1
|
Burrill N, Crane H, Khalek N, Soni S, Wild KT, Skraban C, McManus M, Szigety K, Oliver ER, Partridge E, Agarwal S, Fisher A, Wang J, Moldenhauer JS. Expansion of the prenatal phenotype of Baraitser-Winter syndrome: Presentation of two cases of multiple congenital anomaly syndrome. Am J Med Genet A 2024; 194:e63719. [PMID: 38789278 DOI: 10.1002/ajmg.a.63719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a variable multiple congenital anomaly condition, typically presenting postnatally with neurocognitive delays, distinctive facial features, cortical brain malformations, and in some, a variety of additional congenital malformations. However, only a few cases have reported the prenatal presentation of this syndrome. Here, we report two cases of BWCFF and their associated prenatal findings. One case presented with non-immune hydrops fetalis and a horseshoe kidney and was found to have a de novo heterozygous variant in ACTB (c.158A>G). The second case presented with gastroschisis, bilateral cleft lip and palate, and oligohydramnios, and was found to harbor a different de novo variant in ACTB (c.826G>A). Limited reports exist describing prenatally identified anomalies that include fetal growth restriction, increased nuchal fold, bilateral hydronephrosis, rocker bottom foot, talipes, cystic hygroma, omphalocele, and hydrops fetalis. In addition, only three of these cases have included detailed prenatal imaging findings. The two prenatal cases presented here demonstrate an expansion of the prenatal phenotype of BWCFF to include gastroschisis, lymphatic involvement, and oligohydramnios, which should each warrant consideration of this diagnosis in the setting of additional anomalies.
Collapse
Affiliation(s)
- Natalie Burrill
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
| | - Haley Crane
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
| | - Nahla Khalek
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelly Soni
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - K Taylor Wild
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cara Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Morgan McManus
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katherine Szigety
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Edward R Oliver
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Partridge
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sonika Agarwal
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jing Wang
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie S Moldenhauer
- Children's Hospital of Philadelphia, Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Ghiselli S, Parmeggiani G, Zambonini G, Cuda D. Hearing Loss in Baraitser-Winter Syndrome: Case Reports and Review of the Literature. J Clin Med 2024; 13:1500. [PMID: 38592426 PMCID: PMC10935159 DOI: 10.3390/jcm13051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Baraitser-Winter Syndrome (BRWS) is a rare autosomal dominant condition associated with hearing loss (HL). In the literature, two types of this condition are reported, Baraitser-Winter type 1 (BRWS1) and type 2 (BRWS2) produced by specific pathogenetic variants of two different genes, ACTB for BRWS1 and ACTG1 for BRWS2. In addition to syndromic BRWS2, some pathogenic variants in ACTG1 are associated also to another pathologic entity, the "Autosomal dominant non-syndromic hearing loss 20/26". In these syndromes, typical craniofacial features, sensory impairment (vision and hearing) and intellectual disabilities are frequently present. Heart anomalies, renal and gastrointestinal involvement and seizure are also common. Wide inter- and intra-familial variety in the phenotypic spectrum is reported. Some phenotypic aspects of these syndromes are not yet fully described, such as the degree and progression of HL, and better knowledge of them could be useful for correct follow-up and treatment. Methods and Results: In this study, we report two cases of children with HL and diagnosis of BRWS and a review of the current literature on HL in these syndromes.
Collapse
Affiliation(s)
- Sara Ghiselli
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
| | | | - Giulia Zambonini
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
| | - Domenico Cuda
- Department of Otorhinolaryngology, AUSL Piacenza, 29121 Piacenza, Italy; (G.Z.); (D.C.)
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| |
Collapse
|
4
|
Baxi AB, Nemes P, Moody SA. Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates. iScience 2023; 26:107665. [PMID: 37670778 PMCID: PMC10475516 DOI: 10.1016/j.isci.2023.107665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
Over 200 genes are known to underlie human congenital hearing loss (CHL). Although transcriptomic approaches have identified candidate regulators of otic development, little is known about the abundance of their protein products. We used a multiplexed quantitative mass spectrometry-based proteomic approach to determine protein abundances over key stages of Xenopus otic morphogenesis to reveal a dynamic expression of cytoskeletal, integrin signaling, and extracellular matrix proteins. We correlated these dynamically expressed proteins to previously published lists of putative downstream targets of human syndromic hearing loss genes: SIX1 (BOR syndrome), CHD7 (CHARGE syndrome), and SOX10 (Waardenburg syndrome). We identified transforming growth factor beta-induced (Tgfbi), an extracellular integrin-interacting protein, as a putative target of Six1 that is required for normal otic vesicle formation. Our findings demonstrate the application of this Xenopus dataset to understanding the dynamic regulation of proteins during otic development and to discovery of additional candidates for human CHL.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
5
|
Valencia AM, Sankar A, van der Sluijs PJ, Satterstrom FK, Fu J, Talkowski ME, Vergano SAS, Santen GWE, Kadoch C. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat Genet 2023; 55:1400-1412. [PMID: 37500730 PMCID: PMC10412456 DOI: 10.1038/s41588-023-01451-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
DNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes. Non-truncating NDD-associated protein variants predominantly disrupt the cBAF subcomplex and cluster in four key structural regions associated with high disease severity, including mSWI/SNF-nucleosome interfaces, the ATPase-core ARID-armadillo repeat (ARM) module insertion site, the Arp module and DNA-binding domains. Although over 70% of the residues perturbed in NDDs overlap with those mutated in cancer, ~60% of amino acid changes are NDD-specific. These findings provide a foundation to functionally group variants and link complex aberrancies to phenotypic severity, serving as a resource for the chromatin, clinical genetics and neurodevelopment communities.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Chemical Biology Program, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Akshay Sankar
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - F Kyle Satterstrom
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jack Fu
- Massachusetts General Hospital, Boston, MA, USA
| | - Michael E Talkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Samantha A Schrier Vergano
- Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Graziani L, Cinnirella G, Ferradini V, Conte C, Bascio FL, Bengala M, Sangiuolo F, Novelli G. A likely pathogenic ACTG1 variant in a child showing partial phenotypic overlap with Baraitser-Winter syndrome. Am J Med Genet A 2023; 191:1565-1569. [PMID: 36810952 DOI: 10.1002/ajmg.a.63157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Baraitser-Winter syndrome (BRWS) is a rare autosomal dominant disease (AD) caused by heterozygous variants in ACTB (BRWS1) or ACTG1 (BRWS2) genes. BRWS features developmental delay/intellectual disability of variable degree and craniofacial dysmorphisms. Brain abnormalities (especially pachygyria), microcephaly, epilepsy, as well as hearing impairment, cardiovascular and genitourinary abnormalities may be present. We report on a 4-year-old female, who was addressed to our institution because of psychomotor delay associated with microcephaly and dysmorphic features, short stature, mild bilateral sensorineural hearing loss, mild cardiac septal hypertrophy, and abdominal swelling. Clinical exome sequencing detected a c.617G>A p.(Arg206Gln) de novo variant in ACTG1 gene. Such variant has been previously reported in association with a form of AD nonsyndromic sensorineural progressive hearing loss and we classified it as likely pathogenic according to ACMG/AMP criteria, despite our patient's phenotype only partially overlapped BWRS2. Our finding supports the extreme variability of the ACTG1-related disorders, ranging from classical BRWS2 to nuanced clinical expressions not fitting the original description, and occasionally featuring previously undescribed clinical findings.
