1
|
Liu L, Lei T, Guo F, Ma C, Zhen L, Zhang L, Li D. Prenatal diagnosis of the recurrent 1q21.1 microdeletions in fetuses with ultrasound anomalies and review of the literature. Front Genet 2024; 15:1448341. [PMID: 39268082 PMCID: PMC11390663 DOI: 10.3389/fgene.2024.1448341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Objective The recurrent 1q21.1 microdeletion syndrome is an autosomal dominant disorder and is characterized by dysmorphic facial features, microcephaly, developmental delay, and congenital defects. However, most studies on the distal deletions in the 1q21.1 region were diagnosed postnatally. This study aimed to provide a better understanding of the ultrasound and molecular findings of fetuses with recurrent 1q21.1 microdeletions in prenatal diagnosis. Methods In this retrospective study, we reported 21 cases with the recurrent 1q21.1 microdeletion syndrome diagnosed at our prenatal diagnostic center from January 2016 to January 2023. The clinical data were reviewed for these cases, including the maternal demographics, indications for invasive testing, ultrasound findings, CMA results, and pregnancy outcomes. Results In the study, a total of 21 cases with recurrent 1q21.1 microdeletions were diagnosed prenatally by CMA. Fifteen cases were described with ultrasound indications, and the most common findings are as follows: increased nuchal translucency (NT) (26.7%), intrauterine growth retardation (IUGR) (26.7%), congenital heart defects (CHD) (20%), and congenital anomalies of the kidney and urinary tract (CAKUT) (13.3%). All the cases with the distal 1q21.1 deletions contain the common minimal region (located between BP3 and BP4) and eight OMIM genes. Parental studies to determine the inheritance of the deletion were performed for eight cases, and half of the cases were inherited from one of the parents. Pregnancy outcomes were available for nine cases; eight (88.9%) pregnancies were determined to be terminated and one (11.1%) was full-term delivery. Conclusion To our knowledge, this is the largest study to find that fetuses with recurrent 1q21.1 microdeletions were closely associated with increased NT, CHD, IUGR, and CAKUT. In addition, ours is the first study to report that cerebral ventriculomegaly might be associated with recurrent 1q21.1 microdeletions. More comprehensive studies are needed for a better understanding of the prenatal phenotype-genotype relationship of the recurrent 1q21.1 microdeletion syndrome in future.
Collapse
Affiliation(s)
- Lei Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Southern Medical University, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yue F, Yang X, Jiang Y, Li S, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with recurrent 1q21.1 microdeletions and microduplications. Front Med (Lausanne) 2023; 10:1207891. [PMID: 37692779 PMCID: PMC10484100 DOI: 10.3389/fmed.2023.1207891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Chromosomal 1q21.1 deletions and duplications are genomic disorders that are usually diagnosed postnatally. However, the genotype-phenotype correlations of 1q21.1 copy number variants (CNVs) during the prenatal period are still not clear. This study aimed to provide a systematic summary of prenatal phenotypes for such genomic disorders. Methods In total, 26 prenatal amniotic fluid samples diagnosed with 1q21.1 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed for all cases simultaneously. The pregnancy outcomes and health conditions after birth in all cases were followed up. Meanwhile, prenatal cases with 1q21.1 microdeletions or microduplications in the literature were retrospectively collected. Results In total, 11 pregnancies (11/8,252, 0.13%) with 1q21.1 microdeletions and 15 (15/8,252, 0.18%) with 1q21.1 microduplications were identified. Among these 1q21.1 CNVs, 4 cases covered the thrombocytopenia-absent radius (TAR) region, 16 cases covered the 1q21.1 recurrent microdeletion/microduplication region, and 6 cases covered all regions mentioned above. The prenatal abnormal ultrasound findings were recorded in four participants with 1q21.1 deletions and seven participants with 1q21.1 duplications. Finally, three cases with 1q21.1 deletions and five with 1q21.1 duplications terminated their pregnancies. Conclusion In the prenatal setting, 1q21.1 microdeletions were associated with increased nuchal translucency (NT), anomalies of the urinary system, and cardiovascular abnormalities, while 1q21.1 microduplications were correlated with cardiovascular malformations, nasal bone dysplasia, and increased NT. In addition, cerebral ventriculomegaly might be correlated with 1q21.1 microduplications. Considering the variable expressivity and incomplete penetrance of 1q21.1 CNVs, long-term follow-up after birth should be carried out in these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xiao Yang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
3
|
Guo N, Xue H, Liang B, Huang H, Cai M, Xu L. Genetic and ultrasonographic analyses of fetuses with 1q21.1q21.2 microdeletion/microduplication: a retrospective study. BMC Med Genomics 2023; 16:197. [PMID: 37612587 PMCID: PMC10463642 DOI: 10.1186/s12920-023-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/29/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND 1q21.1q21.2 microdeletions/microduplications are rare and incompletely penetrant genetic mutations, and only a few reports regarding their prenatal diagnosis are currently available. Here, we analyzed the ultrasonographic phenotypic characteristics of fetuses with these mutations to improve the understanding, diagnosis, and screening of these mutations during gestation. METHODS We retrospectively analyzed 8700 cases of pregnant women who underwent invasive prenatal screening by karyotyping and chromosomal microarray analysis (CMA) between November 2016 and November 2021. RESULTS CMA revealed copy number changes in the 1q21.1q21.2 region of eleven fetuses, of which five had microdeletions and six had microduplications. These eleven fetuses exhibited variable ultrasonographic phenotypes. Of the five fetuses with the microdeletion, one exhibited a right-dominant heart, permanent right umbilical vein, and mild tricuspid regurgitation, another showed thickened nuchal translucency, and the remaining three had normal ultrasound phenotypes. Two of the six cases with 1q21.1q21.2 microduplication had structural malformations; one of them had a bilateral subependymal cyst, neck mass, and enlarged cardiothoracic ratio, while the other had right ventricular hypoplasia. Of the remaining four cases, two exhibited nasal bone dysplasia, one showed measurement slower than that during menopause and mild tricuspid regurgitation, and another did not show any notable abnormality in ultrasound examination. Among the eleven cases of 1q21.1q21.2 microdeletion/microduplication, only the parents of two fetuses underwent pedigree verification. The parents of these two fetuses with 1q21.1q21.2 microdeletion syndrome chose to continue the pregnancy, and all aspects of postnatal follow-up were normal. The parents of the other nine fetuses refused pedigree verification; of these cases, four cases terminated, and five cases continued the pregnancies. The five continued pregnancies were followed up after birth; no abnormalities were found. CONCLUSIONS Fetuses with 1q21.1q21.2 microdeletion/microduplication show different ultrasound characteristics and may have congenital heart disease, thickened nuchal translucency, and nasal bone dysplasia or show no notable abnormalities in an ultrasound examination. Our study highlights that CMA as a powerful diagnostic tool for these diseases can provide an accurate genetic diagnosis, while improving prenatal diagnosis standards.
