1
|
Mishra S. Living with Sjögren's Syndrome: An Analysis of YouTube Vlogs on the Autoimmune Disease. HEALTH COMMUNICATION 2024; 39:2267-2275. [PMID: 37743612 DOI: 10.1080/10410236.2023.2261734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
People who experience symptoms of autoimmune diseases often have to struggle for illness recognition. Women experiencing such symptoms face additional challenges as their accounts of pain are frequently treated with skepticism. This study examines experiences of people living with Sjögren's Syndrome, an autoimmune disease which is primarily diagnosed in women, by conducting an analysis of individual vlogs posted on YouTube using the themes of gender, chronic illness and neoliberal governmentality. Sjögren's Syndrome is the second most common rheumatic disease after rheumatoid arthritis and affects nearly 4 million people in the United States alone. An analysis of 70 vlogs posted by people living with the disease revealed the challenges faced by them including diagnostic delays and perceived attitudinal biases amongst medical professionals, especially in the context of the gender of the patients. Apart from highlighting the impact of the disease on their gendered roles, the vloggers urged viewers to conduct their own research on the disease and advocate for themselves during interactions with physicians. The study illuminates how dissatisfaction with healthcare services reinforces neoliberal rationalities such as individual advocacy, resilience and self-labor. The findings of the study delineate the role of neoliberal governmentality in making self-management of chronic illnesses such as Sjögren's Syndrome an internalized ideal for women living with the disease. Additionally, the study provides empirical evidence of the need for addressing the medical and socio-cultural factors that contribute to delays in the diagnosis and management of Sjögren's Syndrome.
Collapse
Affiliation(s)
- Smeeta Mishra
- General Management & Strategic Management Area, Xavier Institute of Management, XIM University
| |
Collapse
|
2
|
Chen S, Tan ALM, Saad Menezes MC, Mao JF, Perry CL, Vella ME, Viswanadham VV, Kobren S, Churchill S, Kohane IS. Polygenic risk scores for autoimmune related diseases are significantly different in cancer exceptional responders. NPJ Precis Oncol 2024; 8:120. [PMID: 38796637 PMCID: PMC11127926 DOI: 10.1038/s41698-024-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
A small number of cancer patients respond exceptionally well to therapies and survive significantly longer than patients with similar diagnoses. Profiling the germline genetic backgrounds of exceptional responder (ER) patients, with extreme survival times, can yield insights into the germline polymorphisms that influence response to therapy. As ERs showed a high incidence in autoimmune diseases, we hypothesized the differences in autoimmune disease risk could reflect the immune background of ERs and contribute to better cancer treatment responses. We analyzed the germline variants of 51 ERs using polygenic risk score (PRS) analysis. Compared to typical cancer patients, the ERs had significantly elevated PRSs for several autoimmune-related diseases: type 1 diabetes, hypothyroidism, and psoriasis. This indicates that an increased genetic predisposition towards these autoimmune diseases is more prevalent among the ERs. In contrast, ERs had significantly lower PRSs for developing inflammatory bowel disease. The left-skew of type 1 diabetes score was significant for exceptional responders. Variants on genes involved in the T1D PRS model associated with cancer drug response are more likely to co-occur with other variants among ERs. In conclusion, ERs exhibited different risks for autoimmune diseases compared to typical cancer patients, which suggests that changes in a patient's immune set point or immune surveillance specificity could be a potential mechanistic link to their exceptional response. These findings expand upon previous research on immune checkpoint inhibitor-treated patients to include those who received chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Amelia L M Tan
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Maria C Saad Menezes
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Jenny F Mao
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
- Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT, 06511-8937, USA
| | - Cassandra L Perry
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Margaret E Vella
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Vinayak V Viswanadham
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Shilpa Kobren
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Susanne Churchill
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Pastva O, Klein K. Long Non-Coding RNAs in Sjögren's Disease. Int J Mol Sci 2024; 25:5162. [PMID: 38791207 PMCID: PMC11121283 DOI: 10.3390/ijms25105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Sjögren's disease (SjD) is a heterogeneous autoimmune disease characterized by severe dryness of mucosal surfaces, particularly the mouth and eyes; fatigue; and chronic pain. Chronic inflammation of the salivary and lacrimal glands, auto-antibody formation, and extra-glandular manifestations occur in subsets of patients with SjD. An aberrant expression of long, non-coding RNAs (lncRNAs) has been described in many autoimmune diseases, including SjD. Here, we review the current literature on lncRNAs in SjD and their role in regulating X chromosome inactivation, immune modulatory functions, and their potential as biomarkers.
