29.30 (9.82, 188.08) IU/mL, 62%] (p<0.001). Furthermore, the HIV-positive group demonstrated a slightly lower seropositivity rate compared to the healthy group across the three vaccination time points. Notably, three months after the large-scale infection, both the neutralizing antibody level and positivity rate in real-world populations were higher than the previous record [300 (300, 300) IU/mL, 89%; 27.10 (8.77, 139.28) IU/mL, 60%], and this difference was statistically significant. Conclusions Increasing vaccine dosage enhances neutralizing antibody levels, resulting in greater and longer-lasting immunity. Monitoring immune levels in older individuals and those with AIDS is crucial. Additionally, the neutralizing antibodies generated from vaccination have not yet reached the threshold for achieving herd immunity, while individuals exhibit higher immune levels following a large-scale infection. These findings provide valuable insights for guiding new strategies in vaccine administration.
Collapse
Affiliation(s)
- Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junhu Wang
- Health Management Center, AnQing Municipal Hospital, Anqing, Anhui, China
| | - Hui He
- Health Management Department, Shenzhen People’s Hospital, Shenzhen, China
| | - Libo Song
- Health Examination Center, Central Hospital of Jin Zhou, Jinzhou, Liaoning, China
| | - Jia He
- Health Service Center, Shulan (Hang Zhou) Hospital, Hangzhou, Zhejiang, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Mei
- Health Management (Medical Examination) Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd, Beijing, China
| |
Collapse
|
30
|
Liu X, Zhang P, Chen M, Zhou H, Yue T, Xu M, Cai T, Huang J, Yue X, Li G, Zhou Z. Epidemiological and clinical features of COVID-19 inpatients in Changsha, China: A retrospective study from 2020 to 2022. Heliyon 2023; 9:e22873. [PMID: 38125480 PMCID: PMC10731055 DOI: 10.1016/j.heliyon.2023.e22873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The spread of SARS-Cov-2 remains a global concern along with the emergence of variants. This study aims to characterize the epidemiological and clinical features of hospitalized patients who were dragonized with five different variants of SARS-CoV-2 during the past 3 years. Methods This retrospective study recruited 432 COVID-19 patients who were hospitalized in the First Hospital of Changsha from January 2020 to August 2022. Clinical records on clinical symptoms, laboratory profiles, and chest CT images was collected. The epidemiological and clinical features were compared between COVID-19 patients infected with either the wild-type, Omicron variant or pre- Omicron variants (e.g., Alpha, Beta, Delta). Results A total of 432 laboratory-confirmed COVID-19 inpatients were dialogized during three waves, including 247 cases during the wild-type transmission period, 65 cases during the transmission period of pre-Omicron variants, and 119 cases during the transmission period of Omicron variants. The proportion of moderately or severely ill inpatients showed a gradual decline from the wild-type transmission period to the Omicron transmission period. The common symptoms of inpatients infected with SARS-CoV-2 wildtype strains included fever (67.61 %), cough (57.89 %), fatigue (33.60 %), and shortness of breath (12.15 %). In contrast, patients infected with other variants mostly showed upper respiratory symptoms. Based on chest CT images, a lower degree of acute pulmonary infection was observed among inpatients infected with the Omicron variants than those infected with the wild-type strain (31.09 % vs 93.12 %, p-value<0.01). Conclusions Compared with the wild-type strain, SARS-CoV-2 variants of concern, especially the Omicron variant, mostly caused a lower degree of acute pulmonary infection, indicating the reduced disease severity and mortality among hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Medical Administration, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha) Changsha 410000, China
| | - Pan Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Meiping Chen
- Department of Infectious Diseases, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, 410000, China
| | - Haibo Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, 410000, China
| | - Tingting Yue
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ming Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ting Cai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Juan Huang
