1
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
2
|
Najafi A, Tasharrofi B, Zandsalimi F, Rasulinezhad M, Ghahvechi Akbari M, Zamani G, Ashrafi MR, Heidari M. Spinal Muscular Atrophy with Progressive Myoclonic Epilepsy (SMA-PME): three new cases and review of the mutational spectrum. Ital J Pediatr 2023; 49:64. [PMID: 37280710 DOI: 10.1186/s13052-023-01474-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) could be classified as 5q and non-5q, based on the chromosomal location of causative genes. A rare form of non-5q SMA is an autosomal-recessive condition called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), phenotypically characterized by myoclonic and generalized seizures with progressive neurological deterioration. SMA-PME is a clinically heterogeneous disorder that arises from biallelic pathogenic variants in ASAH1 gene. METHODS Following clinical and primary laboratory assessments, whole-exome sequencing was performed to detect the disease-causing variants in three cases of SMA-PME from different families. Also, Multiplex ligation-dependent probe amplification (MLPA) was employed for determining the copy numbers of SMN1 and SMN2 genes to rule out 5q SMA. RESULTS Exome sequencing revealed two different homozygous missense mutations (c.109 C > A [p.Pro37Thr] or c.125 C > T [p.Thr42Met]) in exon 2 of the ASAH1 gene in the affected members of the families. Sanger sequencing of the other family members showed the expected heterozygous carriers. In addition, no clinically relevant variant was identified in patients by MLPA. CONCLUSION This study describes two different ASAH1 mutations and the clinical picture of 3 SMA-PME patients. In addition, previously reported mutations have been reviewed. This study could help to fortify the database of this rare disease with more clinical and genomic data.
Collapse
Affiliation(s)
- Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Pediatric Neurology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Zamani
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nagree MS, Rybova J, Kleynerman A, Ahrenhoerster CJ, Saville JT, Xu T, Bachochin M, McKillop WM, Lawlor MW, Pshezhetsky AV, Isaeva O, Budde MD, Fuller M, Medin JA. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun Biol 2023; 6:560. [PMID: 37231125 DOI: 10.1038/s42003-023-04932-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
| | - TianMeng Xu
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | | | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew D Budde
- Clement J. Zablocki Veteran's Affairs Medical Center, Milwaukee, WI, 53295, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|
6
|
Lee MM, McDowell GSV, De Vivo DC, Friedman D, Berkovic SF, Spanou M, Dinopoulos A, Grand K, Sanchez‐Lara PA, Allen‐Sharpley M, Warman‐Chardon J, Solyom A, Levade T, Schuchman EH, Bennett SAL, Dyment DA, Pearson TS. The clinical spectrum of SMA-PME and in vitro normalization of its cellular ceramide profile. Ann Clin Transl Neurol 2022; 9:1941-1952. [PMID: 36325744 PMCID: PMC9735369 DOI: 10.1002/acn3.51687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C > T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A > C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells.