Collapse
Affiliation(s)
- Ludovico Graziani
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Cinnirella
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Conte
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Lo Bascio
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Bengala
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| |
Collapse
|
7
|
Frameshift mutation S368fs in the gene encoding cytoskeletal β-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics. Eur J Cell Biol 2022; 101:151216. [DOI: 10.1016/j.ejcb.2022.151216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
|
8
|
Nie K, Huang J, Liu L, Lv H, Chen D, Fan W. Identification of a De Novo Heterozygous Missense ACTB Variant in Baraitser–Winter Cerebrofrontofacial Syndrome. Front Genet 2022; 13:828120. [PMID: 35401677 PMCID: PMC8989421 DOI: 10.3389/fgene.2022.828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Baraitser–Winter cerebrofrontofacial syndrome (BWCFF, OMIM: 243310) is a rare autosomal-dominant developmental disorder associated with variants in the genes ACTB or ACTG1. It is characterized by brain malformations, a distinctive facial appearance, ocular coloboma, and intellectual disability. However, the phenotypes of BWCFF are heterogenous, and its molecular pathogenesis has not been fully elucidated. In the present study, we conducted detailed clinical examinations on a Chinese patient with BWCFF and found novel ocular manifestations including pseudoduplication of the optic disc and nystagmus. Targeted gene panel sequencing and Sanger sequencing identified a de novo heterozygous missense c.478A > G (p.Thr160Ala) variant in ACTB. The mRNA and protein expression of ACTB was assessed by quantitative reverse transcription PCR and Western blots. Furthermore, the functional effects of the pathogenic variant were analyzed by protein structure analysis, which indicated that the variant may affect the active site for ATP hydrolysis by the actin ATPase, resulting in abnormal filamentous actin organization in peripheral blood mononuclear cells. This discovery extends the ACTB variant spectrum, which will improve genetic counseling and diagnosis, and may contribute to understanding the pathogenic mechanisms of actin-related diseases.
Collapse
Affiliation(s)
- Kailai Nie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junting Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wei Fan, ; Danian Chen,
| | - Wei Fan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wei Fan, ; Danian Chen,
| |
Collapse
|
9
|
Sibbin K, Yap P, Nyaga D, Heller R, Evans S, Strachan K, Alburaiky S, Nguyen HMA, Hermann-Le Denmat S, Ganley ARD, O'Sullivan JM, Bloomfield FH. A de novo ACTB gene pathogenic variant in identical twins with phenotypic variation for hydrops and jejunal atresia. Am J Med Genet A 2021; 188:1299-1306. [PMID: 34970864 PMCID: PMC9302691 DOI: 10.1002/ajmg.a.62631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/11/2021] [Accepted: 12/11/2021] [Indexed: 11/05/2022]
Abstract
The beta-actin gene (ACTB) encodes a ubiquitous cytoskeletal protein, essential for embryonic development in humans. De novo heterozygous missense variants in the ACTB are implicated in causing Baraitser-Winter cerebrofrontofacial syndrome (BWCFFS; MIM#243310). ACTB pathogenic variants are rarely associated with intestinal malformations. We report on a rare case of monozygotic twins presenting with proximal small bowel atresia and hydrops in one, and apple-peel bowel atresia and laryngeal dysgenesis in the other. The twin with hydrops could not be resuscitated. Intensive and surgical care was provided to the surviving twin. Rapid trio genome sequencing identified a de novo missense variant in ACTB (NM_00101.3:c.1043C>T; p.(Ser348Leu)) that guided the care plan. The identical variant subsequently was identified in the demised twin. To characterize the functional effect, the variant was recreated as a pseudoheterozygote in a haploid wild-type S. cerevisiae strain. There was an obvious growth defect of the yACT1S348L/WT pseudoheterozygote compared to a yACT1WT/WT strain when grown at 22°C but not when grown at 30°C, consistent with the yACT1 S348L variant having a functional defect that is dominant over the wild-type allele. The functional results provide supporting evidence that the Ser348Leu variant is likely to be a pathogenic variant, including being associated with intestinal malformations in BWCFFS, and can demonstrate variable expressivity within monozygotic twins.
Collapse
Affiliation(s)
- Kristina Sibbin
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Yap
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Denis Nyaga
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Raoul Heller
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Stephen Evans
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Kate Strachan
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Salam Alburaiky
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand
| | - Han M Alex Nguyen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Austen R D Ganley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.,Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Brain Research New Zealand, The University of Auckland, Auckland, New Zealand.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Frank H Bloomfield
- Starship Child Health, Auckland City Hospital, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Dai S, Wang H, Lin Z. ACTB Mutations Analysis and Genotype-Phenotype Correlation in Becker's Nevus. Biomedicines 2021; 9:1879. [PMID: 34944694 PMCID: PMC8698930 DOI: 10.3390/biomedicines9121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Becker's nevus (BN) is a cutaneous hamartoma which is characterized by circumscribed hyperpigmentation with hypertrichosis. Recent studies have revealed that BN patients harbored postzygotic ACTB mutations, which were restricted to arrector pili muscle lineage. We screened for ACTB mutations in 20 Chinese patients with BN and found that recurrent mutations (c.C439A or c.C439T) in ACTB were detected in the majority of BN patients. However, more than 20% of the patients were negative for ACTB mutations, suggesting a possible genetic heterogeneity in Becker's nevus. Interestingly, these mutations were also detected in dermal tissues outside the arrector pili muscle. We further performed genotype-phenotype correlation analysis, which revealed that lesions above the waistline, including the trunk above the anterior superior spine level, upper limbs and face, or covering more than 1% BSA were more likely to be positive for ACTB mutations. Altogether, our results provide further evidence of postzygotic ACTB mutations in BN patients and suggest a possible genotype-phenotype correlation of BN.
Collapse
Affiliation(s)
- Shangzhi Dai
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China; (S.D.); (H.W.)
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China; (S.D.); (H.W.)
