1
|
Orsucci D, Tessa A, Caldarazzo Ienco E, Trovato R, Natale G, Bilancieri G, Giuntini M, Napolitano A, Salvetti S, Vista M, Santorelli FM. Clinical and genetic features of dominant Essential Tremor in Tuscany, Italy: FUS, CAMTA1, ATXN1 and beyond. J Neurol Sci 2024; 460:123012. [PMID: 38626532 DOI: 10.1016/j.jns.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Essential Tremor (ET) is one of the most common neurological disorders. In most instances ET is inherited as an autosomal dominant trait with age-related penetrance (virtually complete in advanced age); however, ET genetics remains elusive. The current study aims to identify possibly pathogenic genetic variants in a group of well-characterized ET families. METHODS 34 individuals from 14 families with dominant ET were clinically evaluated and studied by whole exome sequencing studies (after excluding trinucleotide expansion disorders). RESULTS Most patients had pure ET. In 4 families, exome studies could identify a genetic variant potentially able to significantly alter the protein structure (CADD >20, REVEL score > 0.25), shared by all the affected individuals (in CAMTA1, FUS, MYH14, SGCE genes). In another family there were two variants in dominant genes (PCDH9 and SQSTM1). Moreover, an interrupted "intermediate" trinucleotide expansion in ATXN1 ("SCA1") was identified in a further family with pure ET. CONCLUSION Combining our observations together with earlier reports, we can conclude that ET genes confirmed in at least two families to date include CAMTA1 and FUS (reported here), as well as CACNA1G, NOTCH2NLC and TENM4. Most cases of familial ET, inherited with an autosomal dominant inheritance, may result from "mild" variants of many different genes that, when affected by more harmful genetic variants, lead to more severe neurological syndromes (still autosomal dominant). Thus, ET phenotype may be the "mild", incomplete manifestation of many other dominant neurogenetic diseases. These findings further support evidence of genetic heterogeneity for such disease(s). Author's keywords: cerebellar ataxias, movement disorders, neurogenetics, rare neurological disorders, tremor.
Collapse
Affiliation(s)
- D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| | - A Tessa
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | | | - R Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Natale
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Bilancieri
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - M Giuntini
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - A Napolitano
- Unit of Neurology, Apuane Hospital, Massa Carrara, Italy
| | - S Salvetti
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | |
Collapse
|
2
|
Martuscello RT, Sivaprakasam K, Hartstone W, Kuo SH, Konopka G, Louis ED, Faust PL. Gene Expression Analysis of Laser-Captured Purkinje Cells in the Essential Tremor Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1166-1181. [PMID: 36242761 PMCID: PMC10359949 DOI: 10.1007/s12311-022-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is a common, progressive neurological disease characterized by an 8-12-Hz kinetic tremor. Despite its high prevalence, the patho-mechanisms of tremor in ET are not fully known. Through comprehensive studies in postmortem brains, we identified major morphological changes in the ET cerebellum that reflect cellular damage in Purkinje cells (PCs), suggesting that PC damage is central to ET pathogenesis. We previously performed a transcriptome analysis in ET cerebellar cortex, identifying candidate genes and several dysregulated pathways. To directly target PCs, we purified RNA from PCs isolated by laser capture microdissection and performed the first ever PC-specific RNA-sequencing analysis in ET versus controls. Frozen postmortem cerebellar cortex from 24 ETs and 16 controls underwent laser capture microdissection, obtaining ≥2000 PCs per sample. RNA transcriptome was analyzed via differential gene expression, principal component analysis (PCA), and gene set enrichment analyses (GSEA). We identified 36 differentially expressed genes, encompassing multiple cellular processes. Some ET (13/24) had greater dysregulation of these genes and segregated from most controls and remaining ETs in PCA. Characterization of genes/pathways enriched in this PCA and GSEA identified multiple pathway dysregulations in ET, including RNA processing/splicing, synapse organization/ion transport, and oxidative stress/inflammation. Furthermore, a different set of pathways characterized marked heterogeneity among ET patients. Our data indicate a range of possible mechanisms for the pathogenesis of ET. Significant heterogeneity among ET combined with dysregulation of multiple cellular processes supports the notion that ET is a family of disorders rather than one disease entity.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Karthigayini Sivaprakasam
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Whitney Hartstone
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 650 W 168th Street, BB302, New York, NY, USA
| | - Genevieve Konopka
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Suite NL9.114, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA.
| |
Collapse
|
3
|
d’Apolito M, Ceccarini C, Savino R, Adipietro I, di Bari I, Santacroce R, Curcetti M, D’Andrea G, Croce AI, Cesarano C, Polito AN, Margaglione M. A Novel KCNN2 Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:1380. [PMID: 37510285 PMCID: PMC10379157 DOI: 10.3390/genes14071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. AIM OF THE STUDY to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. METHODS Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. RESULTS The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (KCNN2) (NM_021614.3: c.1145G>A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The KCNN2 gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Savino
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna Nunzia Polito
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| |
Collapse
|
4
|
Liu F, Li S, Zhao X, Xue S, Li H, Yang G, Li Y, Wu Y, Zhu L, Chen L, Wu H. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants (Basel) 2023; 12:antiox12040806. [PMID: 37107182 PMCID: PMC10135177 DOI: 10.3390/antiox12040806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.
