1
|
Chadda A, Nguyen B, Lohman TM, Galburt EA. Structural Basis for Dimerization and Activation of UvrD-family Helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611425. [PMID: 39282289 PMCID: PMC11398504 DOI: 10.1101/2024.09.05.611425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
UvrD-family helicases are superfamily 1A motor proteins that function during DNA replication, recombination, repair, and transcription. UvrD family monomers translocate along single stranded (ss) DNA but need to be activated by dimerization to unwind DNA in the absence of force or accessory factors. However, prior structural studies have only revealed monomeric complexes. Here, we report the first structures of a dimeric UvrD-family helicase, Mycobacterium tuberculosis UvrD1, both free and bound to a DNA junction. In each structure, the dimer interface occurs between the 2B subdomains of each subunit. The apo UvrD1 dimer is observed in symmetric compact and extended forms indicating substantial flexibility. This symmetry is broken in the DNA-bound dimer complex with leading and trailing subunits adopting distinct conformations. Biochemical experiments reveal that the E. coli UvrD dimer shares the same 2B-2B interface. In contrast to the dimeric structures, an inactive, auto-inhibited UvrD1 DNA-bound monomer structure reveals 2B subdomain-DNA contacts that are likely inhibitory. The major re-orientation of the 2B subdomains that occurs upon UvrD1 dimerization prevents these duplex DNA interactions, thus relieving the auto-inhibition. These structures reveal that the 2B subdomain serves a major regulatory role rather than participating directly in DNA unwinding.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
2
|
Tišma M, Janissen R, Antar H, Martin-Gonzalez A, Barth R, Beekman T, van der Torre J, Michieletto D, Gruber S, Dekker C. Dynamic ParB-DNA interactions initiate and maintain a partition condensate for bacterial chromosome segregation. Nucleic Acids Res 2023; 51:11856-11875. [PMID: 37850647 PMCID: PMC10681803 DOI: 10.1093/nar/gkad868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alejandro Martin-Gonzalez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Twan Beekman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
3
|
He F, Bravo M, Fan L. Helicases required for nucleotide excision repair: structure, function and mechanism. Enzymes 2023; 54:273-304. [PMID: 37945175 DOI: 10.1016/bs.enz.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco Bravo
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States.
| |
Collapse
|
4
|
Li J, Ma J, Kumar V, Fu H, Xu C, Wang S, Jia Q, Fan Q, Xi X, Li M, Liu H, Lu Y. Identification of flexible Pif1-DNA interactions and their impacts on enzymatic activities. Nucleic Acids Res 2022; 50:7002-7012. [PMID: 35748877 PMCID: PMC9262596 DOI: 10.1093/nar/gkac529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible regions in biomolecular complexes, although crucial to understanding structure-function relationships, are often unclear in high-resolution crystal structures. In this study, we showed that single-molecule techniques, in combination with computational modeling, can characterize dynamic conformations not resolved by high-resolution structure determination methods. Taking two Pif1 helicases (ScPif1 and BsPif1) as model systems, we found that, besides a few tightly bound nucleotides, adjacent solvent-exposed nucleotides interact dynamically with the helicase surfaces. The whole nucleotide segment possessed curved conformations and covered the two RecA-like domains of the helicases, which are essential for the inch-worm mechanism. The synergetic approach reveals that the interactions between the exposed nucleotides and the helicases could be reduced by large stretching forces or electrostatically shielded with high-concentration salt, subsequently resulting in reduced translocation rates of the helicases. The dynamic interactions between the exposed nucleotides and the helicases underlay the force- and salt-dependences of their enzymatic activities. The present single-molecule based approach complements high-resolution structural methods in deciphering the molecular mechanisms of the helicases.
Collapse
Affiliation(s)
| | | | | | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qinkai Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuguang Xi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiguang Liu
- Correspondence may also be addressed to Haiguang Liu. Tel: +86 10 56981816;
| | - Ying Lu
- To whom correspondence should be addressed. Tel: +86 10 82648122;
| |
Collapse
|
5
|
The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition. Proc Natl Acad Sci U S A 2022; 119:e2116462119. [PMID: 35658074 DOI: 10.1073/pnas.2116462119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SignificanceBloom syndrome helicase (BLM) is a multifunctional helicase that primarily catalyzes the separation of two single strands of DNA. Here, using a single-molecule optical tweezers approach combined with confocal microscopy, we monitored both the enzymatic activity and oligomeric status of BLM at the same time. Strikingly, a head-on collision of BLM-medicated DNA unwinding forks was found to effectively switch their oligomeric state and activity. Specifically, BLMs, upon collision, immediately fuse across the fork junctions and covert their activities from dsDNA unwinding to ssDNA translocation and protein displacement. These findings explain how BLM plays multiple functional roles in homologous recombination (HR). The single-molecule approach used here provides a reference model for investigating the relationship between protein oligomeric state and function.