Collapse
Affiliation(s)
- Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
4
|
Heaton ES, Hu M, Liu T, Hui H, Tan Y, Ye K, Jin S. Extracellular matrix-derived peptide stimulates the generation of endocrine progenitors and islet organoids from iPSCs. J Tissue Eng 2023; 14:20417314231185858. [PMID: 37435573 PMCID: PMC10331343 DOI: 10.1177/20417314231185858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have enormous potential in producing human tissues endlessly. We previously reported that type V collagen (COL5), a pancreatic extracellular matrix protein, promotes islet development and maturation from iPSCs. In this study, we identified a bioactive peptide domain of COL5, WWASKS, through bioinformatic analysis of decellularized pancreatic ECM (dpECM)-derived collagens. RNA-sequencing suggests that WWASKS induces the formation of pancreatic endocrine progenitors while suppressing the development of other types of organs. The expressions of hypoxic genes were significantly downregulated in the endocrine progenitors formed under peptide stimulation. Furthermore, we unveiled an enhancement of iPSC-derived islets' (i-islets) glucose sensitivity under peptide stimulation. These i-islets secrete insulin in a glucose responsive manner. They were comprised of α, β, δ, and γ cells and were assembled into a tissue architecture similar to that of human islets. Mechanistically, the peptide is able to activate the canonical Wnt signaling pathway, permitting the translocation of β-catenin from the cytoplasm to the nucleus for pancreatic progenitor development. Collectively, for the first time, we demonstrated that an ECM-derived peptide dictates iPSC fate toward the generation of endocrine progenitors and subsequent islet organoids.
Collapse
Affiliation(s)
- Emma S Heaton
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| | - Ming Hu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| | - Tianzheng Liu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| | - Huang Hui
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
5
|
Ehrlich L, Prakash SK. Copy-number variation in congenital heart disease. Curr Opin Genet Dev 2022; 77:101986. [PMID: 36202051 DOI: 10.1016/j.gde.2022.101986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
Genomic copy-number variants (CNVs) contribute to as many congenital heart disease (CHD) cases (10-15%) as chromosomal aberrations or single-gene mutations and influence clinical outcomes. CNVs in a few genomic hotspots (1q21.1, 2q13, 8p23.1, 11q24, 15q11.2, 16p11.2, and 22q11.2) are recurrently enriched in CHD cohorts and affect dosage-sensitive transcriptional regulators that are required for cardiac development. Reduced penetrance and pleiotropic effects on brain and heart development are common features of these CNVs. Therefore, additional genetic 'hits,' such as a second CNV or gene mutation, are probably required to cause CHD in most cases. Integrative analysis of CNVs, genome sequence, epigenetic alterations, and gene function will be required to delineate the complete genetic landscape of CHD.
Collapse
Affiliation(s)
- Laurent Ehrlich
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
6
|
He GW, Maslen CL, Chen HX, Hou HT, Bai XY, Wang XL, Liu XC, Lu WL, Chen XX, Chen WD, Xing QS, Wu Q, Wang J, Yang Q. Identification of Novel Rare Copy Number Variants Associated with Sporadic Tetralogy of Fallot and Clinical Implications. Clin Genet 2022; 102:391-403. [PMID: 35882632 DOI: 10.1111/cge.14201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Highly penetrant copy number variants (CNVs) and genes related to the etiology of TOF likely exist with differences among populations. We aimed to identify CNV contributions to sporadic TOF cases in Han Chinese. Genomic DNA was extracted from peripheral blood in 605 subjects (303 sporadic TOF and 302 unaffected Han Chinese [Control] from cardiac centers in China and analyzed by genome-wide association study (GWAS). The GWAS results were compared to existing Database of Genetic Variants. These CNVs were further validated by qPCR. Bioinformatics analyses were performed with Protein-Protein Interaction (PPI) network and KEGG pathway enrichment. Across all chromosomes 119 novel "TOF-specific CNVs" were identified with prevalence of CNVs of 21.5% in chromosomes 1-20 and 37.0% including Chr21/22. In chromosomes 1-20, CNVs on 11q25 (encompasses genes ACAD8, B3GAT1, GLB1L2, GLB1L3, IGSF9B, JAM3, LOC100128239, LOC283177, MIR4697, MIR4697HG, NCAPD3, OPCML, SPATA19, THYN1, and VPS26B) and 14q32.33 (encompasses genes THYN1, OPCML, and NCAPD3) encompass genes most likely to be associated with TOF. Specific CNVs found on the chromosome 21 (6.3%) and 22(11.9%) were also identified in details. PPI network analysis identified the genes covering the specific CNVs related to TOF and the signaling pathways. This study for first time identified novel TOF-specific CNVs in the Han Chinese with higher frequency than in Caucasians and with 11q25 and 14q32.33 not reported in TOF of Caucasians. These novel CNVs identify new candidate genes for TOF and provide new insights into genetic basis of TOF.