- Department of Pediatrics, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University(The First Hospital of Changsha), Changsha, 410000, China
| | - Xiaoyang Yue
- Department of General Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University(The First Hospital of Changsha), Changsha, 410000, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhiguo Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, 410000, China
| |
Collapse
|
31
|
Zhuang Z, Qi Y, Yao Y, Yu Y. A predictive model for disease severity among COVID-19 elderly patients based on IgG subtypes and machine learning. Front Immunol 2023; 14:1286380. [PMID: 38106427 PMCID: PMC10723829 DOI: 10.3389/fimmu.2023.1286380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Due to the increased likelihood of progression of severe pneumonia, the mortality rate of the elderly infected with coronavirus disease 2019 (COVID-19) is high. However, there is a lack of models based on immunoglobulin G (IgG) subtypes to forecast the severity of COVID-19 in elderly individuals. The objective of this study was to create and verify a new algorithm for distinguishing elderly individuals with severe COVID-19. Methods In this study, laboratory data were gathered from 103 individuals who had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using a retrospective analysis. These individuals were split into training (80%) and testing cohort (20%) by using random allocation. Furthermore, 22 COVID-19 elderly patients from the other two centers were divided into an external validation cohort. Differential indicators were analyzed through univariate analysis, and variable selection was performed using least absolute shrinkage and selection operator (LASSO) regression. The severity of elderly patients with COVID-19 was predicted using a combination of five machine learning algorithms. Area under the curve (AUC) was utilized to evaluate the performance of these models. Calibration curves, decision curves analysis (DCA), and Shapley additive explanations (SHAP) plots were utilized to interpret and evaluate the model. Results The logistic regression model was chosen as the best machine learning model with four principal variables that could predict the probability of COVID-19 severity. In the training cohort, the model achieved an AUC of 0.889, while in the testing cohort, it obtained an AUC of 0.824. The calibration curve demonstrated excellent consistency between actual and predicted probabilities. According to the DCA curve, it was evident that the model provided significant clinical advantages. Moreover, the model performed effectively in an external validation group (AUC=0.74). Conclusion The present study developed a model that can distinguish between severe and non-severe patients of COVID-19 in the elderly, which might assist clinical doctors in evaluating the severity of COVID-19 and reducing the bad outcomes of elderly patients.
Collapse
Affiliation(s)
- Zhenchao Zhuang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuxiang Qi
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yimin Yao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
32
|
Chen Z, Tian F. Evaluation of oral small molecule drugs for the treatment of COVID-19 patients: a systematic review and network meta-analysis. Ann Med 2023; 55:2274511. [PMID: 37967171 PMCID: PMC10768866 DOI: 10.1080/07853890.2023.2274511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION At present, there are some randomized controlled trials (RCTs) of oral small molecule drugs. The purpose of this study was to evaluate the efficacy and safety of oral small molecule drug treatment for COVID-19. METHODS RCTs were identified through systematic searches of PubMed, Embase, and Cochrane Central Register of Controlled Trials through 1 April 2023. A total of nine RCTs were included, including 30,970 COVID-19 patients comparing five treatments (azvudine, molnupiravir, paxlovid, VV116, and placebo). The Cochrane risk of bias tool for randomized trials (RoB) was used to assess the bias risk of the included studies. The direct and indirect evidence were combined using a Bayesian network meta-analysis (PROSPERO Code No: CRD42023397837). RESULTS Direct analysis showed that paxlovid was associated with a reduced risk of mortality (odds ratio [OR] 0.12, 95% confidence interval [CI] 0.06-0.25) and hospitalization (OR = 0.04, 95% CI: 0.00-0.67) compared with placebo. Network meta-analysis showed that paxlovid had the highest probability of being the best management strategy in patients with COVID-19, reducing mortality (OR = 0.11, 95% CI: 0.01-1.99; surface under the cumulative ranking curve [SUCRA]: 0.77) and hospitalization (OR = 0.06, 95% CI: 0.00-1.03; SUCRA: 0.95). For prespecified safety outcomes, SUCRA values ranked VV116 (OR = 0.09, 95% CI: 0.00-2.07: SUCRA 0.86) as the most beneficial intervention for the prevention of serious adverse events. CONCLUSIONS When compared to other antiviral medications, paxlovid can reduce the mortality and hospitalization of COVID-19 patients.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