Collapse
|
5
|
Cao L, Gu L, Pu J, Lv D, Tian J, Yin X, Gao T, Song Z, Lu J, Zhao G, Zhang B, Yan Y, Zhao G. Association Analysis of 27 Single Nucleotide Polymorphisms in a Chinese Population with Essential Tremor. J Mol Neurosci 2023; 73:205-213. [PMID: 36929462 DOI: 10.1007/s12031-023-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Genetic factors play a major role in essential tremor (ET) pathogenesis. This study aimed to assess variant burden in ET-associated genes in a relatively large Chinese population cohort. We genotyped 27 single nucleotide polymorphisms (SNPs) previously reported to be associated with ET by multiplex PCR amplicon sequencing assay in 488 familial and sporadic ET patients and 514 healthy controls (HCs). Then, we performed allelic and genotypic association test by Pearson chi-square test or Fisher's exact test. A total of 1002 samples were included in our analysis, consisting of 488 ET patients and 514 sex and age-matched HCs. For rs10937625, the C allele was linked to increased risk of ET (P = 0.019, OR = 1.503, 95% CI = 1.172-1.928). The carriers of the C/C homozygote and C/T heterozygote showed a significantly higher risk of ET, compared with the T/T homozygote under the dominant model (P = 0.019, OR = 1.628, 95% CI = 1.221-2.170). There were no statistically significant differences in the frequency of other SNPs between ET patients and healthy controls. Rs10937625 (STK32B) may increase the risk of ET in eastern Chinese population.
Collapse
Affiliation(s)
- Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Matthews LG, Puryear CB, Correia SS, Srinivasan S, Belfort GM, Pan MK, Kuo SH. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10:462-483. [PMID: 36738196 PMCID: PMC10109288 DOI: 10.1002/acn3.51735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T-type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T-type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T-type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond.
Collapse
Affiliation(s)
| | - Corey B Puryear
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA
| | | | - Sharan Srinivasan
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.,Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, 10032, USA
| |
Collapse
|
7
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
8
|
Gironell A. Is essential tremor a disorder of primary GABA dysfunction? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:259-284. [PMID: 35750365 PMCID: PMC9446196 DOI: 10.1016/bs.irn.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysfunction in gamma-aminobutyric acid (GABA) neurotransmission has emerged as a prime suspect for the underlying neurochemical dysfunction in essential tremor (ET). This dysfunction has been termed the GABA hypothesis. We review findings to date supporting the 4 steps in this hypothesis in studies of cerebrospinal fluid, pathology, genetics, animal models, imaging, computational models, and human drugs, while not overlooking the evidence of negative studies and controversies. It remains to be elucidated whether reduced GABAergic tone is a primary contributing factor to ET pathophysiology, a consequence of altered Purkinje cell function, or even a result of Purkinje cell death. More studies are clearly needed to confirm both the neurodegenerative nature of ET and the reduction in GABA activity in the cerebellum. Also necessary is to test further therapies to enhance GABA transmission specifically focused on the cerebellar area.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Sant Pau Hospital, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Asif M, Mocanu ID, Abdullah U, Höhne W, Altmüller J, Makhdoom EUH, Thiele H, Baig SM, Nürnberg P, Graul-Neumann L, Hussain MS. A novel missense variant of SCN4A co-segregates with congenital essential tremor in a consanguineous Kurdish family. Am J Med Genet A 2021; 188:1251-1258. [PMID: 34913263 DOI: 10.1002/ajmg.a.62610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
Essential tremor (ET) is a neurological disorder characterized by bilateral and symmetric postural, isometric, and kinetic tremors of forelimbs produced during voluntary movements. To date, only a single SCN4A variant has been suggested to cause ET. In continuation of the previous report on the association between SCN4A and ET in a family from Spain, we validated the pathogenicity of a novel SCN4A variant and its involvement in ET in a second family affected by this disease. We recruited a Kurdish family with four affected members manifesting congenital tremor. Using whole-exome sequencing, we identified a novel missense variant in SCN4A, NM_000334.4:c.4679C>T; p.(Pro1560Leu), thus corroborating SCN4A's role in ET. The residue is highly conserved across vertebrates and the substitution is predicted to be pathogenic by various in silico tools. Western blotting and immunocytochemistry performed in cells derived from one of the patients showed reduced immunoreactivity of SCN4A as compared to control cells. The study provides supportive evidence for the role of SCN4A in the etiology of ET and expands the phenotypic spectrum of channelopathies to this neurological disorder.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ionut Dragos Mocanu
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ehtisham Ul Haq Makhdoom
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan.,Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan.,Pakistan Science Foundation (PSF), Islamabad, Pakistan.,Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Luitgard Graul-Neumann
- Charité-Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
10
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
11
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Álvarez I, Pastor P, Agúndez JAG. Genomic Markers for Essential Tremor. Pharmaceuticals (Basel) 2021; 14:ph14060516. [PMID: 34072005 PMCID: PMC8226734 DOI: 10.3390/ph14060516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