Collapse
Affiliation(s)
- Guo-Wei He
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Cheryl L Maslen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Huan-Xin Chen
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Hai-Tao Hou
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Yan Bai
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiu-Li Wang
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Cheng Liu
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Wan-Li Lu
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xin-Xin Chen
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dan Chen
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Quan-Sheng Xing
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Qin Wu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Jun Wang
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
7
|
Zhu L, Su X. Case Report: Neuroblastoma Breakpoint Family Genes Associate With 1q21 Copy Number Variation Disorders. Front Genet 2021; 12:728816. [PMID: 34646304 PMCID: PMC8504801 DOI: 10.3389/fgene.2021.728816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Microduplications and reciprocal microdeletions of chromosome 1q21. 1 and/or 1q21.2 have been linked to variable clinical features, but the underlying pathogenic gene(s) remain unclear. Here we report that distinct microduplications were detected on chromosome 1q21.2 (GRCh37/hg19) in a mother (255 kb in size) and her newborn daughter (443 kb in size), while the same paternal locus was wild-type. Although the two microduplications largely overlap in genomic sequence (183 kb overlapping), the mother showed no clinical phenotype while the daughter presented with several features that are commonly observed on 1q21 microduplication or microdeletion patients, including developmental delay, craniofacial dysmorphism, congenital heart disease and sensorineural hearing loss. NBPF15 and NBPF16, two involved genes that are exclusively duplicated in the proband, may be the cause of the clinical manifestations. This study supports an association between NBPF genes and 1q21 copy number variation disorders.
Collapse
Affiliation(s)
- Lijuan Zhu
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| | - Xiaoji Su
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| |
Collapse
|
8
|
Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021; 10:2366-2386. [PMID: 34733677 PMCID: PMC8506053 DOI: 10.21037/tp-21-297] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Detection of copy number variation associated with ventriculomegaly in fetuses using single nucleotide polymorphism arrays. Sci Rep 2021; 11:5291. [PMID: 33674646 PMCID: PMC7935846 DOI: 10.1038/s41598-021-83147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Etiopathogenesis of fetal ventriculomegaly is poorly understood. Associations between fetal isolated ventriculomegaly and copy number variations (CNVs) have been previously described. We investigated the correlations between fetal ventriculomegaly-with or without other ultrasound anomalies-and chromosome abnormalities. 222 fetuses were divided into four groups: (I) 103 (46.4%) cases with isolated ventriculomegaly, (II) 41 (18.5%) cases accompanied by soft markers, (III) 33 (14.9%) cases complicated with central nervous system (CNS) anomalies, and (IV) 45 (20.3%) cases with accompanying anomalies. Karyotyping and single nucleotide polymorphism (SNP) array were used in parallel. Karyotype abnormalities were identified in 15/222 (6.8%) cases. Karyotype abnormalities in group I, II, III, and IV were 4/103 (3.9%), 2/41 (4.9%), 4/33 (12.1%), and 5/45 (11.1%), respectively. Concerning the SNP array analysis results, 31/222 (14.0%) were CNVs, CNVs in groups I, II, III, and IV were 11/103 (10.7%), 6/41 (14.6%), 9/33 (27.3%), and 5/45 fetuses (11.1%), respectively. Detections of clinical significant CNVs were higher in non-isolated ventriculomegaly than in isolated ventriculomegaly (16.81% vs 10.7%, P = 0.19). SNP arrays can effectively identify CNVs in fetuses with ventriculomegaly and increase the abnormal chromosomal detection rate by approximately 7.2%, especially ventriculomegaly accompanied by CNS anomalies.
Collapse
|
10
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
11
|
Zhang H, Yue F, Zhang X, He J, Jiang Y, Liu R, Yu Y. Prenatal detection of distal 1q21.1q21.2 microduplication with abnormal ultrasound findings: Two cases report and literature review. Medicine (Baltimore) 2021; 100:e24227. [PMID: 33429818 PMCID: PMC7793324 DOI: 10.1097/md.0000000000024227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
RATIONALE 1q21.1 duplication is an uncommon chromosomal submicroscopic imbalance which is associated with growth/mental retardation, dysmorphic features, autism, multiple congenital and neuropsychiatric disorders. PATIENT CONCERNS Two pregnant women underwent amniocentesis for cytogenetic analysis and chromosomal microarray analysis (CMA) following abnormal ultrasound findings. Case 1 presented short nasal bone and case 2 showed absent nasal bone, ventricular septal defect and umbilical cord circling in ultrasonic examination. DIAGNOSES G-banding analysis showed that the two fetuses presented normal karyotypic results while CMA detected 1.796 Mb (case 1) and 1.242 Mb (case 2) microduplications in the region of 1q21.1q21.2 separately. Furthermore, the CMA also revealed a 1.2 Mb microdeletion of 8p23.3 in case 1. INTERVENTIONS The couple in case 1 chose to terminate the pregnancy, while the couple in case 2 continued the pregnancy and finally delivered a male infant who presented low nasal bridge and ventricular septal defect. OUTCOMES The 1q21.1q21.2 duplications in our report were located in the distal 1q21.1 region, overlapping with 1q21.1 duplication syndrome. Case 2 was the first reported live birth with 1q21.1 duplication according to prenatal CMA detection in China. LESSONS The genotype-phenotype of 1q21.1 duplication is complicated due to the phenotypic diversity, incomplete penetrance, and lack of obvious characteristics. So it is difficult to predict the postnatal development and health conditions clinically. Hence, long term follow up is necessary for newborn infants with 1q21.1 duplication, irrespective of whether the duplication is de novo or inherited.