34
|
El-Hddad S, Sobhy M, Ayoub A, El-Adl K. In silico molecular docking, dynamics simulation and repurposing of some VEGFR-2 inhibitors based on the SARS-CoV-2-main-protease inhibitor N3. J Biomol Struct Dyn 2023; 41:9267-9281. [PMID: 36399002 DOI: 10.1080/07391102.2022.2148000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The global and rapid spread of the novel human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has brought immediate urgency to the discovery of favorable targets for COVID-19 treatment. Here, we consider drug reuse as an attractive methodology for drug discovery by reusing existing drugs to treat diseases other than their initial indications. Here, we review current information concerning the global health issue of COVID-19 including VEGFR-2 inhibitors. Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2. The present study suggests the potential anti-SARS-CoV-2 activities of 35 reported VEGFR-2 inhibitors containing the amide and urea linkers. Nineteen members revealed the best in silico results and hence, were subjected to further molecular dynamics (MD) simulation for their inhibitory activities against SARS-CoV-2 Mpro across 100 ns. Furthermore, MD simulations followed by calculations of the free energy of binding were also carried out for the most promising ligand-pocket complexes from docking studies to clarify some information on their dynamic and thermodynamic properties and approve the docking results. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanadelaslam El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University, Al Bayda, Libya
| | - Mohamed Sobhy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed Ayoub
- HTuO Biosciences Inc., Vancouver, BC, Canada
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
35
|
Zardosht R, Ghardashi F, Borzoee F, Akbarzadeh R, Vafi F, Yazdimoghaddam H, Samadipour E. Fear of the unknown, anxiety, and social isolation in Iranian patients with Covid-19, the grounded theory. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2023; 12:360. [PMID: 38144020 PMCID: PMC10743854 DOI: 10.4103/jehp.jehp_861_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/07/2022] [Indexed: 12/26/2023]
Abstract
BACKGROUND Coronavirus 2019 (COVID-19) pandemic has incurred a health challenge. Patients suffer from many physical and mental disorders. To accurately identify the experience of patients with Covid-19 in the Iranian society. MATERIALS AND METHODS This qualitative research was conducted using the grounded theory. The data of this grounded theory study were collected using 32 semi-structured interviews with participants and field notes including the patients with Covid-19, nurses, physicians, and the patients' families. Data analysis was performed using Corbin and Strauss (2008) approach for concepts, context, process, and categories' integration. RESULTS Qualitative analysis of data led to the extraction of 54 sub-categories and 7 final categories. "Isolation, fear of death, and fear of infection of relatives and family members" were identified as the main issue. The context to this concern was the "unfamiliarity with the virus due to its ambiguous nature that was obtained with a wide range of symptoms." Facing this issue, the patients used the strategy of "adherence to health protocol in the coronavirus infection process" that was recognized as the central variable. CONCLUSION The ambiguous and complex nature of the emerging virus, the appearance of different symptoms in different people, and the fear of infecting others, death and anxiety due to unknown complications of the disease make patients go through the most difficult experience of their lives. That requires ongoing training on up-to-date prevention and treatment protocols, along with the emergence of mutated viruses and new symptoms.