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China; (S.D.); (H.W.)
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
11
|
Machida K, Miyawaki S, Kanzawa K, Hakushi T, Nakai T, Imataka H. An in Vitro Reconstitution System Defines the Defective Step in the Biogenesis of Mutated β-Actin Proteins. ACS Synth Biol 2021; 10:3158-3166. [PMID: 34752068 DOI: 10.1021/acssynbio.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Collapse
Affiliation(s)
- Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Shoma Miyawaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kuru Kanzawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Taiki Hakushi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomonori Nakai
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
12
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
DFNA20/26 and Other ACTG1-Associated Phenotypes: A Case Report and Review of the Literature. Audiol Res 2021; 11:582-593. [PMID: 34698053 PMCID: PMC8544197 DOI: 10.3390/audiolres11040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser-Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.
Collapse
|
14
|
Cenni C, Mansard L, Blanchet C, Baux D, Vaché C, Baudoin C, Moclyn M, Faugère V, Mondain M, Jeziorski E, Roux AF, Willems M. When Familial Hearing Loss Means Genetic Heterogeneity: A Model Case Report. Diagnostics (Basel) 2021; 11:diagnostics11091636. [PMID: 34573976 PMCID: PMC8465614 DOI: 10.3390/diagnostics11091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
We describe a family with both hearing loss (HL) and thrombocytopenia, caused by pathogenic variants in three genes. The proband was a child with neonatal thrombocytopenia, childhood-onset HL, hyper-laxity and severe myopia. The child’s mother (and some of her relatives) presented with moderate thrombocytopenia and adulthood-onset HL. The child’s father (and some of his relatives) presented with adult-onset HL. An HL panel analysis, completed by whole exome sequencing, was performed in this complex family. We identified three pathogenic variants in three different genes: MYH9, MYO7A and ACTG1. The thrombocytopenia in the child and her mother is explained by the MYH9 variant. The post-lingual HL in the paternal branch is explained by the MYO7A variant, absent in the proband, while the congenital HL of the child is explained by a de novo ACTG1 variant. This family, in which HL segregates, illustrates that multiple genetic conditions coexist in individuals and make patient care more complex than expected.
Collapse
Affiliation(s)
- Camille Cenni
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Luke Mansard
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Catherine Blanchet
- Service ORL, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France; (C.B.); (M.M.)
- Centre National de Référence Maladies Rares “Affections Sensorielles Génétiques”, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - David Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Christel Vaché
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Corinne Baudoin
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Mélodie Moclyn
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Valérie Faugère
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Michel Mondain
- Service ORL, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France; (C.B.); (M.M.)
| | - Eric Jeziorski
- Service de Pédiatrie Générale, Infectiologie et Immunologie Clinique, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
15
|
Papamichail M, Manolakos E, Papoulidis I, Siomou E, Eleftheriades A, Marinakis I, Tzanakis K, Sartsidis A, Vlahos NF, Eleftheriades M. Prenatal diagnosis of Baraitser - Winter syndrome using exome sequencing: Clinical report and review of literature. Eur J Med Genet 2021; 64:104318. [PMID: 34450357 DOI: 10.1016/j.ejmg.2021.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Baraitser - Winter Cerebrofrontofacial Syndrome (BWCFF) is a rare disorder characterized by facial dysmorphism and mental retardation of varying grades. The clinical phenotype of BWCFF indicates variable phenotypic expression involving various congenital malformations such as cardiac, renal and musculoskeletal abnormalities. Nevertheless, the prenatal presentation of BWCFF is rarely described, making prenatal diagnosis challenging. This report describes a prenatal diagnosis of BWCFF syndrome to date; a case of a fetus with intrauterine growth restriction, increased nuchal fold, bilateral hydronerphosis, rocker bottom foot and clubfoot detected on Anomaly Scan is outlined. Molecular karyotype failed to detect any abnormality. Assessment with Next Generation Sequencing was then performed, revealing a heterozygous de novo mutation in ACTB gene setting the diagnosis of BWCFF.
Collapse
Affiliation(s)
- Maria Papamichail
- Postgraduate Programme "Maternal Fetal Medicine" Medical SchoolNational & Kapodistrian University of Athens, Greece.
| | - Emmanouil Manolakos
- Access To Genome (ATG), Clinical Laboratory Genetics, Athens-Thessaloniki-Belgrade, Greece
| | - Ioannis Papoulidis
- Access To Genome (ATG), Clinical Laboratory Genetics, Athens-Thessaloniki-Belgrade, Greece
| | - Elisavet Siomou
- Access To Genome (ATG), Clinical Laboratory Genetics, Athens-Thessaloniki-Belgrade, Greece
| | | | | | | | - Anastasios Sartsidis
- Access To Genome (ATG), Clinical Laboratory Genetics, Athens-Thessaloniki-Belgrade, Greece
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital Medical School, National & Kapodistrian University of Athens, Greece
| | - Makarios Eleftheriades
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital Medical School, National & Kapodistrian University of Athens, Greece.
| |
Collapse
|
16
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
17
|
DNA-based eyelid trait prediction in Chinese Han population. Int J Legal Med 2021; 135:1743-1752. [PMID: 33969445 DOI: 10.1007/s00414-021-02570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The eyelid folding represents one of the most distinguishing features of East Asian faces, involving the absence or presence of the eyelid crease, i.e., single vs. double eyelid. Recently, a genome-wide association study (GWAS) identified two SNPs (rs12570134 and rs1415425) showing genome-wide significant association with the double eyelid phenotype in Japanese. Here we report a confirmatory study in 697 Chinese individuals of exclusively Han origin. Only rs1415425 was statistically significant (P-value = 0.011), and the allele effect was on the same direction with that reported in Japanese. This SNP combined with gender and age explained 10.0% of the total variation in eyelid folding. DNA-based prediction model for the eyelid trait was developed and evaluated using logistic regression. The model showed mild to moderate predictive capacity (AUC = 0.69, sensitivity = 63%, and specificity = 70%). We further selected six additional SNPs by massive parallel sequencing of 19 candidate genes in 24 samples, and one SNP rs2761882 was statistically significant (P-value = 0.027). All predictors including these two SNPs (rs1415425 and rs2761882), gender, and age explained 11.2% of the total variation. The combined prediction model obtained an improved predictive capacity (AUC = 0.72, sensitivity = 62%, and specificity = 66%). Our study thus provided a confirmation of previous GWAS findings and a DNA-based prediction of the eyelid trait in Chinese Han individuals. This model may add value to forensic DNA phenotyping applications considering gender and age can be separately inferred from genetic and epigenetic markers. To further improve the prediction accuracy, future studies should focus on identifying more informative SNPs by large GWASs in East Asian populations.