Collapse
Affiliation(s)
- Ondřej Pastva
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
4
|
López Ruiz A, Slaughter ED, Kloxin AM, Fromen CA. Bridging the gender gap in autoimmunity with T-cell-targeted biomaterials. Curr Opin Biotechnol 2024; 86:103075. [PMID: 38377884 PMCID: PMC11578274 DOI: 10.1016/j.copbio.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Autoimmune diseases are caused by malfunctions of the immune system and generally impact women at twice the frequency of men. Many of the most serious autoimmune diseases are accompanied by a dysregulation of T-cell phenotype, both regarding the ratio of CD4+ to CD8+ T-cells and proinflammatory versus regulatory phenotypes. Biomaterials, in the form of particles and hydrogels, have shown promise in ameliorating this dysregulation both in vivo and ex vivo. In this review, we explore the role of T-cells in autoimmune diseases, particularly those with high incidence rates in women, and evaluate the promise and efficacy of innovative biomaterial-based approaches for targeting T-cells.
Collapse
Affiliation(s)
- Aida López Ruiz
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Eric D Slaughter
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - April M Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Material Science and Engineering, University of Delaware, Newark, DE, United States.
| | - Catherine A Fromen
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
5
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Webster SE, Tsuji NL, Clemente MJ, Holodick NE. Age-related changes in antigen-specific natural antibodies are influenced by sex. Front Immunol 2023; 13:1047297. [PMID: 36713434 PMCID: PMC9878317 DOI: 10.3389/fimmu.2022.1047297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Natural antibody (NAb) derived from CD5+ B-1 cells maintains tissue homeostasis, controls inflammation, aids in establishing long-term protective responses against pathogens, and provides immediate protection from infection. CD5+ B-1 cell NAbs recognize evolutionarily fixed epitopes, such as phosphatidylcholine (PtC), found on bacteria and senescent red blood cells. Anti-PtC antibodies are essential in protection against bacterial sepsis. CD5+ B-1 cell-derived NAbs have a unique germline-like structure that lacks N-additions, a feature critical for providing protection against infection. Previously, we demonstrated the repertoire and germline status of PtC+CD5+ B-1 cell IgM obtained from male mice changes with age depending on the anatomical location of the B-1 cells. More recently, we demonstrated serum antibody from aged female mice maintains protection against pneumococcal infection, whereas serum antibody from male mice does not provide protection. Results Here, we show that aged female mice have significantly more splenic PtC+CD5+ B-1 cells and more PtC specific serum IgM than aged male mice. Furthermore, we find both age and biological sex related repertoire differences when comparing B cell receptor (BCR) sequencing results of PtC+CD5+ B-1 cells. While BCR germline status of PtC+CD5+ B-1 cells from aged male and female mice is similar in the peritoneal cavity, it differs significantly in the spleen, where aged females retain germline configuration and aged males do not. Nucleic acid sensing toll-like receptors are critical in the maintenance of PtC+ B-1 cells; therefore, to begin to understand the mechanism of differences observed between the male and female PtC+CD5+ B-1 cell repertoire, we analyzed levels of cell-free nucleic acids and found increases in aged females. Conclusion Our results suggest the antigenic milieu differs between aged males and females, leading to differential selection of antigen-specific B-1 cells over time. Further elucidation of how biological sex differences influence the maintenance of B-1 cells within the aging environment will be essential to understand sex and age-related disparities in the susceptibility to bacterial infection and will aid in the development of more effective vaccination and/or therapeutic strategies specific for males and females.