Collapse
Affiliation(s)
- Hongguo Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Fagui Yue
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Jing He
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yang Yu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
12
|
Qi M, Lan X, Li J, Ge J, Shen L, Zhang R. Whole Exome Sequencing Identifies A Novel Pathogenic Bmpr2 Variant in Pulmonary Atresia. CONGENIT HEART DIS 2021. [DOI: 10.32604/chd.2021.015887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
14
|
Shi SS, Lin SB, Cai DL, Wen WR, Li RM. Discordance of cardiovascular abnormalities in a monozygotic twin pair carrying a class II 1q21.1 microdeletion. Taiwan J Obstet Gynecol 2020; 59:123-126. [PMID: 32039779 DOI: 10.1016/j.tjog.2019.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE We present the prenatal diagnosis of a class II 1q21.1 microdeletion in monozygotic (MZ) twins with discordant phenotypes. CASE REPORT A monochorionic diamniotic twin pair presented with discordant ultrasound anomalies; twin A had cardiovascular abnormalities, while twin B did not. No specific complications were noted in the twins during pregnancy. A single nucleotide polymorphism array revealed an identical class II 1q21.1 microdeletion inherited from a phenotypically normal mother and identified the twins as MZ. The deleted region encompassed both the proximal 1q21.1 thrombocytopenia absent radius syndrome region and the distal 1q21.1 recurrent microdeletion region. No other rare copy number variants (CNVs) were identified, and concordance was observed in the CNVs between the twins. CONCLUSION Discordant cardiovascular abnormalities may occur in MZ twins carrying the same class II 1q21.1 microdeletion. Further studies involving discordant MZ twins are needed to determine the modifying factors of the phenotypic heterogeneity of the microdeletion.
Collapse
Affiliation(s)
- Shan-Shan Shi
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Shao-Bin Lin
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dan-Lei Cai
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wang-Rong Wen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Rui-Man Li
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
15
|
Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements. Dev Biol 2020; 465:79-87. [PMID: 32687896 DOI: 10.1016/j.ydbio.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in the heart. During cardiogenesis, Shox2 and Nkx2-5 are co-expressed in the junction domain of the SAN and regulate pacemaker cell fate through a Shox2-Nkx2-5 antagonism. Cx40 is a marker of working myocardium and an Nkx2-5 transcriptional output antagonized by Shox2, but the underlying regulatory mechanisms remain elusive. Here we characterized a bona fide myocardial-specific Gja5 (coding gene of Cx40) distal enhancer consisting of a pair of Nkx2-5 and Shox2 co-bound elements in the regulatory region of Gja5. Transgenic reporter assays revealed that neither element alone, but the conjugation of both elements together, drives myocardial-specific transcription. Genetic analyses confirmed that the activation of this enhancer depends on Nkx2-5 but is inhibited by Shox2 in vivo, and its presence is essential for Gja5 expression in the myocardium but not the endothelial cells of the heart. Furthermore, chromatin conformation analysis showed an Nkx2-5-dependent loop formation between these two elements and the Gja5 promoter in vivo, indicating that Nkx2-5 bridges the conjugated activation of this enhancer by pairing the two elements to the Gja5 promoter.
Collapse
|
16
|
Saliba A, Figueiredo ACV, Baroneza JE, Afiune JY, Pic‐Taylor A, Oliveira SFD, Mazzeu JF. Genetic and genomics in congenital heart disease: a clinical review. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2020. [DOI: 10.1016/j.jpedp.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Saliba A, Figueiredo ACV, Baroneza JE, Afiune JY, Pic-Taylor A, Oliveira SFD, Mazzeu JF. Genetic and genomics in congenital heart disease: a clinical review. J Pediatr (Rio J) 2020; 96:279-288. [PMID: 31421069 PMCID: PMC9432128 DOI: 10.1016/j.jped.2019.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Discuss evidence referring to the genetic role in congenital heart diseases, whether chromosomic alterations or monogenic diseases. DATA SOURCE LILACS, PubMed, MEDLINE, SciELO, Google Scholar, and references of the articles found. Review articles, case reports, book chapters, master's theses, and doctoral dissertations were included. SUMMARY OF FINDINGS Congenital heart diseases are among the most common type of birth defects, afflicting up to 1% of the liveborn. Traditionally, the etiology was defined as a multifactorial model, with both genetic and external contribution, and the genetic role was less recognized. Recently, however, as the natural evolution and epidemiology of congenital heart diseases change, the identification of genetic factors has an expanding significance in the clinical and surgical management of syndromic or non-syndromic heart defects, providing tools for the understanding of heart development. CONCLUSIONS Concrete knowledge of congenital heart disease etiology and recognition of the genetic alterations may be helpful in the bedside management, defining prognosis and anticipating complications.