Collapse
|
6
|
Mycobacterium tuberculosis DNA repair helicase UvrD1 is activated by redox-dependent dimerization via a 2B domain cysteine. Proc Natl Acad Sci U S A 2022; 119:2114501119. [PMID: 35173050 PMCID: PMC8872793 DOI: 10.1073/pnas.2114501119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes tuberculosis and, during infection, is exposed to reactive oxygen species and reactive nitrogen intermediates from the host immune response that can cause DNA damage. UvrD-like proteins are involved in DNA repair and replication and belong to the SF1 family of DNA helicases that use ATP hydrolysis to catalyze DNA unwinding. In Mtb, there are two UvrD-like enzymes, where UvrD1 is most closely related to other family members. Previous studies have suggested that UvrD1 is exclusively monomeric; however, it is well known that Escherichia coli UvrD and other UvrD family members exhibit monomer-dimer equilibria and unwind as dimers in the absence of accessory factors. Here, we reconcile these incongruent studies by showing that Mtb UvrD1 exists in monomer, dimer, and higher-order oligomeric forms, where dimerization is regulated by redox potential. We identify a 2B domain cysteine, conserved in many Actinobacteria, that underlies this effect. We also show that UvrD1 DNA-unwinding activity correlates specifically with the dimer population and is thus titrated directly via increasing positive (i.e., oxidative) redox potential. Consistent with the regulatory role of the 2B domain and the dimerization-based activation of DNA unwinding in UvrD family helicases, these results suggest that UvrD1 is activated under oxidizing conditions when it may be needed to respond to DNA damage during infection.
Collapse
|
7
|
Bi L, Qin Z, Hou XM, Modesti M, Sun B. Simultaneous Mechanical and Fluorescence Detection of Helicase-Catalyzed DNA Unwinding. Methods Mol Biol 2022; 2478:329-347. [PMID: 36063326 DOI: 10.1007/978-1-0716-2229-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Helicases are ubiquitous molecular motor proteins that utilize the energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to transiently convert the duplex form of nucleic acids to single-stranded intermediates for many biological processes. These enzymes play vital roles in nearly all aspects of nucleic acid metabolism, such as DNA repair and RNA splicing. Understanding helicase's functional roles requires methods to dissect the mechanisms of motor proteins at the molecular level. In the past three decades, there has been a large increase in the application of single-molecule approaches to investigate helicases. These techniques, such as optical tweezers and single-molecule fluorescence, offer capabilities to monitor helicase motions with unprecedented spatiotemporal resolution, to apply quantitative forces to probe the chemo-mechanical activities of these motors and to resolve helicase heterogeneity at the single-molecule level. In this chapter, we describe a single-molecule method that combines optical tweezers with confocal fluorescence microscopy to study helicase-catalyzed DNA unwinding. Using Bloom syndrome protein (BLM), a multifunctional helicase that maintains genome stability, as an example, we show that this method allows for the simultaneous detection of displacement, force and fluorescence signals of a single DNA molecule during unwinding in real time, leading to the discovery of a distinct bidirectional unwinding mode of BLM that is activated by a single-stranded DNA binding protein called replication protein A (RPA). We provide detailed instructions on how to prepare two DNA templates to be used in the assays, purify the BLM and RPA proteins, perform single-molecule experiments, and acquire and analyse the data.
Collapse
Affiliation(s)
- Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhenheng Qin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mauro Modesti
- Cancer Research Center of Marseille, Marseille, France
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Yokota H. Quantitative and kinetic single-molecule analysis of DNA unwinding by <i>Escherichia coli</i> UvrD helicase. Biophys Physicobiol 2022; 19:1-16. [PMID: 35435650 PMCID: PMC8967476 DOI: 10.2142/biophysico.bppb-v19.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes involved in the maintenance of genome integrity. Helicases share several “helicase motifs” that are highly conserved amino acid sequences and are classified into six superfamilies (SFs). The helicase SFs are further grouped into two classes based on their functional units. One class that includes SFs 3–6 functions as a hexamer that can form a ring around DNA. Another class that includes SFs 1 and 2 functions in a non-hexameric form. The high homology in the primary and tertiary structures among SF1 helicases suggests that SF1 helicases have a common underlying mechanism. However, two opposing models for the functional unit, monomer and dimer models, have been proposed to explain DNA unwinding by SF1 helicases. This paper briefly describes the classification of helicase SFs and discusses the structural homology and the two opposing non-hexameric helicase models of SF1 helicases by focusing on Escherichia coli SF1 helicase UvrD, which plays a significant role in both nucleotide-excision repair and methyl-directed mismatch repair. This paper reviews past and recent studies on UvrD, including the author's single-molecule direct visualization of wild-type UvrD and a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C), the latter of which was used in genetic and biochemical assays that supported the monomer model. The visualization revealed that multiple UvrDΔ40C molecules jointly unwind DNA, presumably in an oligomeric form, similar to wild-type UvrD. Therefore, single-molecule direct visualization of nucleic acid-binding proteins can provide quantitative and kinetic information to reveal their fundamental mechanisms.
Collapse
Affiliation(s)
- Hiroaki Yokota
- The Graduate School for the Creation of New Photonics Industries
| |
Collapse
|
9
|
Bianco PR. Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays. Methods 2021; 204:348-360. [PMID: 34896247 PMCID: PMC9534331 DOI: 10.1016/j.ymeth.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
10
|
Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase. Nat Commun 2021; 12:7015. [PMID: 34853304 PMCID: PMC8636605 DOI: 10.1038/s41467-021-27304-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.
