1
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
3
|
Raj S, Dsouza LA, Singh SP, Kanwal A. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Front Pharmacol 2020; 11:598326. [PMID: 33442387 PMCID: PMC7797778 DOI: 10.3389/fphar.2020.598326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sirtuins, NAD + dependent proteins belonging to class III histone deacetylases, are involved in regulating numerous cellular processes including cellular stress, insulin resistance, inflammation, mitochondrial biogenesis, chromatin silencing, cell cycle regulation, transcription, and apoptosis. Of the seven mammalian sirtuins present in humans, Sirt6 is an essential nuclear sirtuin. Until recently, Sirt6 was thought to regulate chromatin silencing, but new research indicates its role in aging, diabetes, cardiovascular disease, lipid metabolism, neurodegenerative diseases, and cancer. Various murine models demonstrate that Sirt6 activation is beneficial in alleviating many disease conditions and increasing lifespan, showing that Sirt6 is a critical therapeutic target in the treatment of various disease conditions in humans. Sirt6 also regulates the pathogenesis of multiple diseases by acting on histone proteins and non-histone proteins. Endogenous and non-endogenous modulators regulate both activation and inhibition of Sirt6. Few Sirt6 specific non-endogenous modulators have been identified. Hence the identification of Sirt6 specific modulators may have potential therapeutic roles in the diseases described above. In this review, we describe the development of Sirt6, the role it plays in the human condition, the functional role and therapeutic importance in disease processes, and specific modulators and molecular mechanism of Sirt6 in the regulation of metabolic homeostasis, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Swapnil Raj
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Liston Augustine Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shailendra Pratap Singh
- Department of Biomedical Engineering, School of Engineering and Technology, Central University of Rajasthan, Kishangarh, India
| | - Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
4
|
Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 2020; 12:464-476. [PMID: 34163609 PMCID: PMC8178949 DOI: 10.1039/d0sc05131d] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allostery, which is one of the most direct and efficient methods to fine-tune protein functions, has gained increasing recognition in drug discovery. However, there are several challenges associated with the identification of allosteric sites, which is the fundamental cornerstone of drug design. Previous studies on allosteric site predictions have focused on communication signals propagating from the allosteric sites to the orthosteric sites. However, recent biochemical studies have revealed that allosteric coupling is bidirectional and that orthosteric perturbations can modulate allosteric sites through reversed allosteric communication. Here, we proposed a new framework for the prediction of allosteric sites based on reversed allosteric communication using a combination of computational and experimental strategies (molecular dynamics simulations, Markov state models, and site-directed mutagenesis). The desirable performance of our approach was demonstrated by predicting the known allosteric site of the small molecule MDL-801 in nicotinamide dinucleotide (NAD+)-dependent protein lysine deacetylase sirtuin 6 (Sirt6). A potential novel cryptic allosteric site located around the L116, R119, and S120 residues within the dynamic ensemble of Sirt6 was identified. The allosteric effect of the predicted site was further quantified and validated using both computational and experimental approaches. This study proposed a state-of-the-art computational pipeline for detecting allosteric sites based on reversed allosteric communication. This method enabled the identification of a previously uncharacterized potential cryptic allosteric site on Sirt6, which provides a starting point for allosteric drug design that can aid the identification of candidate pockets in other therapeutic targets. Using reversed allosteric communication, we performed MD simulations, MSMs, and mutagenesis experiments, to discover allosteric sites. It reproduced the known allosteric site for MDL-801 on Sirt6 and uncovered a novel cryptic allosteric Pocket X.![]()
Collapse
Affiliation(s)
- Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,The Charles Perkins Centre, University of Sydney Sydney NSW 2006 Australia
| | - Jiacheng Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinheng He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Yuran Qiu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200120 China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
5
|
Naiman S, Huynh FK, Gil R, Glick Y, Shahar Y, Touitou N, Nahum L, Avivi MY, Roichman A, Kanfi Y, Gertler AA, Doniger T, Ilkayeva OR, Abramovich I, Yaron O, Lerrer B, Gottlieb E, Harris RA, Gerber D, Hirschey MD, Cohen HY. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Rep 2019; 29:4127-4143.e8. [PMID: 31851938 PMCID: PMC7165364 DOI: 10.1016/j.celrep.2019.11.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/11/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.
Collapse
Affiliation(s)
- Shoshana Naiman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Frank K Huynh
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA; Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Reuven Gil
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yael Shahar
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Noga Touitou
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Liat Nahum
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matan Y Avivi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asael Roichman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yariv Kanfi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asaf A Gertler
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Orly Yaron
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Batia Lerrer
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; Bar Ilan Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Haim Y Cohen
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
6
|
NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal 2019; 17:168. [PMID: 31842909 PMCID: PMC6915971 DOI: 10.1186/s12964-019-0491-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background Our previous study has demonstrated that NAD(P)H: quinone oxidoreductase 1 (NQO1) is significantly upregulated in human liver cancer where it potentiates the apoptosis evasion of liver cancer cell. However, the underlying mechanisms of the oncogenic function of NQO1 in HCC have not been fully elucidated. Methods Expression of NQO1, SIRT6, AKT and X-linked inhibitor of apoptosis protein (XIAP) protein were measured by western blotting and immunohistochemistry. Additionally, the interaction between NQO1 and potential proteins were determined by immunoprecipitation assays. Furthermore, the effect of NQO1 and SIRT6 on tumor growth was determined in cell model and orthotopic tumor implantation model. Results We found that NQO1 overexpression in HCC enhanced SIRT6 protein stability via inhibiting ubiquitin-mediated 26S proteasome degradation. High level of SIRT6 reduced acetylation of AKT which resulted in increased phosphorylation and activity of AKT. Activated AKT subsequently phosphorylated anti-apoptotic protein XIAP at Ser87 which determined its protein stability. Reintroduction of SIRT6 or AKT efficiently rescued NQO1 knock-out-mediated inhibition of growth and induction of apoptosis. In orthotopic mouse model, NQO1 knock-out inhibited tumor growth and induced apoptosis while this effect was effectively rescued by SIRT6 overexpression or MG132 treatment partially. Conclusions Collectively, these results reveal an oncogenic function of NQO1 in sustaining HCC cell proliferation through SIRT6/AKT/XIAP signaling pathway.
Collapse
|