Collapse
Affiliation(s)
- Aline Saliba
- Universidade de Brasília, Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Secretaria de Saúde do Distrito Federal, Brasília, DF, Brazil; Instituto de Cardiologia do Distrito Federal, Brasília, DF, Brazil.
| | - Ana Carolina Vaqueiro Figueiredo
- Universidade de Brasília, Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Secretaria de Saúde do Distrito Federal, Brasília, DF, Brazil
| | | | | | - Aline Pic-Taylor
- Universidade de Brasília, Instituto de Biologia, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | | | | |
Collapse
|
18
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
19
|
Wang HD, Liu L, Wu D, Li T, Cui CY, Zhang LZ, Wang CZ. Clinical and molecular cytogenetic analyses of four families with 1q21.1 microdeletion or microduplication. J Gene Med 2017; 19. [PMID: 28220983 PMCID: PMC5413856 DOI: 10.1002/jgm.2948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Background Little information is available regarding the penetrance of 1q21.1 copy number variants (CNVs). In the present study, we explored the clinical significance of 1q21.1 microdeletion or microduplication. Methods In four families, chromosome karyotype was analyzed using G‐banding karyotype analysis technology. CNVs were detected using array‐comparative genomic hybridization (aCGH) and then a quantitative polymerase chain reaction (qPCR) was used to validate candidate CNVs. Sequence signature in the breakpoint region was analyzed using University of California Santa Cruz (UCSC) databases. Results Except for karyotype 45, XX, der (13, 14) (q10, q10) in the mother (I2) of family 2, the karyotype was normal in all other members of the four families. In the mother (I2) and fetus (II2) of family 1, in newborn (II1) of family 2 and in fetus (II1) of family 3, there was 1.22‐Mb heterozygous microdeletion in the chromosome 1q21.1q21.2 region. The child (II1) of family 4 had a 1.46‐Mb heterozygous microduplication in the chromosome 1q21.1q21.2 region. The results of the qPCR were consistent with that of aCGH. There was large number of low copy repeats (LCRs) in the breakpoint region found by analysis of the UCSC database, and multiple LCRs were matched with sequences in the chromosome 1 short‐arm region. Conclusions 1q21.1 microdeletion and microduplication exhibit a variety of clinical manifestations and the specificity of their clinical features is not high. The penetrance of the distal 1q21.1 microdeletion may be affected by other factors in the present study. In summary, we report the discovery of a new distal 1q21.1 microduplication, which enriches the CNV spectrum in the 1q21.1 region and is conducive to prenatal genetic counseling.
Collapse
Affiliation(s)
- Hong-Dan Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Lin Liu
- Department of Cardiovascular Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Dong Wu
- Institute of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Tao Li
- Institute of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Cun-Ying Cui
- Department of Cardiovascular Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Lian-Zhong Zhang
- Department of Cardiovascular Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Cheng-Zeng Wang
- Department of Ultrasound, the Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Xie HM, Werner P, Stambolian D, Bailey-Wilson JE, Hakonarson H, White PS, Taylor DM, Goldmuntz E. Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res 2017; 109:271-295. [PMID: 28398664 PMCID: PMC5407323 DOI: 10.1002/bdra.23609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. METHODS Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. RESULTS Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. CONCLUSION Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongbo M Xie
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dwight Stambolian
- Department of Ophthalmology and Human Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Hakon Hakonarson
- The Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S White
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Department of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio
| | - Deanne M Taylor
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Abstract
Genetic and environmental factors may be similar in certain CHD. It has been widely accepted that it is the cumulative effect of these risk factors that results in disease. Pulmonary atresia is a rare type of complex cyanotic CHD with a poor prognosis. Understanding the molecular mechanism of pulmonary atresia is essential for future diagnosis, prevention, and therapeutic approaches. In this article, we reviewed several related copy number variants and related genetic mutations, which were identified in patients with pulmonary atresia, including pulmonary atresia with ventricular septal defect and pulmonary atresia with intact ventricular septum.
Collapse
|
22
|
Liu L, Wang HD, Cui CY, Wu D, Li T, Fan TB, Peng BT, Zhang LZ, Wang CZ. Application of array-comparative genomic hybridization in tetralogy of Fallot. Medicine (Baltimore) 2016; 95:e5552. [PMID: 27930557 PMCID: PMC5266029 DOI: 10.1097/md.0000000000005552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiovascular Ultrasound
| | | | | | - Dong Wu
- Institute of Medical Genetics
| | - Tao Li
- Institute of Medical Genetics
| | - Tai-Bing Fan
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | - Bang-Tian Peng
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | | | - Cheng-Zeng Wang
- Department of Ultrasound, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
23
|
Kheirollahi M, Khosravi F, Ashouri S, Ahmadi A. Existence of mutations in the homeodomain-encoding region of NKX2.5 gene in Iranian patients with tetralogy of Fallot. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:24. [PMID: 27904570 PMCID: PMC5122105 DOI: 10.4103/1735-1995.179893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/03/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
Background: Tetralogy of Fallot (TOF), the most common cyanotic heart defect and one of the most common congenital heart diseases, occurs mostly sporadically and nonsyndromically. The underlying molecular genetic mechanism is not known. Therefore, the existence of mutations in the homeodomain-encoding region of NKX2.5 gene in Iranian patients with tetralogy of Fallot is evaluated. Materials and Methods: In the present study, we analyzed the peripheral blood samples of27 patients in order to find any mutation in the 180 bp homeodomain-encoding region of NKX2.5 gene, which is known to be involved in heart development and diseases. DNA was extracted and all the samples were amplified by polymerase chain reaction (PCR) and sequenced. Results: Twenty-seven patients were included in the study. Twenty-five of them were infants and children (6 days to 11 years of age), one was a teenager (14-years of age), and another was a 33-year-old man [mean ± standard deviation (SD): 5.80 ± 3.90 years]. Thirteen patents were males (mean ± SD: 6.587077 ± 5.02 years) and 14 were females (mean ± SD: 5.0726 ± 2.81 years). One synonymous variant, i.e., c.543G>A was identified in one patient. Conclusion: Mutations in the homeodomain-encoding region of NKX2.5 gene may not have an outstanding role in etiology of tetralogy of Fallot patients in Iran.