Collapse
|
18
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
19
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
20
|
Ji Y, Garland MA, Sun B, Zhang S, Reynolds K, McMahon M, Rajakumar R, Islam MS, Liu Y, Chen Y, Zhou CJ. Cellular and developmental basis of orofacial clefts. Birth Defects Res 2020; 112:1558-1587. [PMID: 32725806 DOI: 10.1002/bdr2.1768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.
Collapse
Affiliation(s)
- Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Ratheya Rajakumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Mohammad S Islam
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Yue Liu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
21
|
Zhang K, Cox E, Strom S, Xu ZL, Disilvestro A, Usrey K. Prenatal presentation and diagnosis of Baraitser-Winter syndrome using exome sequencing. Am J Med Genet A 2020; 182:2124-2128. [PMID: 32588558 DOI: 10.1002/ajmg.a.61725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 11/08/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a rare autosomal dominant developmental disorder associated with missense mutations in the genes ACTB or ACTG1. The classic presentation of BWCFF is discerned by the combination of unique craniofacial characteristics including ocular coloboma, intellectual disability, and hypertelorism. Congenital contractures and organ malformations are often present, including structural defects in the brain, heart, renal, and musculoskeletal system. However, there is limited documentation regarding its prenatal presentation that may encourage healthcare providers to be aware of this disorder when presented throughout pregnancy. Herein we describe a case of a pregnancy with large cystic hygroma and omphalocele. Whole exome sequencing (WES) was performed and a de novo, heterozygous, likely pathogenic mutation in ACTB was detected, c.1004G>A (p.Arg335His), conferring a diagnosis of BWCFF.
Collapse
Affiliation(s)
- Kermit Zhang
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Eleina Cox
- Fulgent Genetics, Temple City, California, USA
| | | | | | - Alexis Disilvestro
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.,Maternal Fetal Medicine, Carilion Clinic, Roanoke, Virginia, USA
| | - Kelly Usrey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.,Maternal Fetal Medicine, Carilion Clinic, Roanoke, Virginia, USA
| |
Collapse
|
22
|
Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb Cortex Commun 2020; 1:tgaa024. [PMID: 32864616 PMCID: PMC7446231 DOI: 10.1093/texcom/tgaa024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
23
|
Hampshire K, Martin PM, Carlston C, Slavotinek A. Baraitser-Winter cerebrofrontofacial syndrome: Report of two adult siblings. Am J Med Genet A 2020; 182:1923-1932. [PMID: 32506774 DOI: 10.1002/ajmg.a.61637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 11/07/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCS) is a rare, autosomal dominant condition that is characterized by intellectual disability, distinctive craniofacial features, structural brain abnormalities, seizures, microcephaly, hearing loss, and ocular colobomas. The first three cases were described in 1988 by Baraitser and Winter and included two siblings and an unrelated third patient. Subsequently, causative missense variants in the ACTB and ACTG1 genes were identified, with de novo occurrence in patients with the condition. Herein, we describe two adult siblings who were born to unaffected parents and who were diagnosed with BWCS in their fourth and sixth decade of life following exome sequencing performed for intellectual disability. We review the literature reports of adult patients with BWCS to document the clinical features and phenotypic variability that can occur later in life. This is the first molecularly confirmed report of germline mosaicism in BWCS and one of only a few reports to describe two BWCS patients belonging to the same family.
Collapse
Affiliation(s)
- Karly Hampshire
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Colleen Carlston
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Malek N, Mrówczyńska E, Michrowska A, Mazurkiewicz E, Pavlyk I, Mazur AJ. Knockout of ACTB and ACTG1 with CRISPR/Cas9(D10A) Technique Shows that Non-Muscle β and γ Actin Are Not Equal in Relation to Human Melanoma Cells' Motility and Focal Adhesion Formation. Int J Mol Sci 2020; 21:ijms21082746. [PMID: 32326615 PMCID: PMC7216121 DOI: 10.3390/ijms21082746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either β actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of β and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than β actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells’ FA formation and motility.
Collapse
|
25
|
Chacon-Camacho OF, Barragán-Arévalo T, Villarroel CE, Almanza-Monterrubio M, Zenteno JC. Previously undescribed phenotypic findings and novel ACTG1 gene pathogenic variants in Baraitser-Winter cerebrofrontofacial syndrome. Eur J Med Genet 2020; 63:103877. [PMID: 32028042 DOI: 10.1016/j.ejmg.2020.103877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome is an autosomal dominant disease characterized by multiple congenital abnormalities and intellectual disability, which is caused by mutations in either the ACTB or ACTG1 genes. In this report, we described novel phenotypic findings in two Mexican patients with the disorder in whom two novel ACTG1 mutations (c.176A > G, p.Gln59Arg; and c.608C > T, p.Thr203Met) were identified.
Collapse
Affiliation(s)
- Oscar F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | | | - Camilo E Villarroel
- Department of Human Genetics, National Institute of Pediatrics, Mexico City, Mexico
| | - Mónica Almanza-Monterrubio
- Department of Human Genetics, National Institute of Pediatrics, Mexico City, Mexico; Department of Strabismus, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
26
|
Baumann M, Beaver EM, Palomares-Bralo M, Santos-Simarro F, Holzer P, Povysil G, Müller T, Valovka T, Janecke AR. Further delineation of putative ACTB loss-of-function variants: A 4-patient series. Hum Mutat 2020; 41:753-758. [PMID: 31898838 PMCID: PMC7155001 DOI: 10.1002/humu.23970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
ACTB encodes β‐cytoplasmic actin, an essential component of the cytoskeleton. Based on chromosome 7p22.1 deletions that include the ACTB locus and on rare truncating ACTB variants, a phenotype resulting from ACTB haploinsufficiency was recently proposed. We report putative ACTB loss‐of‐function variants in four patients. To the best of our knowledge, we report the first 7p22.1 microdeletion confined to ACTB and the second ACTB frameshifting mutation that predicts mRNA decay. A de‐novo ACTB p.(Gly302Ala) mutation affects β‐cytoplasmic actin distribution. All four patients share a facial gestalt that is distinct from that of individuals with dominant‐negative ACTB variants in Baraitser‐Winter cerebrofrontofacial syndrome. Two of our patients had strikingly thin and sparse scalp hair. One patient had sagittal craniosynostosis and hypospadias. All three affected male children have attention deficits and mild global developmental delay. Mild intellectual disability was present in only one patient. Heterozygous ACTB deletion can allow for normal psychomotor function.