Collapse
|
11
|
Zhao X, Chen X, Mi Z, Liu Y, Li W, Shan X, Lu X. Revealing Differential Interaction Forces during Nanopore DNA Sequencing. J Phys Chem B 2021; 125:5045-5051. [PMID: 33955770 DOI: 10.1021/acs.jpcb.1c02296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The interaction between DNA and the nanopore structure plays an important role in nanopore DNA sequencing. Differential interaction forces between each base type and the nanopore structure are obtained by examining the correlation between translocation dwell time and the sequence. The viscous drag force and the intermolecular interaction are identified with single-nucleotide resolution. Active hydrogen donors and acceptors on the inner wall of the nanopore structure are revealed at various offset coordinates. The differential forces as demonstrated in this study have great potential in probing active hydrogen bond interaction in a single protein molecule with subnanometer spatial resolution.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Chen
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuang Mi
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuru Liu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.,Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
12
|
Yokota H. Roles of the C-Terminal Amino Acids of Non-Hexameric Helicases: Insights from Escherichia coli UvrD. Int J Mol Sci 2021; 22:ijms22031018. [PMID: 33498436 PMCID: PMC7864180 DOI: 10.3390/ijms22031018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| |
Collapse
|
13
|
Mickolajczyk KJ, Shelton PMM, Grasso M, Cao X, Warrington SE, Aher A, Liu S, Kapoor TM. Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase. Biophys J 2020; 120:1020-1030. [PMID: 33340543 PMCID: PMC7837305 DOI: 10.1016/j.bpj.2020.11.2276] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Patrick M M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Xiaocong Cao
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York; Laboratory of Structural Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Sara E Warrington
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York.
| |
Collapse
|
14
|
Mickolajczyk KJ, Shelton PMM, Grasso M, Cao X, Warrington SR, Aher A, Liu S, Kapoor TM. Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32766580 DOI: 10.1101/2020.07.31.231274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The superfamily-1 helicase non-structural protein 13 (nsp13) is required for SARS-CoV-2 replication, making it an important antiviral therapeutic target. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the dsRNA, suggesting a passive unwinding mechanism. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be potently activated by picoNewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, drawing stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.
Collapse
|
15
|
Yokota H. DNA-Unwinding Dynamics of Escherichia coli UvrD Lacking the C-Terminal 40 Amino Acids. Biophys J 2020; 118:1634-1648. [PMID: 32142643 DOI: 10.1016/j.bpj.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
The E. coli UvrD protein is a nonhexameric DNA helicase that belongs to superfamily I and plays a crucial role in both nucleotide excision repair and methyl-directed mismatch repair. Previous data suggested that wild-type UvrD has optimal activity in its oligomeric form. However, crystal structures of the UvrD-DNA complex were only resolved for monomeric UvrD, using a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C). However, biochemical findings performed using UvrDΔ40C indicated that this mutant failed to dimerize, although its DNA-unwinding activity was comparable to that of wild-type UvrD. Although the C-terminus plays essential roles in nucleic acid binding for many proteins with helicase and dimerization activities, the exact function of the C-terminus is poorly understood. Thus, to understand the function of the C-terminal amino acids of UvrD, we performed single-molecule direct visualization. Photobleaching of dye-labeled UvrDΔ40C molecules revealed that two or three UvrDΔ40C molecules could bind simultaneously to an 18-bp double-stranded DNA with a 20-nucleotide, 3' single-stranded DNA tail in the absence of ATP. Simultaneous visualization of association/dissociation of the mutant with/from DNA and the DNA-unwinding dynamics of the mutant in the presence of ATP demonstrated that, as with wild-type UvrD, two or three UvrDΔ40C molecules were primarily responsible for DNA unwinding. The determined association/dissociation rate constants for the second bound monomer were ∼2.5-fold larger than that of wild-type UvrD. The involvement of multiple UvrDΔ40C molecules in DNA unwinding was also observed under a physiological salt concentration (200 mM NaCl). These results suggest that multiple UvrDΔ40C molecules, which may form an oligomer, play an active role in DNA unwinding in vivo and that deleting the C-terminal 40 residues altered the interaction of the second UvrD monomer with DNA without affecting the interaction with the first bound UvrD monomer.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
16
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Huo XM, Meng LF, Jiang T, Li M, Sun FZ, Sun B, Li JK. Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:743-751. [PMID: 30012467 DOI: 10.1016/j.bbagrm.2018.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022]
Abstract
Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein-protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.
Collapse
Affiliation(s)
- Xin-Mei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Li-Feng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Tao Jiang
- Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Ming Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fang-Zhen Sun
- Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian-Ke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
18
|
Fabian R, Tyson C, Tuma PL, Pegg I, Sarkar A. A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules. MICROMACHINES 2018; 9:mi9040188. [PMID: 30424121 PMCID: PMC6187538 DOI: 10.3390/mi9040188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
We report the development of a magnetic tweezers that can be used to micromanipulate single DNA molecules by applying picoNewton (pN)-scale forces in the horizontal plane. The resulting force–extension data from our experiments show high-resolution detection of changes in the DNA tether’s extension: ~0.5 pN in the force and <10 nm change in extension. We calibrate our instrument using multiple orthogonal techniques including the well-characterized DNA overstretching transition. We also quantify the repeatability of force and extension measurements, and present data on the behavior of the overstretching transition under varying salt conditions. The design and experimental protocols are described in detail, which should enable straightforward reproduction of the tweezers.