Collapse
Affiliation(s)
- Michelle M. Lee
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Graeme S. V. McDowell
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| | - Darryl C. De Vivo
- Departments of Neurology and PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Daniel Friedman
- Department of NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneHeidelbergVictoriaAustralia
| | - Maria Spanou
- Pediatric Neurology Division, 3rd Department of PediatricsAttikon University HospitalAthensGreece
| | - Argirios Dinopoulos
- Pediatric Neurology Division, 3rd Department of PediatricsAttikon University HospitalAthensGreece
| | - Katheryn Grand
- Department of PediatricsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | - Jodi Warman‐Chardon
- Department of Medicine (Neurology)Ottawa Hospital Research InstituteOttawaOntarioCanada,Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | | | - Thierry Levade
- Laboratoire de Biochimie MétaboliqueCHU Toulouse, INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier ToulouseToulouseFrance
| | - Edward H. Schuchman
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| | - David A. Dyment
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Toni S. Pearson
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA,Departments of Neurology and PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
7
|
Five patients with Spinal muscular atrophy-progressive myoclonic epilepsy (SMA-PME): a novel pathogenic variant, treatment and review of the literature. Neuromuscul Disord 2022; 32:806-810. [DOI: 10.1016/j.nmd.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
|
8
|
Puma A, Ezaru A, Cavalli M, Villa L, Torre F, Biancalana V, Levade T, Grecu N, Sacconi S. A case of ASAH1-related pure SMA evolving into adult-onset Farber disease. Clin Genet 2021; 100:234-235. [PMID: 34240417 DOI: 10.1111/cge.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Angela Puma
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France.,Faculty of Medicine, UMR7370 CNRS, LP2M, Labex ICST, Université Nice Côte d'Azur, Nice, France
| | - Andra Ezaru
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France
| | - Michele Cavalli
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France
| | - Luisa Villa
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France
| | - Federico Torre
- Department of Radiology, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Valérie Biancalana
- Laboratoire de Diagnostic Génétique, Centre Hospitalier Universitaire de Strasbourg-Hôpital Civil, Strasbourg Cedex, France
| | - Thierry Levade
- Laboratoire de Biochimie, Pôle Biologie, Institut Fédératif de Biologie, Toulouse, France
| | - Nicolae Grecu
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France.,Sectia Clinica Neurologie, Spitalul Universitar de Urgenta Bucuresti, Bucharest, Romania
| | - Sabrina Sacconi
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique et Muscle, Hôpital Pasteur 2, Nice, France.,Institut National de la Santé et de la Recherche Médicale, Institute for Research on Cancer and Aging, Université Côte d'Azur, Centre National de la Recherche Scientifique, Nice, France
| |
Collapse
|
9
|
Mahmoud IG, Elmonem MA, Zaki MS, Ramadan A, Al-Menabawy NM, El-Gamal A, Mansour L, Issa MY, Abdel-Hamid MS, Abdel-Hady S, Khalifa I, Ibrahim A, Solyom A, Rolfs A, Selim L. ASAH1-related disorders: Description of 15 novel pediatric patients and expansion of the clinical phenotype. Clin Genet 2020; 98:598-605. [PMID: 32875576 DOI: 10.1111/cge.13834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/27/2022]
Abstract
Acid ceramidase deficiency is an orphan lysosomal disorder caused by ASAH1 pathogenic variants and presenting with either Farber disease or spinal muscle atrophy with progressive myoclonic epilepsy (SMA-PME). Phenotypic and genotypic features are rarely explored beyond the scope of case reports. Furthermore, the new biomarker C26-Ceramide requires validation in a clinical setting. We evaluated the clinical, biomarker and genetic spectrum of 15 Egyptian children from 14 unrelated families with biallelic pathogenic variants in ASAH1 (12 Farber and 3 SMA-PME). Recruited children were nine females/six males ranging in age at diagnosis from 13 to 118 months. We detected ASAH1 pathogenic variants in all 30 alleles including three novel variants (c.1126A>G (p.Thr376Ala), c.1205G>A (p.Arg402Gln), exon-5-deletion). Both total C26-Ceramide and its trans- isomer showed 100% sensitivity for the detection of ASAH1-related disorders in tested patients. A 10-year-old girl with the novel variant c.1205G>A (p.Arg402Gln) presented with a new peculiar phenotype of PME without muscle atrophy. We expanded the phenotypic spectrum of ASAH1-related disorders and validated the biomarker C26-Ceramide for supporting diagnosis in symptomatic patients.