Collapse
Affiliation(s)
- Roghayeh Zardosht
- Department of Operating Room, Faculty of Paramedics, Iranian Research Center on Healthy Aging, Sabzevar University of Medical Sciences, Sabzerar, Iran
| | - Fatemeh Ghardashi
- Department of Operating Room, Faculty of Paramedics, Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzerar, Iran
| | - Fateme Borzoee
- Department of Operating Room, Faculty of Paramedics, Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzerar, Iran
| | - Roya Akbarzadeh
- Department of Anesthesiology, Non-Communicable Disease Research Center, Faculty of Paramedics, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Vafi
- Department of Operating Room, Faculty of Paramedics, Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzerar, Iran
| | - Hamideh Yazdimoghaddam
- Department of Operating Room, Faculty of Paramedics, Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzerar, Iran
| | - Ezat Samadipour
- Department of Emergency Medicine, Faculty of Paramedices, Non-Communicable Disease Research Center, Sabzevar University of Medical Sciences, Sabzerar, Iran
| |
Collapse
|
36
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
37
|
Sokouti B. A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:994-1026. [PMID: 38023988 PMCID: PMC10651357 DOI: 10.37349/etat.2023.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/22/2023] [Indexed: 12/01/2023] Open
Abstract
The present coronavirus disease 2019 (COVID-19) pandemic scenario has posed a difficulty for cancer treatment. Even under ideal conditions, malignancies like small cell lung cancer (SCLC) are challenging to treat because of their fast development and early metastases. The treatment of these patients must not be jeopardized, and they must be protected as much as possible from the continuous spread of the COVID-19 infection. Initially identified in December 2019 in Wuhan, China, the contagious coronavirus illness 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finding inhibitors against the druggable targets of SARS-CoV-2 has been a significant focus of research efforts across the globe. The primary motivation for using molecular modeling tools against SARS-CoV-2 was to identify candidates for use as therapeutic targets from a pharmacological database. In the published study, scientists used a combination of medication repurposing and virtual drug screening methodologies to target many structures of SARS-CoV-2. This virus plays an essential part in the maturation and replication of other viruses. In addition, the total binding free energy and molecular dynamics (MD) modeling findings showed that the dynamics of various medications and substances were stable; some of them have been tested experimentally against SARS-CoV-2. Different virtual screening (VS) methods have been discussed as potential means by which the evaluated medications that show strong binding to the active site might be repurposed for use against SARS-CoV-2.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran
| |
Collapse
|
38
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
39
|
Zanganeh Kia H, Choi Y, Nelson D, Park J, Pouyaei A. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164694. [PMID: 37290661 PMCID: PMC10245270 DOI: 10.1016/j.scitotenv.2023.164694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, many previous studies using computational fluid dynamics (CFD) have focused on the dynamics of air masses, which are believed to be the carriers of respiratory diseases, in enclosed indoor environments. Although outdoor air may seem to provide smaller exposure risks, it may not necessarily offer adequate ventilation that varies with different micro-climate settings. To comprehensively assess the fluid dynamics in outdoor environments and the efficiency of outdoor ventilation, we simulated the outdoor transmission of a sneeze plume in "hot spots" or areas in which the air is not quickly ventilated. We began by simulating the airflow over buildings at the University of Houston using an OpenFOAM computational fluid dynamics solver that utilized the 2019 seasonal atmospheric velocity profile from an on-site station. Next, we calculated the length of time an existing fluid is replaced by new fresh air in the domain by defining a new variable and selecting the hot spots. Finally, we conducted a large-eddy simulation of a sneeze in outdoor conditions and then simulated a sneeze plume and particles in a hot spot. The results show that fresh incoming air takes as long as 1000 s to ventilate the hot spot area in some specific regions on campus. We also found that even the slightest upward wind causes a sneeze plume to dissipate almost instantaneously at lower elevations. However, downward wind provides a stable condition for the plume, and forward wind can carry a plume even beyond six feet, the recommended social distance for preventing infection. Additionally, the simulation of sneeze droplets shows that the majority of the particles adhered to the ground or body immediately, and airborne particles can be transported more than six feet, even in a minimal amount of ambient air.
Collapse
Affiliation(s)
- Hadi Zanganeh Kia
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA.