Collapse
Affiliation(s)
- Roberto Fabian
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Christopher Tyson
- Biomedical Engineering Department and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Ian Pegg
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Abhijit Sarkar
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
19
|
Tomko EJ, Lohman TM. Modulation of Escherichia coli UvrD Single-Stranded DNA Translocation by DNA Base Composition. Biophys J 2017; 113:1405-1415. [PMID: 28978435 DOI: 10.1016/j.bpj.2017.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022] Open
Abstract
Escherichia coli UvrD is an SF1A DNA helicase/translocase that functions in chromosomal DNA repair and replication of some plasmids. UvrD can also displace proteins such as RecA from DNA in its capacity as an anti-recombinase. Central to all of these activities is its ATP-driven 3'-5' single-stranded (ss) DNA translocation activity. Previous ensemble transient kinetic studies have estimated the average translocation rate of a UvrD monomer on ssDNA composed solely of deoxythymidylates. Here we show that the rate of UvrD monomer translocation along ssDNA is influenced by DNA base composition, with UvrD having the fastest rate along polypyrimidines although decreasing nearly twofold on ssDNA containing equal amounts of the four bases. Experiments with DNA containing abasic sites and polyethylene glycol spacers show that the ssDNA base also influences translocation processivity. These results indicate that changes in base composition and backbone insertions influence the translocation rates, with increased ssDNA base stacking correlated with decreased translocation rates, supporting the proposal that base-stacking interactions are involved in the translocation mechanism.
Collapse
Affiliation(s)
- Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
20
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Wang Y, Wang R, Cao B, Guo Z, Yang G. Single Molecular Demonstration of Modulating Charge Inversion of DNA. Sci Rep 2016; 6:38628. [PMID: 27929107 PMCID: PMC5144137 DOI: 10.1038/srep38628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/11/2016] [Indexed: 11/09/2022] Open
Abstract
Charge inversion of DNA is a counterintuitive phenomenon in which the effective charge of DNA switches its sign from negative to positive in the presence of multivalent counterions. The underlying microscopic mechanism is still controversial whether it is driven by a specific chemical affinity or electrostatic ion correlation. It is well known that DNA shows no charge inversion in normal aqueous solution of trivalent counterions though they can induce the conformational compaction of DNA. However, in the same trivalent counterion condition, we demonstrate for the first time the occurrence of DNA charge inversion by decreasing the dielectric constant of solution to make the electrophoretic mobility of DNA increase from a negative value to a positive value. In contrast, the charge inversion of DNA induced by quadrivalent counterions can be canceled out by increasing the dielectric constant of solution. The physical modulation of DNA effective charge in two ways unambiguously demonstrates that charge inversion of DNA is a predominantly electrostatic phenomenon driven by the existence of a strongly correlated liquid (SCL) of counterions at the DNA surface. This conclusion is also supported by the measurement of condensing and unraveling forces of DNA condensates by single molecular MT.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Ruxia Wang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Bozhi Cao
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Zilong Guo
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Guangcan Yang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
22
|
Sun B, Wang MD. Single-Molecule Optical-Trapping Techniques to Study Molecular Mechanisms of a Replisome. Methods Enzymol 2016; 582:55-84. [PMID: 28062045 DOI: 10.1016/bs.mie.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replisome is a multiprotein molecular machinery responsible for the replication of DNA. It is composed of several specialized proteins each with dedicated enzymatic activities, and in particular, helicase unwinds double-stranded DNA and DNA polymerase catalyzes the synthesis of DNA. Understanding how a replisome functions in the process of DNA replication requires methods to dissect the mechanisms of individual proteins and of multiproteins acting in concert. Single-molecule optical-trapping techniques have proved to be a powerful approach, offering the unique ability to observe and manipulate biomolecules at the single-molecule level and providing insights into the mechanisms of molecular motors and their interactions and coordination in a complex. Here, we describe a practical guide to applying these techniques to study the dynamics of individual proteins in the bacteriophage T7 replisome, as well as the coordination among them. We also summarize major findings from these studies, including nucleotide-specific helicase slippage and new lesion bypass pathway in T7 replication.