Collapse
Affiliation(s)
- Iman G Mahmoud
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Elmonem
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Giza, Egypt
| | - Areef Ramadan
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nihal M Al-Menabawy
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya El-Gamal
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lobna Mansour
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Giza, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Giza, Egypt
| | - Sawsan Abdel-Hady
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman Khalifa
- Pediatrics Department, Helwan University, Cairo, Egypt
| | - Ahmed Ibrahim
- Pediatrics Department, Suez Canal University, Ismailia, Egypt
| | | | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical-Centre and Centogene AG, Rostock, Germany
| | - Laila Selim
- Pediatrics Department, Neurology and Metabolic division, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Elsea SH, Solyom A, Martin K, Harmatz P, Mitchell J, Lampe C, Grant C, Selim L, Mungan NO, Guelbert N, Magnusson B, Sundberg E, Puri R, Kapoor S, Arslan N, DiRocco M, Zaki M, Ozen S, Mahmoud IG, Ehlert K, Hahn A, Gokcay G, Torcoletti M, Ferreira CR. ASAH1 pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy. Hum Mutat 2020; 41:1469-1487. [PMID: 32449975 DOI: 10.1002/humu.24056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/12/2022]
Abstract
Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list of ASAH1 mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations in ASAH1 collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), ClinicalTrials.gov identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of known ASAH1 pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication of ASAH1 variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants.
Collapse
Affiliation(s)
- Sarah H Elsea
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Kirt Martin
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Paul Harmatz
- Pediatric Gastroenterolgy and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, California
| | | | | | | | - Laila Selim
- Cairo University Children's Hospital, Cairo, Egypt
| | | | | | - Bo Magnusson
- Karolinska University Hospital, Stockholm, Sweden
| | | | - Ratna Puri
- Sir Ganga Ram Hospital, New Delhi, India
| | - Seema Kapoor
- Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Nur Arslan
- Dokuz Eylul University Hospital, Izmir, Turkey
| | - Maja DiRocco
- Metabolic Diseases, Istituto Giannina Gaslini, Genoa, Italy
| | - Maha Zaki
- Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University Hospital, Ankara, Turkey
| | | | | | - Andreas Hahn
- UKGM Universitätsklinikum Giessen, Giessen, Germany
| | | | | | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Kyriakou K, W. Lederer C, Kleanthous M, Drousiotou A, Malekkou A. Acid Ceramidase Depletion Impairs Neuronal Survival and Induces Morphological Defects in Neurites Associated with Altered Gene Transcription and Sphingolipid Content. Int J Mol Sci 2020; 21:E1607. [PMID: 32111095 PMCID: PMC7084529 DOI: 10.3390/ijms21051607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ASAH1 gene encodes acid ceramidase (AC), an enzyme that is implicated in the metabolism of ceramide (Cer). Mutations in the ASAH1 gene cause two different disorders, Farber disease (FD), a rare lysosomal storage disorder, and a rare form of spinal muscular atrophy combined with progressive myoclonic epilepsy (SMA-PME). In the absence of human in vitro neuronal disease models and to gain mechanistic insights into pathological effects of ASAH1 deficiency, we established and characterized a stable ASAH1 knockdown (ASAH1KD) SH-SY5Y cell line. ASAH1KD cells displayed reduced proliferation due to elevated apoptosis and G1/S cell cycle arrest. Distribution of LAMP1-positive lysosomes towards the cell periphery and significantly shortened and less branched neurites upon differentiation, implicate AC for lysosome positioning and neuronal development, respectively. Lipidomic analysis revealed changes in the intracellular levels of distinct sphingolipid species, importantly without Cer accumulation, in line with altered gene transcription within the sphingolipid pathway. Additionally, the transcript levels for Rho GTPases (RhoA, Rac1, and Cdc42), which are key regulators of axonal orientation, neurite branching and lysosome positioning were found to be dysregulated. This study shows the critical role of AC in neurons and suggests how AC depletion leads to defects seen in neuropathology of SMA-PME and FD.
Collapse
Affiliation(s)
- Kalia Kyriakou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Carsten W. Lederer
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Marina Kleanthous
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Drousiotou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anna Malekkou
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus; (K.K.); (C.W.L.); (M.K.); (A.D.)