Collapse
Affiliation(s)
- Sarah E. Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Naomi L. Tsuji
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Michael J. Clemente
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
- Flow Cytometry and Imaging Core, Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nichol E. Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
- Flow Cytometry and Imaging Core, Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
7
|
Merone L, Tsey K, Russell D, Daltry A, Nagle C. Self-Reported Time to Diagnosis and Proportions of Rediagnosis in Female Patients with Chronic Conditions in Australia: A Cross-sectional Survey. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2022; 3:749-758. [PMID: 36185069 PMCID: PMC9518795 DOI: 10.1089/whr.2022.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Background The diagnosis of chronic conditions in women is complicated by the historical androcentricity in medical research. Sex and gender gaps in health research may translate to unequal healthcare for women. This cross-sectional survey study aimed to ascertain the median time to diagnosis, proportions of rediagnosis and time to rediagnosis for Australian women with chronic conditions. Methods An online survey collected anonymous data from voluntary participants. Data were analyzed using Stata14. Cox Proportional Hazards model was used to analyze time to diagnosis and rediagnosis. Logistic regression analysis was used to assess the significance of rediagnosis rates by diagnosis, age at diagnosis, income, employment, state of residence, disability status, and Indigenous status. Results The median time from first appointment to initial diagnosis was 6 months (range 1 day-50 years) (interquartile range [IQR] 3.74 years). The median time to rediagnosis was 4 years (IQR 9) with a range of 1 day-43 years. Almost half of the women (n = 161/343, 47%) reported their primary condition being rediagnosed. From the complete responses, 40% were rediagnosed from one organic condition to another organic condition, however, 32% of women originally diagnosed with psychological, medically unexplained syndromes, or chronic pain were later rediagnosed with organic conditions. Conclusion Median wait times for a diagnosis for women in Australia, when factoring in high rates of rediagnosis and time to rediagnosis, was 4 years. It is important that clinicians are aware of the high rediagnosis rates in female patients with chronic conditions and understand the potential impact of systemic biases on the diagnostic process for women under their care.
Collapse
Affiliation(s)
- Lea Merone
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Komla Tsey
- College of Arts, Society and Education, James Cook University, Smithfield, Australia
| | | | - Andrew Daltry
- Cairns and Hinterland Hospital and Health Service, Cairns, Australia
| | - Cate Nagle
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
8
|
Abstract
In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.
Collapse
Affiliation(s)
- Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.).,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston (A.B.)
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.)
| |
Collapse
|
9
|
Mirshahi F, Aqbi HF, Isbell M, Manjili SH, Guo C, Saneshaw M, Dozmorov M, Khosla A, Wack K, Carrasco-Zevallos OM, Idowu MO, Wang XY, Sanyal AJ, Manjili MH, Bandyopadhyay D. Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Rep 2022; 38:110454. [PMID: 35235789 PMCID: PMC9028248 DOI: 10.1016/j.celrep.2022.110454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
To discover distinct immune responses promoting or inhibiting hepatocellular carcinoma (HCC), we perform a three-dimensional analysis of the immune cells, correlating immune cell types, interactions, and changes over time in an animal model displaying gender disparity in nonalcoholic fatty liver disease (NAFLD)-associated HCC. In response to a Western diet (WD), animals mount acute and chronic patterns of inflammatory cytokines, respectively. Tumor progression in males and females is associated with a predominant CD8+ > CD4+, Th1 > Th17 > Th2, NKT > NK, M1 > M2 pattern in the liver. A complete rescue of females from HCC is associated with an equilibrium Th1 = Th17 = Th2, NKT = NK, M1 = M2 pattern, while a partial rescue of males from HCC is associated with an equilibrium CD8+ = CD4+, NKT = NK and a semi-equilibrium Th1 = Th17 > Th2 but a sustained M1 > M2 pattern in the liver. Our data suggest that immunological pattern-recognition can explain immunobiology of HCC and guide immune modulatory interventions for the treatment of HCC in a gender-specific manner. Mirshahi et al. performed a three-dimensional analysis of hepatic and splenic immune cells, correlating the immune cell types, their interactions and proportions, and changes over time. They discover gender-associated immunological patterns determining tumor progression, as well as partial or complete inhibition of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Hussein F Aqbi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Madison Isbell
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Saeed H Manjili
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA
| | - Mulugeta Saneshaw
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA
| | - Mikhail Dozmorov
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | - Michael O Idowu
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23298, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA.