Collapse
Affiliation(s)
- B Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - M D Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States; Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
23
|
Kemmerich FE, Kasaciunaite K, Seidel R. Modular magnetic tweezers for single-molecule characterizations of helicases. Methods 2016; 108:4-13. [PMID: 27402355 DOI: 10.1016/j.ymeth.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023] Open
Abstract
Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Kristina Kasaciunaite
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
24
|
Schermerhorn KM, Tanner N, Kelman Z, Gardner AF. High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases. Nucleic Acids Res 2016; 44:8764-8771. [PMID: 27382065 PMCID: PMC5062978 DOI: 10.1093/nar/gkw612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is the replicative helicase responsible for unwinding DNA during archaeal and eukaryal genome replication. To mimic long helicase events in the cell, a high-temperature single-molecule assay was designed to quantitatively measure long-range DNA unwinding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) and Thermococcus sp. 9°N (9°N). Mth encodes a single MCM homolog while 9°N encodes three helicases. 9°N MCM3, the proposed replicative helicase, unwinds DNA at a faster rate compared to 9°N MCM2 and to Mth MCM. However, all three MCM proteins have similar processivities. The implications of these observations for DNA replication in archaea and the differences and similarities among helicases from different microorganisms are discussed. Development of the high-temperature single-molecule assay establishes a system to comprehensively study thermophilic replisomes and evolutionary links between archaeal, eukaryal, and bacterial replication systems.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | |
Collapse
|
25
|
Constantinescu-Aruxandei D, Petrovic-Stojanovska B, Schiemann O, Naismith JH, White MF. Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR. Nucleic Acids Res 2016; 44:954-68. [PMID: 26657627 PMCID: PMC4737156 DOI: 10.1093/nar/gkv1373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.
Collapse
Affiliation(s)
| | | | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
26
|
Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes. Biotechniques 2016; 60:21-7. [PMID: 26757808 DOI: 10.2144/000114369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA-protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether's extension: ~0.05 pN in force and <10 nm change in extension. We have also verified that we can manipulate DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule's force response. Using a calibration technique based on Stokes' drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level.
Collapse
|
27
|
Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 2015; 51:15-25. [DOI: 10.3109/10409238.2015.1102195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Wang Y, Zhang X, Yang G. Single molecular analysis of the interaction between DNA and chitosan. RSC Adv 2015. [DOI: 10.1039/c4ra15612a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA condenses into toroids and further to globules when the concentration of chitosan increases, and the corresponding condensing force goes up simultaneously.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| | - Xu Zhang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| | - Guangcan Yang
- School of Physics and Electronic Information
- Wenzhou University
- Wenzhou
- China
| |
Collapse
|
29
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
30
|
Single molecular investigation of DNA looping and aggregation by restriction endonuclease BspMI. Sci Rep 2014; 4:5897. [PMID: 25077775 PMCID: PMC4116625 DOI: 10.1038/srep05897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
DNA looping and aggregation induced by restriction endonuclease BspMI are studied by atomic force microscopy (AFM) and magnetic tweezers (MT). With Ca(2+) substituted for the normal enzyme cofactor Mg(2+) and enzyme concentration below the critical concentration of 6 units/mL, AFM images of DNA-BspMI complex show that the number of binding and looping events increases with enzyme concentration. At the critical concentration 6 of units/mL, all the BspMI binding sites are saturated. It is worth noting that nonspecific BspMI binding to DNA at saturation concentration represents more than 8% of the total BspMI-DNA complexes directly observed in AFM images. Furthermore, we used MT to prove that additional loops can form when enzyme concentration is higher than its saturation valueand the complex is incubated for a long time (>2 hrs). We ascribe this phenomenon to the aggregation of enzymes. The force spectroscopy of the BspMI-DNA complex shows that the pulling force required to open the loop of the complex at less than saturation concentration has a peak at about 3 pN, which is lower than the force required to open additional loops due to enzyme aggregation at higher than saturation concentration (>6 pN).
Collapse
|
31
|
Lee KS, Balci H, Jia H, Lohman TM, Ha T. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 2013; 4:1878. [PMID: 23695672 PMCID: PMC3674262 DOI: 10.1038/ncomms2882] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Fluorescence imaging of single-protein dynamics on DNA has been largely limited to double-stranded DNA or short single-stranded DNA. We have developed a hybrid approach for observing single proteins moving on laterally stretched kilobase-sized ssDNA. Here we probed the single-stranded DNA translocase activity of Escherichia coli UvrD by single fluorophore tracking, while monitoring DNA unwinding activity with optical tweezers to capture the entire sequence of protein binding, single-stranded DNA translocation and multiple pathways of unwinding initiation. The results directly demonstrate that the UvrD monomer is a highly processive single-stranded DNA translocase that is stopped by a double-stranded DNA, whereas two monomers are required to unwind DNA to a detectable degree. The single-stranded DNA translocation rate does not depend on the force applied and displays a remarkable homogeneity, whereas the unwinding rate shows significant heterogeneity. These findings demonstrate that UvrD assembly state regulates its DNA helicase activity with functional implications for its stepping mechanism, and also reveal a previously unappreciated complexity in the active species during unwinding. Tracking single molecules on long stretches of single-stranded DNA poses technical challenges due to its propensity to form hairpin structures. To solve this problem, the authors combine TIRF microscopy with optical tweezers to stretch the DNA and capture the dynamics of DNA unwinding by UvrD DNA helicase.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Physics, Center for Physics in Living Cells and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801-2902, USA
| | | | | | | | | |
Collapse
|
32
|
Stelter M, Acajjaoui S, McSweeney S, Timmins J. Structural and mechanistic insight into DNA unwinding by Deinococcus radiodurans UvrD. PLoS One 2013; 8:e77364. [PMID: 24143224 PMCID: PMC3797037 DOI: 10.1371/journal.pone.0077364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 09/02/2013] [Indexed: 11/18/2022] Open
Abstract
DNA helicases are responsible for unwinding the duplex DNA, a key step in many biological processes. UvrD is a DNA helicase involved in several DNA repair pathways. We report here crystal structures of Deinococcus radiodurans UvrD (drUvrD) in complex with DNA in different nucleotide-free and bound states. These structures provide us with three distinct snapshots of drUvrD in action and for the first time trap a DNA helicase undergoing a large-scale spiral movement around duplexed DNA. Our structural data also improve our understanding of the molecular mechanisms that regulate DNA unwinding by Superfamily 1A (SF1A) helicases. Our biochemical data reveal that drUvrD is a DNA-stimulated ATPase, can translocate along ssDNA in the 3'-5' direction and shows ATP-dependent 3'-5', and surprisingly also, 5'-3' helicase activity. Interestingly, we find that these translocase and helicase activities of drUvrD are modulated by the ssDNA binding protein. Analysis of drUvrD mutants indicate that the conserved β-hairpin structure of drUvrD that functions as a separation pin is critical for both drUvrD's 3'-5' and 5'-3' helicase activities, whereas the GIG motif of drUvrD involved in binding to the DNA duplex is essential for the 5'-3' helicase activity only. These special features of drUvrD may reflect its involvement in a wide range of DNA repair processes in vivo.