| | - Delaney Nelson
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Jincheol Park
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Arman Pouyaei
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
40
|
Aleebrahim-Dehkordi E, Ghoshouni H, Koochaki P, Esmaili-Dehkordi M, Aleebrahim E, Chichagi F, Jafari A, Hanaei S, Heidari-Soureshjani E, Rezaei N. Targeting the vital non-structural proteins (NSP12, NSP7, NSP8 and NSP3) from SARS-CoV-2 and inhibition of RNA polymerase by natural bioactive compound naringenin as a promising drug candidate against COVID-19. J Mol Struct 2023; 1287:135642. [PMID: 37131962 PMCID: PMC10131750 DOI: 10.1016/j.molstruc.2023.135642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
The prevalence of SARS-CoV-2-induced respiratory infections is now a major challenge worldwide. There is currently no specific antiviral drug to prevent or treat this disease. Infection with COVID-19 seriously needs to find effective therapeutic agents. In the present study, naringenin, as a potential inhibitor candidate for RNA Polymerase SARS-CoV-2 was compared with remdesivir (FDA-approved drug) and GS-441,524 (Derivative of the drug remdesivir) by screening with wild-type and mutant SARS-CoV-2 NSP12 (NSP7-NSP8) and NSP3 interfaces, then complexes were simulated by molecular dynamics (MD) simulations to gain their stabilities. The docking results displayed scores of -3.45 kcal/mol and -4.32 kcal/mol against NSP12 and NSP3, respectively. Our results showed that naringenin had ΔG values more negative than the ΔG values of Remdesivir (RDV) and GS-441,524. Hence, naringenin was considered to be a potential inhibitor. Also, the number of hydrogen bonds of naringenin with NSP3 and later NSP12 are more than Remdesivir and its derivative. In this research, Mean root mean square deviation (RMSD) values of NSP3 and NSP12with naringenin ligand (5.55±1.58 nm to 3.45±0.56 nm and 0.238±0.01 to 0.242±0.021 nm, respectively showed stability in the presence of ligand. The root mean square fluctuations (RMSF) values of NSP3 and NSP12 amino acid units in the presence of naringenin in were 1.5 ± 0.31 nm and 0.118±0.058, respectively. Pharmacokinetic properties and prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of naringenin and RDV showed that these two compounds had no potential cytotoxicity.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamed Ghoshouni
- Medical student, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Pooneh Koochaki
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Elham Aleebrahim
- PhD Student in Food Sciences and Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Fatemeh Chichagi
- Research Development Center, Sina Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hanaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Heidari-Soureshjani
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box. 115, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Sarkarai D, Desikan K. QSPR/QSAR analysis of some eccentricity based topological descriptors of antiviral drugs used in COVID-19 treatment via $ \mathscr{D}\varepsilon $- polynomials. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17272-17295. [PMID: 37920055 DOI: 10.3934/mbe.2023769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In the field of chemical and medical sciences, topological indices are used to study the chemical, biological, clinical, and therapeutic aspects of pharmaceuticals. The COVID-19 pandemic is largely recognized as the most life-threatening crisis confronting medical advances. Scientists have tested various antiviral drugs and discovered that they help people recover from viral infections like COVID-19. Antiviral medications, such as Arbidol, Chloroquine, Hydroxy-Chloroquine, Lopinavir, Remdesivir, Ritonavir, Thalidomide and Theaflavin, are often used to treat COVID-19. In this paper, we define Diameter Eccentricity Based vertex degree and employ it to introduce a new polynomial called $ D\varepsilon- $ Polynomial. Using the newly introduced polynomial, we derive new topological indices, namely, diameter eccentricity based and hyper diameter eccentricity based indices. In order to check the efficacy of our indices, we derive the $ D\varepsilon- $ polynomials for the eight COVID-19 drugs mentioned above. Using these polynomials, we compute our proposed topological descriptors for the eight COVID-19 drugs. We perform quantitative structure-property relationship (QSPR) analysis by identifying the best fit curvilinear/multilinear regression models based on our topological descriptors for 8 physico- chemical properties of the COVID-19 drugs. We also perform quantitative structure-activity relationship (QSAR) analysis by identifying the best fit multilinear regression model for predicting the $ IC_{50} $ values for the eight COVID-19 drugs. Our findings and models may be useful in the development of new COVID-19 medication.