Collapse
Affiliation(s)
- Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Saeideh Ashouri
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan, Iran
| | - Alireza Ahmadi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan, Iran
| |
Collapse
|
24
|
Digilio MC, Marino B. What Is New in Genetics of Congenital Heart Defects? Front Pediatr 2016; 4:120. [PMID: 27990414 PMCID: PMC5130977 DOI: 10.3389/fped.2016.00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies, clinical observations, and advances in molecular genetics are contributing to the understanding of the etiology of congenital heart defects (CHDs). Several phenotype-genotype correlation studies have suggested that specific morphogenetic mechanisms put in motion by genes can result in a specific cardiac phenotype. The use of new technologies has increased the possibility of identification of new genes and chromosomal loci in syndromic and non-syndromic CHDs. There are a number of methods available for genetic research studies of CHDs, including cytogenetic analysis, linkage and association studies, copy number variation (CNV) and DNA micro-array analysis, and whole exome sequencing. The altered dosage of contiguous genes included inside CNVs can produce new syndromic CHDs, so that several different new genomic conditions have been identified. These include duplication 22q11.2 syndrome, distal 22q11.2 deletion syndrome, deletion and duplication 1q21.1, and deletion 1p36 syndrome. Molecular techniques such as whole exome sequencing have lead to the identification of new genes for monogenic syndromes with CHD, as for example in Adams-Oliver, Noonan, and Kabuki syndrome. The variable expressivity and reduced penetrance of CHDs in genetic syndromes is likely influenced by genetic factors, and several studies have been performed showing the involvement of modifier genes. It is not easy to define precisely the genetic defects underlying non-syndromic CHDs, due to the genetic and clinical heterogeneity of these malformations. Recent experimental studies have identified multiple CNVs contributing to non-syndromic CHD. The number of identified genes for non-syndromic CHDs is at this time limited, and each of the identified genes has been shown to be implicated only in a small proportion of CHD. The application of new technologies to specific cases of CHD and pedigrees with familial recurrence and filtering genes mapping in CNV regions can probably in the future add knowledge about new genes for non-syndromic CHDs.
Collapse
Affiliation(s)
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University , Rome , Italy
| |
Collapse
|
25
|
Sun G, Tan Z, Fan L, Wang J, Yang Y, Zhang W. 1q21.1 microduplication in a patient with mental impairment and congenital heart defect. Mol Med Rep 2015; 12:5655-8. [PMID: 26238956 PMCID: PMC4581767 DOI: 10.3892/mmr.2015.4166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/11/2015] [Indexed: 02/04/2023] Open
Abstract
1q21.1 duplication is a rare copy number variant with multiple congenital malformations, including developmental delay, autism spectrum disorder, dysmorphic features and congenital heart anomalies. The present study described a Chinese female patient (age, four years and eight months) with multiple malformations, including congenital heart defect, mental impairment and developmental delay. The parents and the monozygotic twin sister of the patient, however, were physically and psychologically normal. High-resolution genome-wide single nucleotide polymorphism array revealed a 1.6-Mb duplication in chromosome region 1q21.1. This chromosome region contained HFE2, a critical gene involved in hereditary hemochromatosis. However, the parents and monozygotic twin sister of the patient did not carry this genomic lesion. To the best of our knowledge, the present study was the first to report on a 1q21.1 duplication patient in mainland China.
Collapse
Affiliation(s)
- Guowen Sun
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liangliang Fan
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Wang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yifeng Yang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Weizhi Zhang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
26
|
Verhagen JMA, de Leeuw N, Papatsonis DNM, Grijseels EWM, de Krijger RR, Wessels MW. Phenotypic Variability Associated with a Large Recurrent 1q21.1 Microduplication in a Three-Generation Family. Mol Syndromol 2015; 6:71-6. [PMID: 26279651 DOI: 10.1159/000431274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 02/04/2023] Open
Abstract
Recurrent copy number variants of the q21.1 region of chromosome 1 have been associated with variable clinical features, including developmental delay, mild to moderate intellectual disability, psychiatric and behavioral problems, congenital heart malformations, and craniofacial abnormalities. A subset of individuals is clinically unaffected. We describe a unique 3-generation family with a large recurrent 1q21.1 microduplication (BP2-BP4). Our observations underline the incomplete penetrance and phenotypic variability of this rearrangement. We also confirm the association with congenital heart malformations, chronic depression, and anxiety. Furthermore, we report a broader range of dysmorphic features. The extreme phenotypic heterogeneity observed in this family suggests that additional factors modify the clinical phenotype.