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA.
| | - Dipankar Bandyopadhyay
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Lucà F, Abrignani MG, Parrini I, Di Fusco SA, Giubilato S, Rao CM, Piccioni L, Cipolletta L, Passaretti B, Giallauria F, Leone A, Francese GM, Riccio C, Gelsomino S, Colivicchi F, Gulizia MM. Update on Management of Cardiovascular Diseases in Women. J Clin Med 2022; 11:1176. [PMID: 35268267 PMCID: PMC8911459 DOI: 10.3390/jcm11051176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases (CVD) have a lower prevalence in women than men; although, a higher mortality rate and a poorer prognosis are more common in women. However, there is a misperception of CVD female risk since women have commonly been considered more protected so that the real threat is vastly underestimated. Consequently, female patients are more likely to be treated less aggressively, and a lower rate of diagnostic and interventional procedures is performed in women than in men. In addition, there are substantial sex differences in CVD, so different strategies are needed. This review aims to evaluate the main gender-specific approaches in CVD.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Big Metropolitan Hospital, 89129 Reggio Calabria, Italy;
| | | | - Iris Parrini
- Cardiology Department, Ospedale Mauriziano Umberto I Hospital, 10128 Turin, Italy;
| | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy; (S.A.D.F.); (F.C.)
| | - Simona Giubilato
- Division of Cardiology, Cannizzaro Hospital, 95121 Catania, Italy;
| | | | - Laura Piccioni
- Italy Cardiology Department, “G. Mazzini” Hospital, 64100 Teramo, Italy;
| | - Laura Cipolletta
- Division of Cardiology, Department of Cardiovascular Sciences, University of Ancona, 60126 Ancona, Italy;
| | - Bruno Passaretti
- Rehabilitation Cardiology Department, Humanitas Gavazzeni, 24125 Bergamo, Italy;
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Angelo Leone
- Cardiology Division, Annunziata Hospital Cosenza, 87100 Cosenza, Italy;
| | | | - Carmine Riccio
- Division of Clinical Cardiology, ‘Sant’Anna e San Sebastiano’ Hospital, 81100 Caserta, Italy;
| | - Sandro Gelsomino
- Cardio Thoracic Department, Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy; (S.A.D.F.); (F.C.)
| | | |
Collapse
|
11
|
Factors Determining Plasticity of Responses to Drugs. Int J Mol Sci 2022; 23:ijms23042068. [PMID: 35216184 PMCID: PMC8877660 DOI: 10.3390/ijms23042068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird’s eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.
Collapse
|
12
|
Sex, Allergic Diseases and Omalizumab. Biomedicines 2022; 10:biomedicines10020328. [PMID: 35203537 PMCID: PMC8869622 DOI: 10.3390/biomedicines10020328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Gender differences are increasingly emerging in every area of medicine including drug therapy; however, specific gender-targeted studies are infrequent. Sex is a fundamental variable, which cannot be neglected. When optimizing therapies, gender pharmacology must always be considered in order to improve the effectiveness and safety of the use of drugs. Knowledge of gender differences promotes appropriate use of therapies and greater health protection for both genders. Further development of gender research would make it possible to report on differences in the assimilation and response of the female organism as compared to the male, in order to identify potential risks and benefits that can be found between genders. Furthermore, a better understanding of sex/gender-related influences, with regard to pharmacological activity, would allow the development of personalized “tailor-made” medicines. Here, we summarize the state of knowledge on the role of sex in several allergic diseases and their treatment with omalizumab, the first biologic drug authorized for use in the field of allergology.
Collapse
|
13
|
Khanolkar A. Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology. Cells 2021; 11:cells11010067. [PMID: 35011627 PMCID: PMC8750814 DOI: 10.3390/cells11010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV-2 pandemic is an unprecedented epochal event on at least two fronts. Firstly, in terms of the rapid spread and the magnitude of the outbreak, and secondly, on account of the equally swift response of the scientific community that has galvanized itself into action and has successfully developed, tested and deployed highly effective and novel vaccines in record time to combat the virus. The sophistication and diversification of the scientific toolbox we now have at our disposal has enabled us to interrogate both the breadth and the depth of the immune response to a degree that is unparalleled in recent memory. In terms of our understanding of what is critical to contain the virus and mitigate the effects the pandemic, neutralizing antibodies to SARS-CoV-2 garner most of the attention, however, it is essential to recognize that it is the quality and the fitness of the virus-specific T cell and B cell response that lays the foundation and the backdrop for an effective neutralizing antibody response. In this report, we will review some of the key findings that have helped define and delineate some of the essential attributes of T and B cell responses in the setting of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 82, Chicago, IL 60611, USA; ; Tel.: +1-312-227-8073
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|