1
|
Luciano C, Fernando DD, Lucia Z, Elvira I, Romano D, Rebecca C, Alberto B, Francesco R, Maria DBA, Luca P, Irene C, Sara DM, Antonella F, Veronica B, Michela GZ, Nicole BG, Carlo G, Gianfranco P, Davide G. Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics 2024; 16:112. [PMID: 39164752 PMCID: PMC11337605 DOI: 10.1186/s13148-024-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role. METHODS AND RESULTS Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling. CONCLUSIONS Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Dragani Davide Fernando
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Zanotti Lucia
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Inglese Elvira
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Danesi Romano
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Brusati Alberto
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Di Blasio Anna Maria
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Persani Luca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Campi Irene
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - De Martino Sara
- Consiglio Nazionale delle Ricerche (CNR) - IASI, Rome, Italy
| | | | - Barbi Veronica
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Gottardi Zamperla Michela
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Baldrighi Giulia Nicole
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Gaetano Carlo
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Parati Gianfranco
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Gentilini Davide
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
2
|
Nezamuldeen L, Jafri MS. Boolean Modeling of Biological Network Applied to Protein-Protein Interaction Network of Autism Patients. BIOLOGY 2024; 13:606. [PMID: 39194544 DOI: 10.3390/biology13080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Cellular molecules interact with one another in a structured manner, defining a regulatory network topology that describes cellular mechanisms. Genetic mutations alter these networks' pathways, generating complex disorders such as autism spectrum disorder (ASD). Boolean models have assisted in understanding biological system dynamics since Kauffman's 1969 discovery, and various analytical tools for regulatory networks have been developed. This study examined the protein-protein interaction network created in our previous publication of four ASD patients using the SPIDDOR R package, a Boolean model-based method. The aim is to examine how patients' genetic variations in INTS6L, USP9X, RSK4, FGF5, FLNA, SUMF1, and IDS affect mTOR and Wnt cell signaling convergence. The Boolean network analysis revealed abnormal activation levels of essential proteins such as β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD. These proteins affect gene expression, translation, cell adhesion, shape, and migration. Patients 1 and 2 showed consistent patterns of increased β-catenin activity and decreased MTORC1, RPS6, and eIF4E activity. However, patient 2 had an independent decrease in Cadherin and SMAD activity due to the FLNA mutation. Patients 3 and 4 have an abnormal activation of the mTOR pathway, which includes the MTORC1, RPS6, and eIF4E genes. The shared mTOR pathway behavior in these patients is explained by a shared mutation in two closely related proteins (SUMF1 and IDS). Diverse activities in β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD contributed to the reported phenotype in these individuals. Furthermore, it unveiled the potential therapeutic options that could be suggested to these individuals.
Collapse
Affiliation(s)
- Leena Nezamuldeen
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
4
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Implications of Genetic Factors and Modifiers in Autism Spectrum Disorders: a Systematic Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J Neural Transm (Vienna) 2021; 128:717-734. [PMID: 34115189 DOI: 10.1007/s00702-021-02360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Based on recent evidence, more than 200 susceptibility genes have been identified to be associated with autism until now. Correspondingly, cytogenetic abnormalities have been reported for almost every chromosome. While the results of multiple genes associated with risk factors for autism are still incomplete, this paper systematically reviews published meta-analyses and systematic reviews of evidence related to autism occurrence. METHOD Literature search was conducted in the PubMed system, and the publication dates were limited between January 2000 and July 2020. We included a meta-analysis and systematic review that assessed the impact of related gene variants on the development of autism. After screening, this comprehensive literature search identified 31 meta-analyses and ten systematic reviews. We arranged the genes related to autism in the published studies according to the order of the chromosomes, and based on the results of a meta-analysis and systematic review, we selected 6 candidate genes related to ASD, namely MTHFR C677T, SLC25A12, OXTR, RELN, 5-HTTLPR, SHANK, including basic features and functions. In addition to these typical genes, we have also listed candidate genes that may exist on almost every chromosome that are related to autism. RESULTS We found that the results of several literature reviews included in this study showed that the MTHFR C667T variant was a risk factor for the occurrence of ASD, and the results were consistent. The results of studies on SLC25A12 variation (rs2056202 and rs2292813) and ASD risk were inconsistent but statistically significant. No association of 5-HTTLPR was found with autism, but when subgroup analysis was performed according to ethnicity, the association was statistically significant. RELN variants (rs362691 and rs736707) were consistent with ASD risk studies, but some of the results were not statistically significant. CONCLUSION This review summarized the well-known ASD candidate genes and listed some new genes that need further study in larger sample sets to improve our understanding of the genetic basis of ASD, but sample size and heterogeneity remain major limiting factors in some genome-wide association studies. We also found that common genetic variants in some genes may be co-risk factors for autism or other neuropsychiatric disorders when we collated these results. It is worth considering screening for these mutations in clinical applications.
Collapse
|
7
|
Xia L, Ou J, Li K, Guo H, Hu Z, Bai T, Zhao J, Xia K, Zhang F. Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders. Autism Res 2019; 13:382-396. [PMID: 31647196 DOI: 10.1002/aur.2229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
Autism is a common neurodevelopmental disorder with a moderate to a high degree of heritability, but only a few common genetic variants that explain the heritability have been associated. We performed a genome-wide transmission disequilibrium test analysis of a newly genotyped autism case-parent triad samples (127 trios) in Han Chinese, identified top association signals at multiple single nucleotide polymorphisms (SNPs), including rs9839376 (OR = 2.59, P = 1.27 × 10-05 ) at KCNMB2, rs6044680 (OR = 0.319, P = 4.82 × 10-05 ) and rs7274133 (OR = 0.313, P = 3.22 × 10-05 ) at PCSK2, and rs310619 (OR = 2.40, P = 7.44 × 10-05 ) at EEF1A2. Furthermore, a genome-wide combined P-value of individual SNPs in two independent case-parent triad samples (total 402 triads, n = 1,206) identified SNPs at EGFLAM, ZDHHC2, AGBL1, and SNX29 as additional association signals for autism. While none of these signals achieved a genome-wide significance in the two samples of our study, they have been reported in a previous genome-wide association study of neuropsychiatric disorders, and the majority of these SNP have a significant cis-regulatory association with mRNA in human tissues (false discovery rate (FDR) < 0.05). Our study warrants further study or replication with additional sample for association with autism and other neuropsychiatric disorders. Autism Res 2020, 13: 382-396. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism is a common neurodevelopmental disorder, heritable, but only a few common genetic variants that explain the heritability have been associated. We conducted a genome-wide association study with two cohorts of autism case-parent triad samples in Han Chinese and identified multiple single nucleotide polymorphisms that were reported as strong association signals in a previous genome-wide association study of other neuropsychiatric disorders or related traits. Our study provides evidence for shared genetic variants among autism and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lu Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jianjun Ou
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Bai
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China.,Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Fengyu Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China.,Global Clinical and Translational Research Institute, Bethesda, Maryland.,Peking University Huilongguan Clinical Medical School and Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|