There are many reports suggesting an important role of genetic factors in the etiopathogenesis of essential tremor (ET), encouraging continuing the research for possible genetic markers. Linkage studies in families with ET have identified 4 genes/loci for familial ET, although the responsible gene(s) have not been identified. Genome-wide association studies (GWAS) described several variants in LINGO1, SLC1A2, STK32B, PPARGC1A, and CTNNA3, related with ET, but none of them have been confirmed in replication studies. In addition, the case-control association studies performed for candidate variants have not convincingly linked any gene with the risk for ET. Exome studies described the association of several genes with familial ET (FUS, HTRA2, TENM4, SORT1, SCN11A, NOTCH2NLC, NOS3, KCNS2, HAPLN4, USP46, CACNA1G, SLIT3, CCDC183, MMP10, and GPR151), but they were found only in singular families and, again, not found in other families or other populations, suggesting that some can be private polymorphisms. The search for responsible genes for ET is still ongoing.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain;
- Correspondence: ; Tel.: +34-636-96-83-95; Fax: +34-913-28-07-04
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Ignacio Álvarez
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - Pau Pastor
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
13
|
Diez-Fairen M, Houle G, Ortega-Cubero S, Bandres-Ciga S, Alvarez I, Carcel M, Ibañez L, Fernandez MV, Budde JP, Trotta JR, Tonda R, Chong JX, Bamshad MJ, Nickerson DA, Aguilar M, Tartari JP, Gironell A, García-Martín E, Agundez JA, Alonso-Navarro H, Jimenez-Jimenez FJ, Fernandez M, Valldeoriola F, Marti MJ, Tolosa E, Coria F, Pastor MA, Vilariño-Güell C, Rajput A, Dion PA, Cruchaga C, Rouleau GA, Pastor P. Exome-wide rare variant analysis in familial essential tremor. Parkinsonism Relat Disord 2020; 82:109-116. [PMID: 33279834 DOI: 10.1016/j.parkreldis.2020.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/08/2020] [Accepted: 11/21/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Essential tremor (ET) is one of the most common movement disorders. Despite its high prevalence and heritability, its genetic etiology remains elusive with only a few susceptibility genes identified and poorly replicated. Our aim was to find novel candidate genes involved in ET predisposition through whole exome sequencing. METHODS We studied eight multigenerational families (N = 40 individuals) with an autosomal-dominant inheritance using a comprehensive strategy combining whole exome sequencing followed by case-control association testing of prioritized variants in a separate cohort comprising 521 ET cases and 596 controls. We further performed gene-based burden analyses in an additional dataset comprising 789 ET patients and 770 healthy individuals to investigate whether there was an enrichment of rare deleterious variants within our candidate genes. RESULTS Fifteen variants co-segregated with disease status in at least one of the families, among which rs749875462 in CCDC183, rs535864157 in MMP10 and rs114285050 in GPR151 showed a nominal association with ET. However, we found no significant enrichment of rare variants within these genes in cases compared with controls. Interestingly, MMP10 protein is involved in the inflammatory response to neuronal damage and has been previously associated with other neurological disorders. CONCLUSIONS We prioritized a set of promising genes, especially MMP10, for further genetic and functional studies in ET. Our study suggests that rare deleterious coding variants that markedly increase susceptibility to ET are likely to be found in many genes. Future studies are needed to replicate and further infer biological mechanisms and potential disease causality for our identified genes.
Collapse
Affiliation(s)
- Monica Diez-Fairen
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Gabrielle Houle
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sara Ortega-Cubero
- Department of Neurology and Neurosurgery, Hospital Universitario de Burgos, Burgos, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Maria Carcel
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Laura Ibañez
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Budde
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Rémi Trotta
- Centre Nacional d'Anàlisis Genòmic (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain & Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raúl Tonda
- Centre Nacional d'Anàlisis Genòmic (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain & Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Hospital, Seattle, WA, 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Miquel Aguilar
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Juan P Tartari
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau and Sant Pau Biomedical Research Institute, Barcelona, 08026, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jose Ag Agundez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | | | | | - Manel Fernandez
- María de Maeztu Unit of Excellence, Institute of Neurosciences, University of Barcelona, MDM-2017-0729, Ministry of Science, Innovation and Universities, Spain; Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Francesc Valldeoriola
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Jose Marti
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Eduard Tolosa
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Francisco Coria
- Clinic for Nervous Disorders, Service of Neurology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Maria A Pastor
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alex Rajput
- Saskatchewan Movement Disorders Program, University of Saskatchewan/Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, H3A 2B4, Quebec, Canada
| | - Carlos Cruchaga
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, H3A 2B4, Quebec, Canada
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain.