Collapse
Affiliation(s)
- Judith M A Verhagen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Els W M Grijseels
- Department of Obstetrics and Gynecology, Amphia Hospital, Breda, The Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Lahm H, Schön P, Doppler S, Dreßen M, Cleuziou J, Deutsch MA, Ewert P, Lange R, Krane M. Tetralogy of Fallot and Hypoplastic Left Heart Syndrome - Complex Clinical Phenotypes Meet Complex Genetic Networks. Curr Genomics 2015; 16:141-58. [PMID: 26069455 PMCID: PMC4460219 DOI: 10.2174/1389202916666150303232520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/06/2023] Open
Abstract
In many cases congenital heart disease (CHD) is represented by a complex phenotype and
an array of several functional and morphological cardiac disorders. These malformations will be
briefly summarized in the first part focusing on two severe CHD phenotypes, hypoplastic left heart
syndrome (HLHS) and tetralogy of Fallot (TOF). In most cases of CHD the genetic origin remains
largely unknown, though the complexity of the clinical picture strongly argues against a dysregulation which can be attributed
to a single candidate gene but rather suggests a multifaceted polygenetic origin with elaborate interactions. Consistent
with this idea, genome-wide approaches using whole exome sequencing, comparative sequence analysis of multiplex
families to identify de novo mutations and global technologies to identify single nucleotide polymorphisms, copy
number variants, dysregulation of the transcriptome and epigenetic variations have been conducted to obtain information
about genetic alterations and potential predispositions possibly linked to the occurrence of a CHD phenotype. In the second
part of this review we will summarize and discuss the available literature on identified genetic alterations linked to
TOF and HLHS.
Collapse
Affiliation(s)
- Harald Lahm
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Patric Schön
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany
| | - Stefanie Doppler
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Julie Cleuziou
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Marcus-André Deutsch
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany
| | - Peter Ewert
- Department of Paediatric Cardiology and Congenital Heart Defects, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich Heart Alliance, D-80636 Munich, Germany; ; DZHK (German Center for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
28
|
Wang C, Zhan Y, Wang F, Li H, Xie L, Liu B, Li Y, Mu D, Zheng H, Zhou K, Hua Y. Parental occupational exposures to endocrine disruptors and the risk of simple isolated congenital heart defects. Pediatr Cardiol 2015; 36:1024-37. [PMID: 25628158 DOI: 10.1007/s00246-015-1116-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
This study aims to explore the associations between parental occupational exposures to endocrine disruptors (EDs) and simple isolated congenital heart defects (CHDs). A case-control study with standardized data collection involving 761 children with isolated CHDs and 609 children without any congenital malformations was conducted in Sichuan Province of China from March in 2012 to August in 2013. An adjusted job exposure matrix was used for occupational EDs exposure assessment. Logistic regression analysis was performed to assess the associations between parental occupational EDs exposures and CHDs. Maternal age at births, maternal education level, gravity, parity, induced abortion, folic acid use, medication use, drinking capacity and area of residence periconceptionally were selected as confounding factors for mothers. For fathers, we selected the following confounding factors: paternal education level, smoking, drinking frequencies and drinking capacity periconceptionally. Maternal occupational exposures to phthalates are associated with perimembranous ventricular septal defect (PmVSD) (P = 0.001, adjusted OR 3.7, 95 % CI 1.7-8.0), patent ductus arteriosus (PDA) (P = 0.002, adjusted OR 3.8, 95 % CI 1.6-8.9), secundum atrial septal defect (s-ASD) (P = 0.008, adjusted OR 3.5, 95 % CI 1.4-8.7) and pulmonary valve stenosis (PS) (P = 0.035, adjusted OR 4.2, 95 % CI 1.1-16.0), to alkylphenolic compounds and PmVSD (P = 0.003, adjusted OR 2.2, 95 % CI 1.3-3.6), PDA (P = 0.005, adjusted OR 2.0, 95 % CI 1.1-3.5) and PS (P = 0.004, adjusted OR 3.8, 95 % CI 1.5-9.4), to heavy metals with PmVSD (P = 0.003, adjusted OR 7.3, 95 % CI 2.0-27.6) and s-ASD (P = 0.034, adjusted OR 6.5, 95 % CI 1.1-36.7). Paternal occupational exposures to phthalates are associated with PmVSD (P = 0.035, adjusted OR 1.6, 95 % CI 1.0-2.4) and PS (P = 0.026, adjusted OR 2.4, 95 % CI 1.1-5.2), to alkylphenolic compounds (P = 0.027, adjusted OR 1.5, 95 % CI 1.0-2.2) with PmVSD. In conclusion, parental occupational exposures to some specific EDs, in particular phthalates and alkylphenolic compounds, are associated with an increased risk of some CHD phenotypes. However, the findings need to be considered more circumspectly regarding a crude measure of exposure probabilities and small numbers.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jia Y, Louw JJ, Breckpot J, Callewaert B, Barrea C, Sznajer Y, Gewillig M, Souche E, Dehaspe L, Vermeesch JR, Lambrechts D, Devriendt K, Corveleyn A. The diagnostic value of next generation sequencing in familial nonsyndromic congenital heart defects. Am J Med Genet A 2015; 167A:1822-9. [DOI: 10.1002/ajmg.a.37108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yaojuan Jia
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Jacoba J. Louw
- Department of Human Genetics; KU Leuven; Leuven Belgium
- Department of Congenital and Pediatric Cardiology; University Hospitals Leuven; Leuven Belgium
| | - Jeroen Breckpot
- Department of Human Genetics; KU Leuven; Leuven Belgium
- Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| | - Bert Callewaert
- Center for Medical Genetics; University of Ghent; Ghent Belgium