Collapse
Affiliation(s)
- Deepalakshmi Sarkarai
- Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kalyani Desikan
- Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
42
|
Chen Z, Tian F. Efficacy and safety of azvudine in patients with COVID-19: A systematic review and meta-analysis. Heliyon 2023; 9:e20153. [PMID: 37809649 PMCID: PMC10559905 DOI: 10.1016/j.heliyon.2023.e20153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Azivudine has undergone a few randomized controlled trials (RCTs) as of late. This study aimed to assess the COVID-19 treatment with azvudine's efficacy and safety. Methods Through January 20, 2023, systematic searches of PubMed, Embase, ClinicalTrials.gov, International Clinical Trials Registry Platform (ICTRP), Cochrane Central Register of Controlled Trials (CENTRAL), and MedRxiv were conducted to find the RCTs. The included studies' bias risk was evaluated using the Cochrane Handbook for Systematic Reviews of Interventions. Meta-analysis was performed using Revman 5.4 (PROSPERO Code: CRD42023395022). Results A total of five RCTs with 1142 COVID-19 patients, 575 of whom received azvudine, were included. Additionally, seven RCTs are currently being conducted. In terms of clinical improvement and PT-PCR (reverse transcription polymerase chain reaction) negativity, the azvudine group had a greater patient percentage than the usual treatment or placebo group. It also took less time for the PT-PCR to become negative. In comparison to the placebo or standard treatment groups, the frequency of adverse events was reduced in the azvudine group (risk ratio [RR] = 0.89, 95% confidence interval [CI]: 0.80 to 0.99) and major adverse events (RR = 0.63, 95% CI: 0.22 to 1.79) groups. Conclusions Without the burden of side effects, azvudine can hasten the clinical symptoms of COVID-19 patients and PT-PCR negative. It will take more extensive research to confirm these conclusions.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Xiao Y, Wang L, Fang SS, Luo F, Chen SL, Ye L, Hou W. Direct blue 53, a biological dye, inhibits SARS-CoV-2 infection by blocking ACE2 and spike interaction in vitro and in vivo. Virology 2023; 586:105-114. [PMID: 37531695 DOI: 10.1016/j.virol.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
COVID-19 is a global health problem caused by SARS-CoV-2, which has led to over 600 million infections and 6 million deaths. Developing novel antiviral drugs is of pivotal importance to slow down the epidemic swiftly. In this study, we identified five azo compounds as effective antiviral drugs to SARS-CoV-2, and mechanism study revealed their targets for impeding viral particles' ability to bind to host receptors. Direct Blue 53, which displayed the strongest inhibitory impact, inhibited five mutant strains at micromole. In vitro, mechanism study demonstrated Direct Blue 53 inhibited viral infection through interaction with the spike of SARS-CoV-2. And 25 mg/kg/d compound treatment showed 50% or 60% survival protection against lethal Delta or Omicron BA.2 infection in vivo. Taken together, our results demonstrate that azo compounds with dimethyl-biphenyl-diyl-bis(azo)bis structure may be promising anti-SARS-CoV-2 drug candidates, which provide practicable therapies with the aid of structural optimizations and further research.
Collapse
Affiliation(s)
- Yu Xiao
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Ling Wang
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong Province, China
| | - Shi-Song Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Shu-Liang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Lin Ye
- Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong Province, China.
| | - Wei Hou
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China; School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
44
|
Gayatri SK, Chhabra V, Kumar H, Sobhia ME. Identification of prospective covalent inhibitors for SARS-CoV-2 main protease using structure-based approach. J Biomol Struct Dyn 2023; 41:7913-7930. [PMID: 36200615 DOI: 10.1080/07391102.2022.2129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/16/2022] [Indexed: 10/10/2022]
Abstract