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
12
|
Shervin Badv R, Nilipour Y, Rahimi-Dehgolan S, Rashidi-Nezhad A, Ghahvechi Akbari M. A novel case report of spinal muscular atrophy with progressive myoclonic epilepsy from Iran. Int Med Case Rep J 2019; 12:155-159. [PMID: 31213928 PMCID: PMC6549484 DOI: 10.2147/imcrj.s202046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a disorder characterized by decreased motor function due to the muscle atrophy in the background of degenerated anterior horn cells and motor cells of lower cranial nerves nuclei. The most frequent form is inherited as an autosomal recessive trait resulting from mutations in the survival motor neuron gene (SMN-1). On the other hand, a rare variant of this condition, named progressive myoclonic epilepsy subtype (SMA-PME) occurs in the result of a mutation in N-acylsphingosine amidohydrolase-1 gene (ASAH-1). The latter gene is responsible for lysosomal acid-ceramidase production. SMA-PME has been characterized by a progressive muscle weakness from ages 3–7 years, accompanied by epilepsy, an intractable seizure, and sometimes sensorineural hearing loss. In this report, we have presented a 15-year old female patient with SMA-PME that was attended to neurology clinic for a new onset tremor, seizure and proximal weakness in all limbs. We identified a homozygous mutation in exon II on her ASAH-1 gene [c.173C>T (p. Thr58Met)]. Also, a modest reduction was found in ceramidase-activity. As was expected patient`s seizures did not respond to conventional therapies.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research center, Research Institute for Children Health, Mofid Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rahimi-Dehgolan
- Physical Medicine and Rehabilitation Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Imam khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
13
|
Beckmann N, Kadow S, Schumacher F, Göthert JR, Kesper S, Draeger A, Schulz-Schaeffer WJ, Wang J, Becker JU, Kramer M, Kühn C, Kleuser B, Becker KA, Gulbins E, Carpinteiro A. Pathological manifestations of Farber disease in a new mouse model. Biol Chem 2019; 399:1183-1202. [PMID: 29908121 DOI: 10.1515/hsz-2018-0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstr. 2, CH-3012 Bern, Switzerland
| | - Walter J Schulz-Schaeffer
- Insitute of Neuropathology, University of the Saarland, Kirrberger Str. 100, D-66421 Homburg, Germany
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, UC Health University Hospital, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
14
|
A new case of SMA phenotype without epilepsy due to biallelic variants in ASAH1. Eur J Hum Genet 2018; 27:337-339. [PMID: 30291339 DOI: 10.1038/s41431-018-0250-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 11/08/2022] Open
|
15
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
16
|
Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis 2018; 13:121. [PMID: 30029679 PMCID: PMC6053731 DOI: 10.1186/s13023-018-0845-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.
Collapse
Affiliation(s)
- Fabian P. S. Yu
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Samuel Amintas
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- INSERM UMR1037 CRCT, Université de Toulouse, Toulouse, France
| | - Jeffrey A. Medin
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
17
|
de Souza PVS, Bortholin T, Naylor FGM, Chieia MAT, de Rezende Pinto WBV, Oliveira ASB. Motor neuron disease in inherited neurometabolic disorders. Rev Neurol (Paris) 2017; 174:115-124. [PMID: 29128155 DOI: 10.1016/j.neurol.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/29/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
Inherited neurometabolic disorders represent a growing group of inborn errors of metabolism that present with major neurological symptoms or a complex spectrum of symptoms dominated by central or peripheral nervous system dysfunction. Many neurological presentations may arise from the same metabolic defect, especially in autosomal-recessive inherited disorders. Motor neuron disease (MND), mainly represented by amyotrophic lateral sclerosis, may also result from various inborn errors of metabolism, some of which may represent potentially treatable conditions, thereby emphasizing the importance of recognizing such diseases. The present review discusses the most important neurometabolic disorders presenting with motor neuron (lower and/or upper) dysfunction as the key clinical and neuropathological feature.
Collapse
Affiliation(s)
- P Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - T Bortholin
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - F George Monteiro Naylor
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - M Antônio Troccoli Chieia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - W Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - A Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
18
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|