Collapse
Affiliation(s)
- Meike Stelter
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
- University Grenoble Alpes, Institut de Biologie structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie structurale, Grenoble, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Département du Science du Vivant, Institut de Biologie structurale, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Sean McSweeney
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Joanna Timmins
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
- University Grenoble Alpes, Institut de Biologie structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie structurale, Grenoble, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Département du Science du Vivant, Institut de Biologie structurale, Grenoble, France
- * E-mail:
| |
Collapse
|
33
|
Yokota H, Chujo YA, Harada Y. Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase. Biophys J 2013; 104:924-33. [PMID: 23442971 DOI: 10.1016/j.bpj.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Superfamily I helicases are nonhexameric helicases responsible for the unwinding of nucleic acids. However, whether they unwind DNA in the form of monomers or oligomers remains a controversy. In this study, we addressed this question using direct single-molecule fluorescence visualization of Escherichia coli UvrD, a superfamily I DNA helicase. We performed a photobleaching-step analysis of dye-labeled helicases and determined that the helicase is bound to 18-basepair (bp) double-stranded DNA (dsDNA) with a 3' single-stranded DNA (ssDNA) tail (12, 20, or 40 nt) in a dimeric or trimeric form in the absence of ATP. We also discovered through simultaneous visualization of association/dissociation of the helicase with/from DNA and the DNA unwinding dynamics of the helicase in the presence of ATP that these dimeric and trimeric forms are responsible for the unwinding of DNA. We can therefore propose a new kinetic scheme for the helicase-DNA interaction in which not only a dimeric helicase but also a trimeric helicase can unwind DNA. This is, to our knowledge, the first direct single-molecule nonhexameric helicase quantification study, and it strongly supports a model in which an oligomer is the active form of the helicase, which carries important implications for the DNA unwinding mechanism of all superfamily I helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Kyoto, Japan.
| | | | | |
Collapse
|
34
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
35
|
Xu YN, Bazeille N, Ding XY, Lu XM, Wang PY, Bugnard E, Grondin V, Dou SX, Xi XG. Multimeric BLM is dissociated upon ATP hydrolysis and functions as monomers in resolving DNA structures. Nucleic Acids Res 2012; 40:9802-14. [PMID: 22885301 PMCID: PMC3479192 DOI: 10.1093/nar/gks728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bloom (BLM) syndrome is an autosomal recessive disorder characterized by an increased risk for many types of cancers. Previous studies have shown that BLM protein forms a hexameric ring structure, but its oligomeric form in DNA unwinding is still not well clarified. In this work, we have used dynamic light scattering and various stopped-flow assays to study the active form and kinetic mechanism of BLM in DNA unwinding. It was found that BLM multimers were dissociated upon ATP hydrolysis. Steady-state and single-turnover kinetic studies revealed that BLM helicase always unwound duplex DNA in the monomeric form under conditions of varying enzyme and ATP concentrations as well as 3'-ssDNA tail lengths, with no sign of oligomerization being discerned. Measurements of ATPase activity further indicated that BLM helicase might still function as monomers in resolving highly structured DNAs such as Holliday junctions and D-loops. These results shed new light on the underlying mechanism of BLM-mediated DNA unwinding and on the molecular and functional basis for the phenotype of heterozygous carriers of BLM syndrome.