Collapse
Affiliation(s)
- Matthias Baumann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Erin M Beaver
- Mercy Kids Genetics, Mercy Children's Hospital St. Louis, St. Louis, Missouri
| | - María Palomares-Bralo
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, Spain
| | | | - Peter Holzer
- Intelligent Predictive Networks GmbH, Vienna, Austria
| | - Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University, Linz, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Taras Valovka
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Prenatal presentation in a patient with Baraitser-Winter cerebrofrontofacial syndrome and a novel ACTB variant. Clin Dysmorphol 2019; 28:164-166. [PMID: 30921093 DOI: 10.1097/mcd.0000000000000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
A new evolutionary model for the vertebrate actin family including two novel groups. Mol Phylogenet Evol 2019; 141:106632. [DOI: 10.1016/j.ympev.2019.106632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
|
29
|
Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun 2018; 9:4250. [PMID: 30315159 PMCID: PMC6185941 DOI: 10.1038/s41467-018-06713-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the ubiquitously expressed ACTB, which encodes β-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3′-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to β-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these β-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort. Genetic variants in ACTB and ACTG1 have been associated with Baraitser-Winter Cerebrofrontofacial syndrome. Here, the authors report of a syndromic thrombocytopenia caused by variants in ACTB exons 5 or 6 that compromise the organization and coupling of the cytoskeleton, leading to impaired platelet maturation.
Collapse
|
30
|
Abstract
PURPOSE Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a rare autosomal dominant genetic disorder involving multiple organ systems and primarily characterized by structural brain abnormalities and a distinctive facial appearance. METHODS To study the clinical characteristics, gene types and seizures of BWCFF. The natural history, clinical data and peripheral blood sample were collected in the child and his patients. To screen the β-actin gene (ACTB) of a newly diagnosed child, hoping to find the gene mutation. RESULTS The child had left ptosis, ocular hypertelorism, arched eyebrows, only 30% of the left ear hearing, a slight hypotonia, normal muscle strength, walking instability. The seizures were difficult to control with antiepileptic drugs and presented some degree of psychomotor development delay. Genetic screening showed De Novo in ACTB gene (c.484A> G, p.Thr162Ala). Parents did not detect related gene mutations. CONCLUSIONS Patients with typical facial features and cerebral cortical malformations associated with refractory epilepsy should be highly suspected BWCFF. Patients are advised to carry out genetic screening to confirm the diagnosis.
Collapse
Affiliation(s)
- Ying Sun
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Xuehua Shen
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Qiubo Li
- b Department of Pediatric , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Qingxia Kong
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| |
Collapse
|
31
|
Lim YH, Burke AB, Roberts MS, Collins MT, Choate KA. Multilineage ACTB mutation in a patient with fibro-osseous maxillary lesion and pilocytic astrocytoma. Am J Med Genet A 2018; 176:2037-2040. [PMID: 30152002 DOI: 10.1002/ajmg.a.40475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Young H Lim
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Andrea B Burke
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,Division of Oral and Maxillofacial Surgery, School of Dentistry, University of Washington, Seattle, Washington
| | - Mary S Roberts
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Sandestig A, Green A, Jonasson J, Vogt H, Wahlström J, Pepler A, Ellnebo K, Biskup S, Stefanova M. Could Dissimilar Phenotypic Effects of ACTB Missense Mutations Reflect the Actin Conformational Change? Two Novel Mutations and Literature Review. Mol Syndromol 2018; 9:259-265. [PMID: 30733661 DOI: 10.1159/000492267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2018] [Indexed: 02/03/2023] Open
Abstract
The beta-actin gene encodes 1 of 6 different actin proteins. De novo heterozygous missense mutations in ACTB have been identified in patients with Baraitser-Winter syndrome (BRWS) and also in patients with developmental disorders other than BRWS, such as deafness, dystonia, and neutrophil dysfunction. We describe 2 different novel de novo missense ACTB mutations, c.208C>G (p.Pro70Ala) and c.511C>T (p.Leu171Phe), found by trio exome sequencing analysis of 2 unrelated patients: an 8-year-old boy with a suspected BRWS and a 4-year-old girl with unclear developmental disorder. The mutated residue in the first case is situated in the actin H-loop, which is involved in actin polymerization. The mutated residue in the second case (p.Leu171Phe) is found at the actin barbed end in the W-loop, important for binding to profilin and other actin-binding molecules. While the boy presented with a typical BRWS facial appearance, the girl showed facial features not recognizable as a BRWS gestalt as well as ventricular arrhythmia, cleft palate, thrombocytopenia, and gray matter heterotopia. We reviewed previously published ACTB missense mutations and ascertained that a number of them do not cause typical BRWS. By comparing clinical and molecular data, we speculate that the phenotypic differences found in ACTB missense mutation carriers might supposedly be dependent on the conformational change of ACTB.
Collapse
Affiliation(s)
- Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Anna Green
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Jon Jonasson
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Hartmut Vogt
- Department of Pediatrics, Linköping University Hospital, Linköping, Sweden
| | - Johan Wahlström
- Department of Pediatrics, Linköping University Hospital, Linköping, Sweden
| | | | - Katarina Ellnebo
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | | | - Margarita Stefanova
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
33
|
Abstract
The highly similar cytoplasmic β- and γ-actins differ by only four functionally similar amino acids, yet previous in vitro and in vivo data suggest that they support unique functions due to striking phenotypic differences between Actb and Actg1 null mouse and cell models. To determine whether the four amino acid variances were responsible for the functional differences between cytoplasmic actins, we gene edited the endogenous mouse Actb locus to translate γ-actin protein. The resulting mice and primary embryonic fibroblasts completely lacked β-actin protein, but were viable and did not present with the most overt and severe cell and organismal phenotypes observed with gene knockout. Nonetheless, the edited mice exhibited progressive high-frequency hearing loss and degeneration of actin-based stereocilia as previously reported for hair cell-specific Actb knockout mice. Thus, β-actin protein is not required for general cellular functions, but is necessary to maintain auditory stereocilia.