The rapid global spread of SARS-CoV-2 has recently caused havoc and forced the world into a state of the pandemic causing respiratory, gastrointestinal, hepatic, and neurologic diseases. It persistently, through mutation, develops into new variants of the virus that have appeared over time. As main protease (Mpro) is involved in proteolysis of two overlapping polyproteins pp1a and pp1ab to produce 16 non-structural proteins having a paramount factor in the virus replication that have a cysteine-histidine catalytic dyad. A computational approach, guiding a covalent docking as it offers higher potency, long duration of action and decreased drug resistance advantages over the conventional docking of the ligands on a catalytic dyad, is applied for SARS-CoV-2 main protease (Mpro) in this manuscript to divulge better molecules. Mpro active site contains Cys145 residue which act as a nucleophile and can donate its electron to an electrophilic molecule by interacting covalently. Furthermore, the ligand-protein complexes are allowed to simulate their dynamic studies to look into their time-based interaction stability and also, a parallel study of ADME properties for the hit molecules is also performed. Important insights from the studies revealed that the interactions are persistent and molecules may be considered for further optimization in clinical investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shenvi Kudchadker Gayatri
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Vaishnavi Chhabra
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
45
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
46
|
Piacentini S, Riccio A, Santopolo S, Pauciullo S, La Frazia S, Rossi A, Rossignol JF, Santoro MG. The FDA-approved drug nitazoxanide is a potent inhibitor of human seasonal coronaviruses acting at postentry level: effect on the viral spike glycoprotein. Front Microbiol 2023; 14:1206951. [PMID: 37705731 PMCID: PMC10497118 DOI: 10.3389/fmicb.2023.1206951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Coronaviridae is recognized as one of the most rapidly evolving virus family as a consequence of the high genomic nucleotide substitution rates and recombination. The family comprises a large number of enveloped, positive-sense single-stranded RNA viruses, causing an array of diseases of varying severity in animals and humans. To date, seven human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, which are globally circulating in the human population (seasonal HCoV, sHCoV), and the highly pathogenic SARS-CoV, MERS-CoV and SARS-CoV-2. Seasonal HCoV are estimated to contribute to 15-30% of common cold cases in humans; although diseases are generally self-limiting, sHCoV can sometimes cause severe lower respiratory infections and life-threatening diseases in a subset of patients. No specific treatment is presently available for sHCoV infections. Herein we show that the anti-infective drug nitazoxanide has a potent antiviral activity against three human endemic coronaviruses, the Alpha-coronaviruses HCoV-229E and HCoV-NL63, and the Beta-coronavirus HCoV-OC43 in cell culture with IC50 ranging between 0.05 and 0.15 μg/mL and high selectivity indexes. We found that nitazoxanide does not affect HCoV adsorption, entry or uncoating, but acts at postentry level and interferes with the spike glycoprotein maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Altogether the results indicate that nitazoxanide, due to its broad-spectrum anti-coronavirus activity, may represent a readily available useful tool in the treatment of seasonal coronavirus infections.
Collapse
Affiliation(s)
- Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | - M. Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
47
|
Tian F, Feng Q, Chen Z. Efficacy and Safety of Molnupiravir Treatment for COVID-19: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Antimicrob Agents 2023; 62:106870. [PMID: 37245600 PMCID: PMC10214763 DOI: 10.1016/j.ijantimicag.2023.106870] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION There are currently some differences in the research results of molnupiravir. This study aimed to evaluate the efficacy and safety of molnupiravir in the treatment of COVID-19. METHODS PubMed, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), ClinicalTrials.gov, ICTRP (International Clinical Trials Registry Platform) and medRxiv were searched to identify relevant randomised controlled trials (RCTs) from inception to 1 January 2023. The Cochrane risk of bias tool for randomised trials was used to assess the bias risk of the included studies. Revman 5.4 software was used for meta-analysis. RESULTS Nine RCTs were included, including 31 573 COVID-19 patients, of whom 15 846 received molnupiravir. The meta-analysis results showed that the molnupiravir group had a higher proportion in terms of clinical improvement (Day 5 RR 2.41, 95% CI 1.18-4.92; Day 10 RR 1.45, 95% CI 1.04-2.01) and real-time polymerase chain reaction negativity (Day 5 RR 2.78, 95% CI 1.38-5.62; Day 10 RR 1.18, 95% CI 1.07-1.31). However, no significant difference was observed between the two groups in terms of mortality, hospitalisation, adverse events and serious adverse events. CONCLUSIONS Molnupiravir can accelerate the rehabilitation of COVID-19 patients, but it does not significantly reduce mortality and hospitalisation.