Collapse
Affiliation(s)
- Ya-Nan Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Duplication of double-stranded DNA (dsDNA) requires a fine-tuned coordination between the DNA replication and unwinding reactions. Using optical tweezers, we probed the coupling dynamics between these two activities when they are simultaneously carried out by individual Phi29 DNA polymerase molecules replicating a dsDNA hairpin. We used the wild-type and an unwinding deficient polymerase variant and found that mechanical tension applied on the DNA and the DNA sequence modulate in different ways the replication, unwinding rates, and pause kinetics of each polymerase. However, incorporation of pause kinetics in a model to quantify the unwinding reaction reveals that both polymerases destabilize the fork with the same active mechanism and offers insights into the topological strategies that could be used by the Phi29 DNA polymerase and other DNA replication systems to couple unwinding and replication reactions.
Collapse
|
37
|
Abstract
The advent of new technologies allowing the study of single biological molecules continues to have a major impact on studies of interacting systems as well as enzyme reactions. These approaches (fluorescence, optical, and magnetic tweezers), in combination with ensemble methods, have been particularly useful for mechanistic studies of protein-nucleic acid interactions and enzymes that function on nucleic acids. We review progress in the use of single-molecule methods to observe and perturb the activities of proteins and enzymes that function on flexible single-stranded DNA. These include single-stranded DNA binding proteins, recombinases (RecA/Rad51), and helicases/translocases that operate as motor proteins and play central roles in genome maintenance. We emphasize methods that have been used to detect and study the movement of these proteins (both ATP-dependent directional and random movement) along the single-stranded DNA and the mechanistic and functional information that can result from detailed analysis of such movement.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
38
|
Tomko EJ, Fischer CJ, Lohman TM. Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis. J Mol Biol 2012; 418:32-46. [PMID: 22342931 DOI: 10.1016/j.jmb.2012.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 10/14/2022]
Abstract
Escherichia coli UvrD is an SF1A (superfamily 1 type A) helicase/translocase that functions in several DNA repair pathways. A UvrD monomer is a rapid and processive single-stranded DNA (ssDNA) translocase but is unable to unwind DNA processively in vitro. Based on data at saturating ATP (500 μM), we proposed a nonuniform stepping mechanism in which a UvrD monomer translocates with biased (3' to 5') directionality while hydrolyzing 1 ATP per DNA base translocated, but with a kinetic step size of 4-5 nt/step, suggesting that a pause occurs every 4-5 nt translocated. To further test this mechanism, we examined UvrD translocation over a range of lower ATP concentrations (10-500 μM ATP), using transient kinetic approaches. We find a constant ATP coupling stoichiometry of ∼1 ATP/DNA base translocated even at the lowest ATP concentration examined (10 μM), indicating that ATP hydrolysis is tightly coupled to forward translocation of a UvrD monomer along ssDNA with little slippage or futile ATP hydrolysis during translocation. The translocation kinetic step size remains constant at 4-5 nt/step down to 50 μM ATP but increases to ∼7 nt/step at 10 μM ATP. These results suggest that UvrD pauses more frequently during translocation at low ATP but with little futile ATP hydrolysis.
Collapse
Affiliation(s)
- Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
39
|
Sun B, Johnson DS, Patel G, Smith BY, Pandey M, Patel SS, Wang MD. ATP-induced helicase slippage reveals highly coordinated subunits. Nature 2011; 478:132-5. [PMID: 21927003 PMCID: PMC3190587 DOI: 10.1038/nature10409] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 08/01/2011] [Indexed: 11/10/2022]
Abstract
Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair, and recombination1,2. Bacteriophage T7 gene product 4 is a model hexameric helicase which has been observed to utilize dTTP, but not ATP, to unwind dsDNA as it translocates from 5′ to 3′ along ssDNA2–6. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate1,7. Here we address this question using a single molecule approach to monitor helicase unwinding. We discovered that T7 helicase does in fact unwind dsDNA in the presence of ATP and the unwinding rate is even faster than that with dTTP. However unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behavior was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found T7 helicase binds and hydrolyzes ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective Vmax, KM, and concentrations. In contrast, processivity does not follow a simple competitive behavior and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physics - Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.
Collapse
|
42
|
Jia H, Korolev S, Niedziela-Majka A, Maluf NK, Gauss GH, Myong S, Ha T, Waksman G, Lohman TM. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 2011; 411:633-48. [PMID: 21704638 DOI: 10.1016/j.jmb.2011.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a "closed" state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an "open" state that differs by an ∼160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.
Collapse
Affiliation(s)
- Haifeng Jia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
5'-Single-stranded/duplex DNA junctions are loading sites for E. coli UvrD translocase. EMBO J 2010; 29:3826-39. [PMID: 20877334 DOI: 10.1038/emboj.2010.242] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/06/2010] [Indexed: 01/05/2023] Open
Abstract
Escherichia coli UvrD is a 3'-5' superfamily 1A helicase/translocase involved in a variety of DNA metabolic processes. UvrD can function either as a helicase or only as an single-stranded DNA (ssDNA) translocase. The switch between these activities is controlled in vitro by the UvrD oligomeric state; a monomer has ssDNA translocase activity, whereas at least a dimer is needed for helicase activity. Although a 3'-ssDNA partial duplex provides a high-affinity site for a UvrD monomer, here we show that a monomer also binds with specificity to DNA junctions possessing a 5'-ssDNA flanking region and can initiate translocation from this site. Thus, a 5'-ss-duplex DNA junction can serve as a high-affinity loading site for the monomeric UvrD translocase, whereas a 3'-ss-duplex DNA junction inhibits both translocase and helicase activity of the UvrD monomer. Furthermore, the 2B subdomain of UvrD is important for this junction specificity. This highlights a separation of helicase and translocase function for UvrD and suggests that a monomeric UvrD translocase can be loaded at a 5'-ssDNA junction when translocation activity alone is needed.