| |
Collapse
|
14
|
Liang D, Zhao Y, Pan H, Zhou X, He R, Zhou X, Yang J, Wang Y, Zhou X, Zhou Z, Xu Q, Yan X, Li J, Guo J, Tang B, Sun Q. Rare variant analysis of essential tremor-associated genes in early-onset Parkinson's disease. Ann Clin Transl Neurol 2020; 8:119-125. [PMID: 33185019 PMCID: PMC7818165 DOI: 10.1002/acn3.51248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Parkinson’s disease (PD) and essential tremor (ET) are the two most common movement disorders. A significant overlap in clinical features, epidemiology, imaging, and pathology suggests that PD and ET may also share common genetic risk factors. Previous studies have only assessed a limited number of ET‐associated genes in PD patients and vice versa. Consequently, the genetic association between PD and ET remains incompletely characterized. In this study, we systematically investigated a potential association between rare coding variants in ET‐associated genes and PD, in a relatively large Chinese population cohort. Methods To investigate the genetic association between ET and PD, we performed the sequence kernel association testing (SKAT‐O) to explore the variant burden of 33 ET‐associated genes, using whole‐exome sequencing (WES) data from 1494 early‐onset PD (EOPD) patients and 1357 control subjects from mainland China. Results We report that rare loss‐of‐function and damaging missense variants of TNEM4 are suggestively associated with EOPD (P = 0.026), damaging missense variants of TNEM4 alone are also suggestively associated with EOPD (P = 0.032). No other rare damaging variants in ET‐related genes were significantly associated with EOPD. Interpretation This is the first systematic analysis of ET‐associated genes in EOPD. The suggestive association between TNEM4 and EOPD provides new evidence for a genetic link between ET and PD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxia Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| | - Jinchen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| |
Collapse
|
15
|
Sailani MR, Jahanbani F, Abbott CW, Lee H, Zia A, Rego S, Winkelmann J, Hopfner F, Khan TN, Katsanis N, Müller SH, Berg D, Lyman KM, Mychajliw C, Deuschl G, Bernstein JA, Kuhlenbäumer G, Snyder MP. Candidate variants in TUB are associated with familial tremor. PLoS Genet 2020; 16:e1009010. [PMID: 32956375 PMCID: PMC7529431 DOI: 10.1371/journal.pgen.1009010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/01/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET.
Collapse
Affiliation(s)
- M. Reza Sailani
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Charles W. Abbott
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Amin Zia
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Shannon Rego
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Kiel University, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tahir N. Khan
- Center for Human Disease Modeling, Duke University, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, United States of America
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | | | - Daniela Berg
- Department of Neurology, Kiel University, Germany
- Department of Neurology, Universitätsklinikum Tübingen, Germany
| | - Katherine M. Lyman
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Christian Mychajliw
- University Hospital Tübingen, Department of Psychiatry and Psychotherapy, Tübingen, Germany
| | | | - Jonathan A. Bernstein
- Department of Pediatrics, Stanford University, Stanford, CA, United States of America
| | | | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
16
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
17
|
Ng ASL, Lim WK, Xu Z, Ong HL, Tan YJ, Sim WY, Ng EYL, Teo JX, Foo JN, Lim TCC, Yu WY, Chan LL, Lee HY, Chen Z, Lim EW, Ting SKS, Prakash KM, Tan LCS, Yi Z, Tan EK. NOTCH2NLC GGC Repeat Expansions Are Associated with Sporadic Essential Tremor: Variable Disease Expressivity on Long-Term Follow-up. Ann Neurol 2020; 88:614-618. [PMID: 32495371 DOI: 10.1002/ana.25803] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
We screened 662 subjects comprising 462 essential tremor (ET) subjects (285 sporadic, 125 with family history, and 52 probands from well-characterized ET pedigrees) and 200 controls and identified pathogenic NOTCH2NLC GGC repeat expansions in 4 sporadic ET patients. Two patients were followed up for >1 decade; one with 90 repeats remained an ET phenotype that did not evolve after 40 years, whereas another patient with 107 repeats developed motor symptoms and cognitive impairment after 8 to 10 years. Neuroimaging in this patient revealed severe leukoencephalopathy; diffusion-weighted imaging hyperintensity in the corticomedullary junction and skin biopsy revealed intranuclear inclusions suggestive of intranuclear inclusion body disease (NIID). No GGC repeats of >60 units were detected in familial ET cases and controls, although 4 ET patients carried 47 to 53 "intermediate" repeats. NOTCH2NLC GGC repeat expansions can be associated with sporadic ET. Carriers presenting with a pure ET phenotype may or may not convert to NIID up to 4 decades after initial tremor onset. ANN NEUROL 2020;88:614-618.
Collapse
Affiliation(s)
- Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth/Duke-NUS Institute of Precision Medicine, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Helen L Ong
- Department of Clinical and Translational Research, Singapore General Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Wei Ying Sim
- Department of Clinical and Translational Research, Singapore General Hospital, Singapore
| | - Ebonne Y L Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Jing Xian Teo
- SingHealth/Duke-NUS Institute of Precision Medicine, Singapore
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tchoyoson C C Lim
- Department of Neuroradiology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Wai-Yung Yu
- Department of Neuroradiology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Ling-Ling Chan
- Department of Radiology, Singapore General Hospital, Singapore
| | - Hwei-Yee Lee
- Department of Pathology, Tan Tock Seng Hospital, Singapore
| | - Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Ee-Wei Lim
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Simon K S Ting
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Kumar M Prakash
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Zhao Yi
- Department of Clinical and Translational Research, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
18
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
19
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
20
|
Abstract
Essential tremor (ET) is a neurological movement disorder characterised by bilateral limb kinetic/postural tremor, with or without tremor in other body parts including head, voice and lower limbs. Since no causative genes for ET have been identified, it is likely that the disorder occurs as a result of complex genetic factors interacting with various cellular and environmental factors that can result in abnormal function of circuitry involving the cerebello-thalamo-cortical pathway. Genetic analyses have uncovered at least 14 loci and 11 genes that are related to ET, as well as various risk or protective genetic factors. Limitations in ET genetic analyses include inconsistent disease definition, small sample size, varied ethnic backgrounds and many other factors that may contribute to paucity of relevant genetic data in ET. Genetic analyses, coupled with functional and animal studies, have led to better insights into possible pathogenic mechanisms underlying ET. These genetic studies may guide the future development of genetic testing and counselling, and specific, pathogenesis-targeted, therapeutic strategies.