Collapse
|
34
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
35
|
Chang CH, Bijian K, Qiu D, Su J, Saad A, Dahabieh MS, Miller WH, Alaoui-Jamali MA. Endosomal sorting and c-Cbl targeting of paxillin to autophagosomes regulate cell-matrix adhesion turnover in human breast cancer cells. Oncotarget 2018; 8:31199-31214. [PMID: 28415719 PMCID: PMC5458201 DOI: 10.18632/oncotarget.16105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022] Open
Abstract
Post-translational mechanisms regulating cell-matrix adhesion turnover during cell locomotion are not fully elucidated. In this study, we uncovered an essential role of Y118 site-specific tyrosine phosphorylation of paxillin, an adapter protein of focal adhesion complexes, in paxillin recruitment to autophagosomes to trigger turnover of peripheral focal adhesions in human breast cancer cells. We demonstrate that the Rab-7 GTPase is a key upstream regulator of late endosomal sorting of tyrosine118-phosphorylated paxillin, which is subsequently recruited to autophagosomes via the cargo receptor c-Cbl. Essentially, this recruitment involves a direct and selective interaction between Y118-phospho-paxillin, c-Cbl, and LC3 and is independent from c-Cbl E3 ubiquitin ligase activity. Interference with the Rab7-paxillin-autophagy regulatory network using genetic and pharmacological approaches greatly impacted focal adhesion stability, cell locomotion and progression to metastasis using a panel of human breast cancer cells. Together, these results provide novel insights into the requirement of phospho-site specific post-translational mechanism of paxillin for autophagy targeting to regulate cell-matrix adhesion turnover and cell locomotion in breast cancer cells.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Krikor Bijian
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Dinghong Qiu
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Jie Su
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Amine Saad
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Michael S Dahabieh
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Wilson H Miller
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Moulay A Alaoui-Jamali
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Rall N, Leon A, Gomez R, Daroca J, Lacassie Y. New ocular finding in Baraitser-Winter syndrome (BWS). Eur J Med Genet 2017; 61:21-23. [PMID: 29024830 DOI: 10.1016/j.ejmg.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/28/2017] [Accepted: 10/07/2017] [Indexed: 11/30/2022]
Abstract
Baraitser-Winter syndrome was first described as a syndrome of iris coloboma, ptosis, hypertelorism, and mental retardation (Baraitser and Winter 1988; Baraitser, 2016). The phenotypic spectrum has since broadened to include other facial dysmorphic features, deafness, microcephaly, lissencephaly, and CNS findings (Baraitser and Winter 1988; Ganesh et al., 2005; Henedy et al., 2010; Verloes et al., 2015). The syndrome is due to pathogenic variants on either ACTB or ACTG1 genes (Di Donato et al., 2014; Rivière et al., 2012). There is still discussion which gene variant produces a more severe phenotype (Di Donato et al., 2016; Di Donato et al., 2014; Verloes et al., 2015). We report a 3-year-old girl with short stature, mild global developmental delay, minor brain anomalies and few dysmorphic features including unusual stroma of the irises and unreported corectopia. Exome sequencing reported a de novo likely pathogenic variant on the ACTB gene. The present report adds a new ocular finding to the phenotypic spectrum.
Collapse
Affiliation(s)
- Natalie Rall
- Volunteer Children's Hospital, New Orleans, LA, USA
| | - Alejandro Leon
- Department of Ophthalmology Children's Hospital, New Orleans, LA, USA
| | - Ricardo Gomez
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, LA, USA
| | | | - Yves Lacassie
- Department of Pediatrics, LSU Health Sciences Center and Children's Hospital, New Orleans, LA, USA.
| |
Collapse
|
37
|
Cai ED, Sun BK, Chiang A, Rogers A, Bernet L, Cheng B, Teng J, Rieger KE, Sarin KY. Postzygotic Mutations in Beta-Actin Are Associated with Becker’s Nevus and Becker’s Nevus Syndrome. J Invest Dermatol 2017; 137:1795-1798. [DOI: 10.1016/j.jid.2017.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 11/29/2022]
|
38
|
Rainger J, Williamson KA, Soares DC, Truch J, Kurian D, Gillessen‐Kaesbach G, Seawright A, Prendergast J, Halachev M, Wheeler A, McTeir L, Gill AC, van Heyningen V, Davey MG, FitzPatrick DR. A recurrent de novo mutation in ACTG1 causes isolated ocular coloboma. Hum Mutat 2017; 38:942-946. [PMID: 28493397 PMCID: PMC5518294 DOI: 10.1002/humu.23246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 11/17/2022]
Abstract
Ocular coloboma (OC) is a defect in optic fissure closure and is a common cause of severe congenital visual impairment. Bilateral OC is primarily genetically determined and shows marked locus heterogeneity. Whole-exome sequencing (WES) was used to analyze 12 trios (child affected with OC and both unaffected parents). This identified de novo mutations in 10 different genes in eight probands. Three of these genes encoded proteins associated with actin cytoskeleton dynamics: ACTG1, TWF1, and LCP1. Proband-only WES identified a second unrelated individual with isolated OC carrying the same ACTG1 allele, encoding p.(Pro70Leu). Both individuals have normal neurodevelopment with no extra-ocular signs of Baraitser-Winter syndrome. We found this mutant protein to be incapable of incorporation into F-actin. The LCP1 and TWF1 variants each resulted in only minor disturbance of actin interactions, and no further plausibly causative variants were identified in these genes on resequencing 380 unrelated individuals with OC.
Collapse
Affiliation(s)
- Joe Rainger
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | - Kathleen A Williamson
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - Dinesh C Soares
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - Julia Truch
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - Dominic Kurian
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | | | - Anne Seawright
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - James Prendergast
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | - Mihail Halachev
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - Ann Wheeler
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| | - Lynn McTeir
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | - Andrew C Gill
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | | | - Megan G Davey
- The Roslin Institute and R(D)SVSUniversity of EdinburghEaster Bush CampusMidlothianUK
| | - UK10K
- Wellcome Trust Sanger InstituteGenome CampusHinxtonCambridgeshireUK
| | - David R FitzPatrick
- MRC Human Genetics Unit, IGMMUniversity of EdinburghWestern General HospitalEdinburghUK
| |
Collapse
|
39
|
Marom R, Jain M, Burrage LC, Song IW, Graham BH, Brown CW, Stevens SJC, Stegmann APA, Gunter AT, Kaplan JD, Gavrilova RH, Shinawi M, Rosenfeld JA, Bae Y, Tran AA, Chen Y, Lu JT, Gibbs RA, Eng C, Yang Y, Rousseau J, de Vries BBA, Campeau PM, Lee B. Heterozygous variants in ACTL6A, encoding a component of the BAF complex, are associated with intellectual disability. Hum Mutat 2017. [PMID: 28649782 DOI: 10.1002/humu.23282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with varying degrees of intellectual disability. Two subjects have missense variants affecting highly conserved amino acid residues within the actin-like domain. Missense mutations in the homologous region in yeast actin were previously reported to be dominant lethal and were associated with impaired binding of the human ACTL6A to β-actin and BRG1. A third subject has a splicing variant that creates an in-frame deletion. Our findings suggest that the variants identified in our subjects may have a deleterious effect on the function of the protein by disturbing the integrity of the BAF complex. Thus, ACTL6A gene mutation analysis should be considered in patients with intellectual disability, learning disabilities, or developmental language disorder.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Chester W Brown
- Department of Pediatrics/Genetics Division, University of Tennessee Health Science Center Memphis, Memphis, Tennessee
| | - Servi J C Stevens
- Department of Human Genetics, Maastricht University Hospital, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Human Genetics, Maastricht University Hospital, Maastricht, The Netherlands
| | - Andrew T Gunter
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Julie D Kaplan
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ralitza H Gavrilova
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Justine Rousseau
- Department of Pediatrics, CHU Ste-Justine and University of Montreal, Montreal, Canada
| | - Bert B A de Vries
- Department of Human Genetics and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philippe M Campeau
- Department of Pediatrics, CHU Ste-Justine and University of Montreal, Montreal, Canada
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Climans SA, Mirsattari SM. Generalized epilepsy in Baraitser-Winter cerebrofrontofacial syndrome. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 7:58-60. [PMID: 28413780 PMCID: PMC5385583 DOI: 10.1016/j.ebcr.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/28/2022]
Abstract
Baraitser–Winter cerebrofrontofacial syndrome (BWMS) is caused by actin gene mutations. Key features of BWMS are ptosis, hypertelorism, iris colobomata, and mental retardation. Generalized epilepsy is seen in half of those with BWMS. Seizures in BWMS can be absence, myoclonic, tonic, or tonic–clonic.