| | - Catherine Barrea
- Department of Congenital and Pediatric Cardiology; Universit; é; Catholique de Louvain; Brussels Belgium
| | - Yves Sznajer
- Center for Human Genetics; Université Catholique de Louvain; Brussels Belgium
| | - Marc Gewillig
- Department of Congenital and Pediatric Cardiology; University Hospitals Leuven; Leuven Belgium
| | - Erika Souche
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Luc Dehaspe
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | | | - Diether Lambrechts
- Department of Oncology; KU Leuven; Leuven Belgium
- Vesalius Research Center; VIB; Leuven Belgium
| | | | | |
Collapse
|
30
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
31
|
Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang G. Association of promoter methylation statuses of congenital heart defect candidate genes with Tetralogy of Fallot. J Transl Med 2014; 12:31. [PMID: 24479926 PMCID: PMC3915623 DOI: 10.1186/1479-5876-12-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although a lower methylation level of whole genome has been demonstrated in Tetralogy of Fallot (TOF) patients, little is known regarding changes in specific gene DNA methylation profiles and the possible associations with TOF. In current study, the promoter methylation statuses of congenital heart defect (CHD) candidate genes were measured in order to further understand epigenetic mechanisms that may play a role in the development of TOF. METHODS The methylation levels of CHD candidate genes were measured using the Sequenom MassARRAY platform. QRT-PCR was used to analyze the mRNA levels of CHD candidate genes in the right ventricular myocardium of TOF cases and normal controls. RESULTS Methylation status analysis was performed on the promoter regions of 71 CHD candidate genes (113 amplicons). We found significant differences in methylation status, between TOF cases and controls, in 26 amplicons (26 genes) (p < 0.05). Of the 26 amplicons, 17 were up regulated and 9 were down regulated. Additionally, 14 of them were located in the CpG islands, 7 were located in the CpG island shores, and 5 were covering the regions near the transcription start site (TSS). The methylation status was subsequently confirmed and mRNA levels were measured for 7 represented candidate genes, including EGFR, EVC2, NFATC2, NR2F2, TBX5, CFC1B and GJA5. The methylation values of EGFR, EVC2, TBX5 and CFC1B were significantly correlated with their mRNA levels (p < 0.05). CONCLUSIONS Aberrant promoter methylation statuses of CHD candidate genes presented in TOF cases may contribute to the TOF development and have potential prognostic and therapeutic significance for TOF disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Chen
- Children Hospital of Fudan University, Shanghai 201102, China.
| | | | | |
Collapse
|
32
|
Sheng W, Qian Y, Wang H, Ma X, Zhang P, Diao L, An Q, Chen L, Ma D, Huang G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC Med Genomics 2013; 6:46. [PMID: 24182332 PMCID: PMC3819647 DOI: 10.1186/1755-8794-6-46] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background NKX2-5, GATA4 and HAND1 are essential for heart development, however, little is known regarding their epigenetic regulation in the pathogenesis of tetralogy of fallot (TOF). Methods Methylation levels were measured in three regions of NKX2-5 (M1: -1596 bp ~ -1374 bp, M2: -159 bp ~ 217 bp and M3: 1058 bp ~ 1524 bp), one region of GATA4 (M: -392 bp ~ 107 bp) and three regions of HAND1 (M1: -887 bp ~ -414 bp, M2: -436 bp ~ 2 bp and M3: 37 bp ~ 398 bp) using the Sequenom MassARRAY platform. QRT-PCR was used to analyze NKX2-5 and HAND1 mRNA levels in the right ventricular myocardium of TOF patients. Results TOF patients had a significantly higher NKX2-5_M3 median methylation level than controls (41.65% vs. 22.18%; p = 0.0074; interquartile range [IQR]: 30.46%–53.35%, N = 30 and 20.07%–24.31%, N = 5; respectively). The HAND1_M1 median methylation level was also significantly higher in TOF patients than controls (30.05% vs. 17.54%; p = 0.0054; IQR: 20.77%–40.89%, N = 30 and IQR: 14.69%–20.64%; N = 6; respectively). The methylation statuses of NKX2-5_M1, NKX2-5_M2, GATA4_M, HAND1_M2 or HAND1_M3 were not significantly different in TOF patients compared to controls. The methylation values for NKX2-5_M3 were negatively correlated with mRNA levels (r = - 0.463, p = 0.010, N = 30) and there was a significant association between HAND1_M1 methylation status and mRNA levels (r = - 0.524, p = 0.003, N = 30) in TOF patients. Conclusions Aberrant methylation statuses of the NKX2-5 gene body and HAND1 promoter regions are associated with the regulation of gene transcription in TOF patients and may play an important role in the pathogenesis of TOF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Duan Ma
- Children Hospital of Fudan University, Shanghai 201102, China.
| | | |
Collapse
|
33
|
Salameh A, Blanke K, Daehnert I. Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol 2013; 4:70. [PMID: 23760510 PMCID: PMC3669755 DOI: 10.3389/fphar.2013.00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/15/2013] [Indexed: 01/15/2023] Open
Abstract
Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone’s anomaly often do not involve only the heart, but also the great vessels and although occurring less frequently, these severe cardiac malformations will become symptomatic within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade, there is increasing evidence that cardiac gap junction proteins, the connexins (Cx), might have an impact on cardiac anomalies. In the heart, mainly three of them (Cx40, Cx43, and Cx45) are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions have often been supposed to transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses the potentional role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, Heart Centre, University of Leipzig Leipzig, Germany
| | | | | |
Collapse
|