Collapse
|
21
|
Sun QY, Xu Q, Tian Y, Hu ZM, Qin LX, Yang JX, Huang W, Xue J, Li JC, Zeng S, Wang Y, Min HX, Chen XY, Wang JP, Xie B, Liang F, Zhang HN, Wang CY, Lei LF, Yan XX, Xu HW, Duan RH, Xia K, Liu JY, Jiang H, Shen L, Guo JF, Tang BS. Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain 2019; 143:222-233. [PMID: 31819945 DOI: 10.1093/brain/awz372] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Essential tremor is one of the most common movement disorders. Despite its high prevalence and heritability, the genetic aetiology of essential tremor remains elusive. Up to now, only a few genes/loci have been identified, but these genes have not been replicated in other essential tremor families or cohorts. Here we report a genetic study in a cohort of 197 Chinese pedigrees clinically diagnosed with essential tremor. Using a comprehensive strategy combining linkage analysis, whole-exome sequencing, long-read whole-genome sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal GGC repeat expansion in the 5′ region of the NOTCH2NLC gene that co-segregated with disease in 11 essential tremor families (5.58%) from our cohort. Clinically, probands that had an abnormal GGC repeat expansion were found to have more severe tremor phenotypes, lower activities of daily living ability. Obvious genetic anticipation was also detected in these 11 essential tremor-positive families. These results indicate that abnormal GGC repeat expansion in the 5′ region of NOTCH2NLC gene is associated with essential tremor, and provide strong evidence that essential tremor is a family of diseases with high clinical and genetic heterogeneities.
Collapse
Affiliation(s)
- Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Tian
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Mao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Li-Xia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin-Xia Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Xiao-Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Pu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Hai-Nan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Fang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Wei Xu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran-Hui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jing-Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
23
|
Martuscello RT, Kerridge CA, Chatterjee D, Hartstone WG, Kuo SH, Sims PA, Louis ED, Faust PL. Gene expression analysis of the cerebellar cortex in essential tremor. Neurosci Lett 2019; 721:134540. [PMID: 31707044 DOI: 10.1016/j.neulet.2019.134540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Essential tremor (ET) is one of the most common neurological diseases, with a central feature of an 8-12 Hz kinetic tremor. While previous postmortem studies have identified a cluster of morphological changes in the ET cerebellum centered in/around the Purkinje cell (PC) population, including a loss of PCs in some studies, the underlying molecular mechanisms for these changes are not clear. As genomic studies of ET patients have yet to identify major genetic contributors and animal models that fully recapitulate the human disease do not yet exist, the study of human tissue is currently the most applicable method to gain a mechanistic insight into ET disease pathogenesis. To begin exploration of an underlying molecular source of ET disease pathogenesis, we have performed the first transcriptomic analysis by direct sequencing of RNA from frozen cerebellar cortex tissue in 33 ET patients compared to 21 normal controls. Principal component analysis showed a heterogenous distribution of the expression data in ET patients that only partially overlapped with control patients. Differential expression analysis identified 231 differentially expressed gene transcripts ('top gene hits'), a subset of which has defined expression profiles in the cerebellum across neuronal and glial cell types but a largely unknown relationship to cerebellar function and/or ET pathogenesis. Gene set enrichment analysis (GSEA) identified dysregulated pathways of interest and stratified dysregulation among ET cases. By GSEA and mining curated databases, we compiled major categories of dysregulated processes and clustered string networks of known interacting proteins. Here we demonstrate that these 'top gene hits' contribute to regulation of four main biological processes, which are 1) axon guidance, 2) microtubule motor activity, 3) endoplasmic reticulum (ER) to Golgi transport and 4) calcium signaling/synaptic transmission. The results of our transcriptomic analysis suggest there is a range of different processes involved among ET cases, and draws attention to a particular set of genes and regulatory pathways that provide an initial platform to further explore the underlying biology of ET.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Chloë A Kerridge
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Debotri Chatterjee
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Sheng-Han Kuo
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA.