Collapse
Affiliation(s)
- Fangyuan Tian
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China; Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Qiyi Feng
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoyan Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Khalifa M, Fahim JR, Allam AE, Shoman ME, El Zawily A, Kamel MS, Shimizu K, Attia EZ. Studies on the Nonalkaloidal Secondary Metabolites of Hippeastrum vittatum (L'Her.) Herb. Bulbs. ACS OMEGA 2023; 8:26749-26761. [PMID: 37546665 PMCID: PMC10398848 DOI: 10.1021/acsomega.2c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Sixteen chemically varied metabolites were isolated from the bulbs of Hippeastrum vittatum (L'Her.) Herb., including eight flavonoids [3'-methyl isoliquiritigenin (2), 7-hydroxyflavan (8), 7-hydroxyflavanone (9), 7-hydroxyflavan-3-ol (10), 7-methoxy-3',4'-methylenedioxyflavan-3-ol (11), 7-hydroxy-3',4'-methylenedioxy flavan (12), 2',4'-dihydroxy-3'-methyl-3,4-methylenedioxychalcone (13), and isoliquiritigenin (14)], four acetophenones [2,6-dimethoxy-4-hydroxyacetophenone (3), 2,4-dihydroxyacetophenone (4), 2,4-dihydroxy-6-methoxy-3-methylacetophenone (6), and 2,4,6-trimethoxyacetophenone (7)], two alkaloids [lycorine (1) and narciprimine (15)], one phenol derivative [p-nitrophenol (5)], and one steroid [β-sitosterol 3-O-β-glucopyranoside (16)]. Their structures were elucidated by combining one- and two-dimensional NMR and ESI-MS techniques and by comparison with the reported literature data and some authentic samples. Except for lycorine (1), the isolated metabolites were obtained herein for the first time from Hippeastrum plants, among which compound 13 was identified as a new chalcone derivative. Additionally, the total phenolic and flavonoid contents of the total ethanol extract and different fractions of the bulbs were determined by the Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively, whereas their antioxidant potential was compared using the phosphomolybdenum and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays. Finally, the binding affinities of compounds 1-16 to some key target proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely, main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp), were screened and compared using molecular docking analysis. The possible chemotaxonomic significance of the identified metabolites was also discussed.
Collapse
Affiliation(s)
- Marwa
Fathy Khalifa
- Department
of Pharmacognosy, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
| | - John Refaat Fahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
| | - Ahmed E. Allam
- Department
of Pharmacognosy, Faculty of Pharmacy, Al-Azhar
University, 71524 Assiut, Egypt
| | - Mai E. Shoman
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amr El Zawily
- Department
of Plant and Microbiology, Faculty of Science, Damanhour University, 22511 Damanhour, Egypt
- Department
of Biology, University of Iowa, Iowa City, Iowa 52242-1324, United
States
| | - Mohamed Salah Kamel
- Department
of Pharmacognosy, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
| | - Kuniyoshi Shimizu
- Department
of Agro-Environmental Sciences, Graduate School of Bioresource and
Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
| | - Eman Zekry Attia
- Department
of Pharmacognosy, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
| |
Collapse
|
49
|
Qi W, Zhai D, Song D, Liu C, Yang J, Sun L, Li Y, Li X, Deng W. Optimized synthesis of anti-COVID-19 drugs aided by retrosynthesis software. RSC Med Chem 2023; 14:1254-1259. [PMID: 37484565 PMCID: PMC10357945 DOI: 10.1039/d2md00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/21/2023] [Indexed: 07/25/2023] Open
Abstract
Considering the millions of COVID-19 patients worldwide, a global critical challenge of low-cost and efficient anti-COVID-19 drug production has emerged. Favipiravir is one of the potential anti-COVID-19 drugs, but its original synthetic route with 7 harsh steps gives a low product yield (0.8%) and has a high cost ($68 per g). Herein, we demonstrated a low-cost and efficient synthesis route for favipiravir designed using improved retrosynthesis software, which involves only 3 steps under safe and near-ambient air conditions. A yield of 32% and cost of $1.54 per g were achieved by this synthetic route. We also used the same strategy to optimize the synthesis of sabizabulin. We anticipate that these synthetic routes will contribute to the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Wentao Qi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Danna Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Junxia Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123 P. R. China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
50
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|