Collapse
Affiliation(s)
- Seth Andrew Climans
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada.,Department of Medical Imaging, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada.,Department of Psychology, The University of Western Ontario, London, Canada
| |
Collapse
|
41
|
Yates TM, Turner CL, Firth HV, Berg J, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome. Clin Genet 2016; 92:3-9. [PMID: 27625340 DOI: 10.1111/cge.12864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/31/2023]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) (BRWS; MIM #243310, 614583) is a rare developmental disorder affecting multiple organ systems. It is characterised by intellectual disability (mild to severe) and distinctive facial appearance (metopic ridging/trigonocephaly, bilateral ptosis, hypertelorism). The additional presence of cortical malformations (pachygyria/lissencephaly) and ocular colobomata are also suggestive of this syndrome. Other features include moderate short stature, contractures, congenital cardiac disease and genitourinary malformations. BWCFF is caused by missense mutations in the cytoplasmic beta- and gamma-actin genes ACTB and ACTG1. We provide an overview of the clinical characteristics (including some novel findings in four recently diagnosed patients), diagnosis, management, mutation spectrum and genetic counselling.
Collapse
Affiliation(s)
- T M Yates
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - C L Turner
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - H V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - J Berg
- Department of Clinical Genetics, Ninewells Hospital, Dundee, UK
| | - D T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
42
|
Cianci P, Fazio G, Casagranda S, Spinelli M, Rizzari C, Cazzaniga G, Selicorni A. Acute myeloid leukemia in Baraitser-Winter cerebrofrontofacial syndrome. Am J Med Genet A 2016; 173:546-549. [DOI: 10.1002/ajmg.a.38057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Cianci
- Clinical Genetic Pediatric Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
- Pediatric Department; University of Insubria, Filippo Del Ponte Hospital; Varese Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Sara Casagranda
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Marco Spinelli
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Angelo Selicorni
- Clinical Genetic Pediatric Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
- Pediatric Unit; ASST Lariana; Como Italy
| |
Collapse
|
43
|
Ge X, Gong H, Dumas K, Litwin J, Phillips JJ, Waisfisz Q, Weiss MM, Hendriks Y, Stuurman KE, Nelson SF, Grody WW, Lee H, Kwok PY, Shieh JT. Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation. NPJ Genom Med 2016; 1. [PMID: 28868155 PMCID: PMC5576364 DOI: 10.1038/npjgenmed.2016.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss.
Collapse
Affiliation(s)
- Xiaoyan Ge
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Henry Gong
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Dumas
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Litwin
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurologic Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvonne Hendriks
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Stanley F Nelson
- Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, Divisions of Medical Genetics and Molecular Diagnostics, University of California Los Angeles, Los Angeles, CA, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine and Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Tc Shieh
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Shimojima K, Narai S, Togawa M, Doumoto T, Sangu N, Vanakker OM, de Paepe A, Edwards M, Whitehall J, Brescianini S, Petit F, Andrieux J, Yamamoto T. 7p22.1 microdeletions involving ACTB associated with developmental delay, short stature, and microcephaly. Eur J Med Genet 2016; 59:502-6. [PMID: 27633570 DOI: 10.1016/j.ejmg.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/23/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
Abstract
There are no published reports of patients harboring microdeletions involving the 7p22.1 region. Although 7p22.1 microdeletions are rare, some reports have shown microduplications encompassing this region. In this study, we report five patients with overlapping deletions of the 7p22.1 region. The patients exhibited clinical similarities including non-specific developmental delay, short stature, microcephaly, and other distinctive features. The shortest region of overlap within the 7p22.1 region includes five genes, FBXL18, ACTB, FSCN1, RNF216, and ZNF815P. Of these genes, only ACTB is known to be associated with an autosomal dominant trait. Dominant negative mutations in ACTB are responsible for Baraitser-Winter syndrome 1. We analyzed ACTB expression in immortalized lymphocytes derived from one of the patients and found that it was reduced to approximately half that observed in controls. This indicates that ACTB expression is linearly correlated with the gene copy number. We suggest that haploinsufficiency of ACTB may be responsible for the clinical features of patients with 7p22.1 microdeletions.
Collapse
Affiliation(s)
- Keiko Shimojima
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan; Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Satoshi Narai
- Department of Pediatrics, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Masami Togawa
- Department of Pediatrics, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Tomotsune Doumoto
- Department of Pediatrics, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Noriko Sangu
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Anne de Paepe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Matthew Edwards
- Department of Paediatrics, School of Medicine, University of Western Sydney, New South Wales, Australia
| | - John Whitehall
- Department of Paediatrics, School of Medicine, University of Western Sydney, New South Wales, Australia
| | - Sally Brescianini
- Centre for Genetic Education, University of Sydney, New South Wales, Australia
| | - Florence Petit
- CHU Lille, Hopital Jeanne de Flandre, Service de Genetique Clinique, F-59000 Lille, France
| | - Joris Andrieux
- CHU Lille, Hopital Jeanne de Flandre, Laboratoire de Genetique Medicale, F-59000 Lille, France
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
| |
Collapse
|
45
|
Abstract
Malformations of cortical development (MCD) represent a major cause of developmental disabilities, severe epilepsy, and reproductive disadvantage. Genes that have been associated to MCD are mainly involved in cell proliferation and specification, neuronal migration, and late cortical organization. Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders causing severe global neurological impairment. Abnormalities of the LIS1, DCX, ARX, RELN, VLDLR, ACTB, ACTG1, TUBG1, KIF5C, KIF2A, and CDK5 genes have been associated with these malformations. More recent studies have also established a relationship between lissencephaly, with or without associated microcephaly, corpus callosum dysgenesis as well as cerebellar hypoplasia, and at times, a morphological pattern consistent with polymicrogyria with mutations of several genes (TUBA1A, TUBA8, TUBB, TUBB2B, TUBB3, and DYNC1H1), regulating the synthesis and function of microtubule and centrosome key components and hence defined as tubulinopathies. MCD only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes and cause neurological and cognitive impairment that vary from severe to mild deficits. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous, and only in a small minority of patients, a definite genetic cause has been identified. Megalencephaly with normal cortex or polymicrogyria by MRI imaging, hemimegalencephaly and focal cortical dysplasia can all result from mutations in genes of the PI3K-AKT-mTOR pathway. Postzygotic mutations have been described for most MCD and can be limited to the dysplastic tissue in the less diffuse forms.