| | - Peter A Sims
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, 3960 Broadway, RM208, New York, NY, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, 1150 St. Nicholas Ave., New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, 15 York Street, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| |
Collapse
|
24
|
Odgerel Z, Sonti S, Hernandez N, Park J, Ottman R, Louis ED, Clark LN. Whole genome sequencing and rare variant analysis in essential tremor families. PLoS One 2019; 14:e0220512. [PMID: 31404076 PMCID: PMC6690583 DOI: 10.1371/journal.pone.0220512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022] Open
Abstract
Essential tremor (ET) is one of the most common movement disorders. The etiology of ET remains largely unexplained. Whole genome sequencing (WGS) is likely to be of value in understanding a large proportion of ET with Mendelian and complex disease inheritance patterns. In ET families with Mendelian inheritance patterns, WGS may lead to gene identification where WES analysis failed to identify the causative single nucleotide variant (SNV) or indel due to incomplete coverage of the entire coding region of the genome, in addition to accurate detection of larger structural variants (SVs) and copy number variants (CNVs). Alternatively, in ET families with complex disease inheritance patterns with gene x gene and gene x environment interactions enrichment of functional rare coding and non-coding variants may explain the heritability of ET. We performed WGS in eight ET families (n = 40 individuals) enrolled in the Family Study of Essential Tremor. The analysis included filtering WGS data based on allele frequency in population databases, rare SNV and indel classification and association testing using the Mixed-Model Kernel Based Adaptive Cluster (MM-KBAC) test. A separate analysis of rare SV and CNVs segregating within ET families was also performed. Prioritization of candidate genes identified within families was performed using phenolyzer. WGS analysis identified candidate genes for ET in 5/8 (62.5%) of the families analyzed. WES analysis in a subset of these families in our previously published study failed to identify candidate genes. In one family, we identified a deleterious and damaging variant (c.1367G>A, p.(Arg456Gln)) in the candidate gene, CACNA1G, which encodes the pore forming subunit of T-type Ca(2+) channels, CaV3.1, and is expressed in various motor pathways and has been previously implicated in neuronal autorhythmicity and ET. Other candidate genes identified include SLIT3 which encodes an axon guidance molecule and in three families, phenolyzer prioritized genes that are associated with hereditary neuropathies (family A, KARS, family B, KIF5A and family F, NTRK1). Functional studies of CACNA1G and SLIT3 suggest a role for these genes in ET disease pathogenesis.
Collapse
Affiliation(s)
- Zagaa Odgerel
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Shilpa Sonti
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Nora Hernandez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Jemin Park
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Ruth Ottman
- G.H Sergievsky Center, Columbia University, New York, NY, United States of America
- Department of Neurology, College of Physicians and Surgeons, Columbia University New York, NY, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, NY, United States of America
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, United States of America
| | - Elan D. Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States of America
| | - Lorraine N. Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| |
Collapse
|
25
|
Chen H, Yuan L, Song Z, Deng X, Yang Z, Gong L, Zi X, Deng H. Genetic Analysis of LRRK1 and LRRK2 Variants in Essential Tremor Patients. Genet Test Mol Biomarkers 2018; 22:398-402. [PMID: 29812962 DOI: 10.1089/gtmb.2017.0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Essential tremor (ET) is one of the most common adult-onset movement disorders. ET and Parkinson's disease (PD) overlap clinically and pathologically, which prompted this investigation into the association of PD risk variants in ET patients. This study was designed to explore the role of variants of two PD-related genes LRRK1 and LRRK2 in a Han Chinese ET population. MATERIALS AND METHODS Genetic analysis of LRRK1, rs2924835, and LRRK2, rs34594498, rs34410987, and rs33949390 variants was conducted on 200 Han Chinese patients with ET and 434 ethnically matched normal controls. RESULTS No statistically significant differences were identified in either genotypic or allelic frequencies of variants between the ET patients and the control cohort (all p > 0.05). Haplotype analysis of three LRRK2 variants (rs34594498, rs34410987, and rs33949390) showed no haplotypes displayed an association with ET risk (all p > 0.05). CONCLUSIONS The data suggest that LRRK1 variant (rs2924835) and LRRK2 variants (rs34594498, rs34410987, and rs33949390) are not associated with ET in this Han Chinese population.
Collapse
Affiliation(s)
- Han Chen
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Lamei Yuan
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Zhi Song
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Xiong Deng
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Zhijian Yang
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Lina Gong
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Xiaohong Zi
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hao Deng
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China .,2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
26
|
Abstract
Essential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.1137 T > A, p.(D379E) in an electrically silent voltage-gated K+ channel α-subunit, Kv9.2, in a family with ET, that modulates the activity of Kv2 channels. We have produced transgenic Drosophila lines that express either the human wild type Kv9.2 (hKv9.2) or the ET causing mutant Kv9.2 (hKv9.2-D379E) subunit in all neurons. We show that the hKv9.2 subunit modulates activity of endogenous Drosophila K+ channel Shab. The mutant hKv9.2-D379E subunit showed significantly higher levels of Shab inactivation and a higher frequency of spontaneous firing rate consistent with neuronal hyperexcitibility. We also observed behavioral manifestations of nervous system dysfunction including effects on night time activity and sleep. This functional data further supports the pathogenicity of the KCNS2 (p.D379E) mutation, consistent with our prior observations including co-segregation with ET in a family, a likely pathogenic change in the channel pore domain and absence from population databases. The Drosophila hKv9.2 transgenic model recapitulates several features of ET and may be employed to advance our understanding of ET disease pathogenesis.