Collapse
|
44
|
Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 2010; 43:185-217. [PMID: 20682090 DOI: 10.1017/s0033583510000107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Helicases are a class of nucleic acid (NA) motors that catalyze NTP-dependent unwinding of NA duplexes into single strands, a reaction essential to all areas of NA metabolism. In the last decade, single-molecule (sm) technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching has enabled the study of helicase conformational dynamics, force generation, step size, pausing, reversal and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multiprotein complexes. The contributions of these sm investigations to our understanding of helicase mechanism and function will be discussed.
Collapse
|
45
|
Manosas M, Xi XG, Bensimon D, Croquette V. Active and passive mechanisms of helicases. Nucleic Acids Res 2010; 38:5518-26. [PMID: 20423906 PMCID: PMC2938219 DOI: 10.1093/nar/gkq273] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, we discuss the active or passive character of helicases. In the past years, several studies have used the theoretical framework proposed by Betterton and Julicher [Betterton, M.D. and Julicher, F. (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys. Rev. E, 71, 11904-11911.] to analyse the unwinding data and assess the mechanism of the helicase under study (active versus passive). However, this procedure has given rise to apparently contradictory interpretations: helicases exhibiting similar behaviour have been classified as both active and passive enzymes [Johnson, D.S., Bai, L. Smith, B.Y., Patel, S.S. and Wang, M.D. (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129, 1299-1309; Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. and Croquette, V. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism Proc. Natl Acid. Sci., 104, 19790-19795]. In this work, we show that when the helicase under study has not been previously well characterized (namely, if its step size and rate of slippage are unknown) a multi-parameter fit to the afore-mentioned model can indeed lead to contradictory interpretations. We thus propose to differentiate between active and passive helicases on the basis of the comparison between their observed translocation velocity on single-stranded nucleic acid and their unwinding rate of double-stranded nucleic acid (with various GC content and under different tensions). A threshold separating active from passive behaviour is proposed following an analysis of the reported activities of different helicases. We study and contrast the mechanism of two helicases that exemplify these two behaviours: active for the RecQ helicase and passive for the gp41 helicase.
Collapse
Affiliation(s)
- Maria Manosas
- Laboratoire de Physique Statistique, Ecole Normale Superieure, UPMC Univ Paris 06, Universit Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|
46
|
Manosas M, Meglio A, Spiering MM, Ding F, Benkovic SJ, Barre FX, Saleh OA, Allemand JF, Bensimon D, Croquette V. Magnetic tweezers for the study of DNA tracking motors. Methods Enzymol 2010; 475:297-320. [PMID: 20627163 DOI: 10.1016/s0076-6879(10)75013-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Single-molecule manipulation methods have opened a new vista on the study of molecular motors. Here we describe the use of magnetic traps for the investigation of the mechanism of DNA based motors, in particular helicases and translocases.
Collapse
Affiliation(s)
- Maria Manosas
- Laboratoire de Physique Statistique, Ecole Normale Superieure, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Noothi SK, Minda R, Rao BJ. MutS and UvrD Proteins Stimulate Exonuclease Action: Insights into Exonuclease-Mediated Strand Repair. Biochemistry 2009; 48:7787-93. [DOI: 10.1021/bi8020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunil K. Noothi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Renu Minda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
48
|
Yodh JG, Stevens BC, Kanagaraj R, Janscak P, Ha T. BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J 2009; 28:405-16. [PMID: 19165145 PMCID: PMC2646154 DOI: 10.1038/emboj.2008.298] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/17/2008] [Indexed: 01/27/2023] Open
Abstract
Bloom syndrome (BS) is a rare genetic disorder characterized by genomic instability and a high predisposition to cancer. The gene defective in BS, BLM, encodes a member of the RecQ family of 3'-5' DNA helicases, and is proposed to function in recombinational repair during DNA replication. Here, we have utilized single-molecule fluorescence resonance energy transfer microscopy to examine the behaviour of BLM on forked DNA substrates. Strikingly, BLM unwound individual DNA molecules in a repetitive manner, unwinding a short length of duplex DNA followed by rapid reannealing and reinitiation of unwinding in several successions. Our results show that a monomeric BLM can 'measure' how many base pairs it has unwound, and once it has unwound a critical length, it reverses the unwinding reaction through strand switching and translocating on the opposing strand. Repetitive unwinding persisted even in the presence of hRPA, and interaction between wild-type BLM and hRPA was necessary for unwinding reinitiation on hRPA-coated DNA. The reported activities may facilitate BLM processing of stalled replication forks and illegitimately formed recombination intermediates.
Collapse
Affiliation(s)
- Jaya G Yodh
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benjamin C Stevens
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Taekjip Ha
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Howard Hughes Medical Institute, Urbana, IL, USA
| |
Collapse
|