Collapse
Affiliation(s)
- Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Wash., USA
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Di Donato N, Kuechler A, Vergano S, Heinritz W, Bodurtha J, Merchant SR, Breningstall G, Ladda R, Sell S, Altmüller J, Bögershausen N, Timms AE, Hackmann K, Schrock E, Collins S, Olds C, Rump A, Dobyns WB. Update on the ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. Am J Med Genet A 2016; 170:2644-51. [PMID: 27240540 DOI: 10.1002/ajmg.a.37771] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 11/08/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome is caused by heterozygous missense mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1. Recently, we characterized the large cohort of 41 patients presenting with this condition. Our series contained 34 patients with mutations in ACTB and only nine with ACTG1 mutations. Here, we report on seven unrelated patients with six mutations in ACTG1-four novel and two previously reported. Only one of seven patients was clinically diagnosed with this disorder and underwent ACTB/ACTG1 targeted sequencing, four patients were screened as a part of the large lissencephaly cohort and two were tested with exome sequencing. Retrospectively, facial features were compatible with the diagnosis but significantly milder than previously reported in four patients, and non-specific in one. The pattern of malformations of cortical development was highly similar in four of six patients with available MRI images and encompassed frontal predominant pachygyria merging with the posterior predominant band heterotopia. Two remaining patients showed mild involvement consistent with bilaterally simplified gyration over the frontal lobes. Taken together, we expand the clinical spectrum of the ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome demonstrating the mild end of the facial and brain manifestations. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Samantha Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | | | - Joann Bodurtha
- Medical College of Virginia, Department of Human and Molecular Genetics, Richmond, Virginia
| | - Sabiha R Merchant
- Department of Pediatric Neurology, New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Galen Breningstall
- Department of Pediatric Neurology, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | - Roger Ladda
- Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | - Susan Sell
- Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | | | - Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Evelin Schrock
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carissa Olds
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Neurology, University of Washington, Seattle, Washington
| |
Collapse
|
47
|
Baraitser–Winter syndrome: An additional Egyptian patient with skeletal anomalies, bilateral iris and choroid colobomas, retinal hypoplasia and hypoplastic scrotum. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Abstract
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level. Yet, the differential actin isoform functions are still far from understood in detail. Biochemical studies on the different isoforms in pure form are just emerging, and investigations in cells have to deal with a complex and regulated system, including compensatory actin isoform expression.
Collapse
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| |
Collapse
|
49
|
Okamoto N, Miya F, Tsunoda T, Kato M, Saitoh S, Yamasaki M, Shimizu A, Torii C, Kanemura Y, Kosaki K. Targeted next-generation sequencing in the diagnosis of neurodevelopmental disorders. Clin Genet 2015; 88:288-92. [PMID: 25156961 DOI: 10.1111/cge.12492] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/04/2023]
Abstract
We developed a next-generation sequencing (NGS) based mutation screening strategy for neurodevelopmental diseases. Using this system, we screened 284 genes in 40 patients. Several novel mutations were discovered. Patient 1 had a novel mutation in ACTB. Her dysmorphic feature was mild for Baraitser-Winter syndrome. Patient 2 had a truncating mutation of DYRK1A. She lacked microcephaly, which was previously assumed to be a constant feature of DYRK1A loss of function. Patient 3 had a novel mutation in GABRD gene. She showed Rett syndrome like features. Patient 4 was diagnosed with Noonan syndrome with PTPN11 mutation. He showed complete agenesis of corpus callosum. We have discussed these novel findings.
Collapse
Affiliation(s)
- N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - F Miya
- Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - T Tsunoda
- Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - M Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - S Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Yamasaki
- Department of Pediatric Neurosurgery, Takatsuki General Hospital, Osaka, Japan
| | - A Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - C Torii
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Y Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - K Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Poirier K, Martinovic J, Laquerrière A, Cavallin M, Fallet-Bianco C, Desguerre I, Valence S, Grande-Goburghun J, Francannet C, Deleuze JF, Boland A, Chelly J, Bahi-Buisson N. Rare ACTG1 variants in fetal microlissencephaly. Eur J Med Genet 2015; 58:416-8. [PMID: 26188271 DOI: 10.1016/j.ejmg.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Heterozygous ACTG1 mutations are responsible for Baraitser-Winter cerebrofrontofacial syndrome which cortical malformation is characterized by pachygyria with frontal to occipital gradient of severity. We identified by whole exome sequencing in a cohort of 12 patients with prenatally diagnosed microlissencephaly, 2 foetal cases with missense mutations in the ACTG1 gene and in one case of living patient with typical Baraitser-Winter syndrome. Both foetuses and child exhibited microcephaly and facial dysmorphism consisting of microretrognatism, hypertelorism and low-set ears. Brain malformations included lissencephaly with an immature cortical plate, dysmorphic (2/3) or absent corpus callosum and vermian hypoplasia (2/3). Our results highlight the powerful diagnostic value of exome sequencing for patients with microlissencephaly, that may expand the malformation spectrum of ACTG1-related Baraitser-Winter cerebrofrontofacial syndrome and may suggest that ACTG1 could be added to the list of genes for assessing microlissencephaly.
Collapse
Affiliation(s)
- Karine Poirier
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, APHP, Antoine Beclere University Hospital, Clamart, France
| | - Annie Laquerrière
- Pathology Laboratory, Rouen University Hospital, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Mara Cavallin
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Institut Imagine-INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | | | - Isabelle Desguerre
- Pediatric Neurology, Necker Enfants Malades University Hospital, Paris, France
| | | | | | | | | | | | - Jamel Chelly
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Genetics and et Pathophysiology of Neurodeveloppemental and Epileptogenic Disorders, IGBMC, Illkirch, France
| | - Nadia Bahi-Buisson
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Institut Imagine-INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France.
| |
Collapse
|