Collapse
|
27
|
Abstract
BACKGROUND Tremor is a symptom of many diseases and can constitute a disease of its own: essential tremor. OBJECTIVE The genetics of essential tremor and differential diagnosis of monogenic diseases with the symptom tremor. MATERIAL AND METHODS Literature search and search of clinical genetics databases, e.g. OMIM, GeneReviews, MDSGene and the German Neurological Society (DGN) guidelines. RESULTS The genetics of essential tremor remain unresolved in spite of large, adequately powered studies. Tremor is a symptom of differential diagnostic value in many movement disorders. A slight tremor might have been missed or not reported in many descriptions of movement disorders. CONCLUSION Progress in the genetics of essential tremor probably requires a more detailed phenotyping allowing stratification into phenotypically defined subgroups. Tremor should always be included in the examination and description of movement disorders even if tremor is not a cardinal symptom. Tremor might be helpful in the differential diagnosis of hereditary dystonia, hereditary ataxia, spastic paraplegia and other movement disorders.
Collapse
Affiliation(s)
- G Kuhlenbäumer
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland.
| | - F Hopfner
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland
| |
Collapse
|
28
|
Liu W, Geng L, Chen Y. MiR-19b alleviates MPP +-induced neuronal cytotoxicity via targeting the HAPLN4/MAPK pathway in SH-SY5Y cells. RSC Adv 2018; 8:10706-10714. [PMID: 35540477 PMCID: PMC9078925 DOI: 10.1039/c7ra13406a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background: miR-19b has been reported to be involved in nervous system disease including Parkinson's disease (PD). However its molecular basis has not been exhaustively elucidated. Materials and Methods: SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to construct PD model in vitro. RT-qPCR was performed to detect the expression of miR-19b and proteoglycan link protein 4 (HAPLN4) mRNA. Western blot analysis was used to measure the level of HAPLN4 and mitogen activated protein kinase (MAPK)-related protein. Cell viability and apoptosis were determined by MTT and flow cytometry. Commercial ELISA kits were applied to quantify caspase-3 activity, lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β). Dual-luciferase reporter assay was applied to assess the relationship between miR-19b and HAPLN4. Results: miR-19b was downregulated in MPP+-induced SH-SY5Y cells. miR-19b overexpression reversed MPP+-induced suppression of cell viability and promotion of cell apoptosis in SH-SY5Y cells. Moreover, miR-19b alleviated MPP+-induced cytotoxicity of SH-SY5Y cells, embodied by the decrease of LDH release, caspase-3 activity, ROS expression, TNF-α and IL-1β secretion, as well as the increase of SOD level. HAPLN4 was identified as a direct target of miR-19b and miR-19b repressed HAPLN4 expression in a post-transcriptional manner. In addition, miR-19b-mediated anti-apoptosis effect was abated following HAPLN4 expression restoration in MPP+-induced SH-SY5Y cells. Furthermore, MAPK signaling participated in miR-19b/HAPLN4-mediated regulation in MPP+-treated SH-SY5Y cells. Conclusion: the neuroprotective effect of miR-19b might be mediated by HAPLN4/MAPK pathway in SH-SY5Y cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University Kaifeng 475000 China
| | - Lijiao Geng
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| | - Yong Chen
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| |
Collapse
|
29
|
Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord 2018; 51:24-29. [PMID: 29482925 DOI: 10.1016/j.parkreldis.2018.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/10/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Essential tremor (ET) is heterogeneous in nature and cases may be subdivided based on clinical features. ET patients may thus be subdivided by age of onset, family history of tremor, and presence of head tremor. We recently described climbing fiber-Purkinje cell (CF-PC) synaptic abnormalities in ET; however, these CF pathological features have not been studied across different ET subtypes. OBJECTIVES To explore whether these CF-PC synaptic abnormalities differ across ET subtypes. METHODS We studied two climbing fiber (CF-PC) synaptic pathologies (CF synaptic density and percentage of CFs in the parallel fiber [PF] territory) in the cerebella of 60 ET cases with a range of clinical presentations and 30 age-matched controls. RESULTS Compared to controls, ET cases had lower CF synaptic density and a higher percentage of CFs in the PF territory. ET cases with tremor onset <50 years and tremor onset ≥ 50 years did not differ significantly with respect to CF synaptic density and percentage of CFs in the PF territory. Similar results were found when comparing familial vs. sporadic ET cases, and ET cases with head tremor vs. those without head tremor. Among all ET cases, lower CF synaptic density was associated with lower PC counts and higher torpedo counts. In addition, higher percentage of CFs in the PF territory was associated with lower PC counts and higher torpedo counts. CONCLUSIONS These findings support the notion that changes in the distribution of CF-PC synapses are broadly part of the neurodegenerative process in the ET cerebellum.
Collapse
|
30
|
Louis ED, Kuo SH, Wang J, Tate WJ, Pan MK, Kelly GC, Gutierrez J, Cortes EP, Vonsattel JPG, Faust PL. Cerebellar Pathology in Familial vs. Sporadic Essential Tremor. THE CEREBELLUM 2018; 16:786-791. [PMID: 28364185 DOI: 10.1007/s12311-017-0853-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Familial and sporadic essential tremor (ET) cases differ in several respects. Whether they differ with respect to cerebellar pathologic changes has yet to be studied. We quantified a broad range of postmortem features (Purkinje cell (PC) counts, PC axonal torpedoes, a host of associated axonal changes, heterotopic PCs, and hairy basket ratings) in 60 ET cases and 30 controls. Familial ET was defined using both liberal criteria (n = 27) and conservative criteria (n = 20). When compared with controls, ET cases had lower PC counts, more torpedoes, more heterotopic PCs, a higher hairy basket rating, an increase in PC axonal collaterals, an increase in PC thickened axonal profiles, and an increase in PC axonal branching. Familial and sporadic ET had similar postmortem changes, with few exceptions, regardless of the definition criteria. The PC counts were marginally lower in familial than sporadic ET (respective p values = 0.059 [using liberal criteria] and 0.047 [using conservative criteria]). The PC thickened axonal profile count was marginally lower in familial ET than sporadic ET (respective p values = 0.037 [using liberal criteria] and 0.17 [using conservative criteria]), and the PC axonal branching count was marginally lower in familial than sporadic ET (respective p values = 0.045 [using liberal criteria] and 0.079 [using conservative criteria]). After correction for multiple comparisons, however, there were no significant differences. Overall, familial and sporadic ET cases share very similar cerebellar postmortem features. These data indicate that pathological changes in the cerebellum are a part of the pathophysiological cascade of events in both forms of ET.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT, 06520-8018, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA. .,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - William J Tate
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Ming-Kai Pan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Medical Research, National Taiwan University, Taipei, Taiwan
| | - Geoffrey C Kelly
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jesus Gutierrez
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT, 06520-8018, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
31
|
Cristal AD, Chen KP, Hernandez NC, Factor-Litvak P, Clark LN, Ottman R, Louis ED. Knowledge about Essential Tremor: A Study of Essential Tremor Families. Front Neurol 2018; 9:27. [PMID: 29434571 PMCID: PMC5790790 DOI: 10.3389/fneur.2018.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 01/17/2023] Open
Abstract
Background Essential tremor (ET) is among the most common neurological diseases and it often runs in families. How knowledgeable ET patients and their families are about their disease has been the subject of surprisingly little scholarship. Methods To fill this gap in knowledge, we administered a comprehensive 32-item survey (i.e., questions about etiology, pathophysiology, symptoms and signs, natural history, and treatments) to 427 participants, including 76 ET probands, 74 affected relatives (AFRs), 238 unaffected relatives, and 39 spouses of unaffected relatives, all of whom were participating in two ET family studies. We hypothesized that there would be gaps in knowledge about ET and furthermore, that probands and AFRs would be the most knowledgeable, followed by unaffected relatives and then spouses of unaffected relatives, who would be the least knowledgeable. Results Overall, ET patients lacked knowledge about their disease. Nearly one-third of probands answered "yes" or "do not know" to the question, "is ET the same or different from the type of tremor that many normal people can get when they become old and frail?" A similar proportion did not know whether children could get ET or they responded "no." Nearly one-fourth of affecteds (i.e., probands and AFRs) did not know whether or to what degree (e.g., very well, moderately well, not well) the symptoms of ET could be medically controlled, and 38.0% either reported that there was no brain surgery for ET or reported that they did not know. Nearly 17% of affecteds did not endorse genes as a cause for ET, which was surprising given the fact that this was a family study of ET. Probands and AFRs were the most knowledgeable, followed by unaffected relatives. Spouses of unaffected relatives were the least knowledgeable. Conclusion We targeted a large group of ET patients and their families, as this group is perhaps most likely to be informed about the disease. ET patients and their AFRs were more knowledgeable about the features of ET than their family members without ET. Overall, however, knowledge of ET was very limited and this lack of knowledge encompassed all aspects of the disease including its underlying causes, the nature of the symptoms and signs, its natural history and its treatment. Further ET awareness education and programs targeting both families of ET patients and the public would help alleviate this gap in knowledge.
Collapse
Affiliation(s)
- Ashley D Cristal
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Karen P Chen
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Nora Cristina Hernandez
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lorraine N Clark
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Ruth Ottman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States.,G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Epidemiology, New York State Psychiatric Institute, New York, NY, United States
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
32
|
Hodul M, Dahlberg CL, Juo P. Function of the Deubiquitinating Enzyme USP46 in the Nervous System and Its Regulation by WD40-Repeat Proteins. Front Synaptic Neurosci 2017; 9:16. [PMID: 29302259 PMCID: PMC5735123 DOI: 10.3389/fnsyn.2017.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin regulates synapse development and synaptic transmission. Much progress has been made investigating the role of ubiquitin ligases at the synapse, however very little is known about the deubiquitinating enzymes (DUBs) which remove ubiquitin from target proteins. Although there are far fewer DUBs than ubiquitin ligases encoded by the human genome, it is becoming clear that DUBs have very specific physiological functions, suggesting that DUB activity is tightly regulated in vivo. Many DUBs function as part of larger protein complexes, and multiple regulatory mechanisms exist to control the expression, localization and catalytic activity of DUBs. In this review article, we focus on the role of the DUB USP46 in the nervous system, and illustrate potential mechanisms of regulating DUBs by describing how USP46 is regulated by two WD40-repeat (WDR) proteins, WDR48/UAF1 and WDR20, based on recent structural studies and genetic analyses in vivo.
Collapse
Affiliation(s)
- Molly Hodul
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States.,Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| | - Caroline L Dahlberg
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
33
|
Hopfner F, Deuschl G. Is essential tremor a single entity? Eur J Neurol 2017; 25:71-82. [DOI: 10.1111/ene.13454] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- F. Hopfner
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| | - G. Deuschl
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| |
Collapse
|