1
|
Renart ML, Giudici AM, González-Ros JM, Poveda JA. Steady-state and time-resolved fluorescent methodologies to characterize the conformational landscape of the selectivity filter of K + channels. Methods 2024; 225:89-99. [PMID: 38508347 DOI: 10.1016/j.ymeth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
A variety of equilibrium and non-equilibrium methods have been used in a multidisciplinary approach to study the conformational landscape associated with the binding of different cations to the pore of potassium channels. These binding processes, and the conformational changes resulting therefrom, modulate the functional properties of such integral membrane properties, revealing these permeant and blocking cations as true effectors of such integral membrane proteins. KcsA, a prototypic K+ channel from Streptomyces lividans, has been extensively characterized in this regard. Here, we revise several fluorescence-based approaches to monitor cation binding under different experimental conditions in diluted samples, analyzing the advantages and disadvantages of each approach. These studies have contributed to explain the selectivity, conduction, and inactivation properties of K+ channels at the molecular level, together with the allosteric communication between the two gates that control the ion channel flux, and how they are modulated by lipids.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
2
|
Renart ML, Giudici AM, Coll-Díez C, González-Ros JM, Poveda JA. Anionic Phospholipids Shift the Conformational Equilibrium of the Selectivity Filter in the KcsA Channel to the Conductive Conformation: Predicted Consequences on Inactivation. Biomedicines 2023; 11:biomedicines11051376. [PMID: 37239046 DOI: 10.3390/biomedicines11051376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report an allosteric effect of an anionic phospholipid on a model K+ channel, KcsA. The anionic lipid in mixed detergent-lipid micelles specifically induces a change in the conformational equilibrium of the channel selectivity filter (SF) only when the channel inner gate is in the open state. Such change consists of increasing the affinity of the channel for K+, stabilizing a conductive-like form by maintaining a high ion occupancy in the SF. The process is highly specific in several aspects: First, lipid modifies the binding of K+, but not that of Na+, which remains unperturbed, ruling out a merely electrostatic phenomenon of cation attraction. Second, no lipid effects are observed when a zwitterionic lipid, instead of an anionic one, is present in the micelles. Lastly, the effects of the anionic lipid are only observed at pH 4.0, when the inner gate of KcsA is open. Moreover, the effect of the anionic lipid on K+ binding to the open channel closely emulates the K+ binding behaviour of the non-inactivating E71A and R64A mutant proteins. This suggests that the observed increase in K+ affinity caused by the bound anionic lipid should result in protecting the channel against inactivation.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Carlos Coll-Díez
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
3
|
Abrahamyan A, Eldstrom J, Sahakyan H, Karagulyan N, Mkrtchyan L, Karapetyan T, Sargsyan E, Kneussel M, Nazaryan K, Schwarz JR, Fedida D, Vardanyan V. Mechanism of external K+ sensitivity of KCNQ1 channels. J Gen Physiol 2023; 155:213880. [PMID: 36809486 PMCID: PMC9960071 DOI: 10.1085/jgp.202213205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.
Collapse
Affiliation(s)
- Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Nare Karagulyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Ernest Sargsyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| |
Collapse
|
4
|
Öster C, Tekwani Movellan K, Goold B, Hendriks K, Lange S, Becker S, de Groot BL, Kopec W, Andreas LB, Lange A. Direct Detection of Bound Ammonium Ions in the Selectivity Filter of Ion Channels by Solid-State NMR. J Am Chem Soc 2022; 144:4147-4157. [PMID: 35200002 PMCID: PMC8915258 DOI: 10.1021/jacs.1c13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/16/2023]
Abstract
The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.
Collapse
Affiliation(s)
- Carl Öster
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kumar Tekwani Movellan
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Goold
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, U.K.
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kitty Hendriks
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut
für Biologie, Humboldt-Universität
zu Berlin, Invalidenstr.
42, 10115 Berlin, Germany
| |
Collapse
|
5
|
Costa F, Guardiani C, Giacomello A. Exploring K v 1.2 Channel Inactivation Through MD Simulations and Network Analysis. Front Mol Biosci 2021; 8:784276. [PMID: 34988118 PMCID: PMC8721119 DOI: 10.3389/fmolb.2021.784276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The KCNA2 gene encodes the K v 1.2 channel, a mammalian Shaker-like voltage-gated K+ channel, whose defections are linked to neuronal deficiency and childhood epilepsy. Despite the important role in the kinetic behavior of the channel, the inactivation remained hereby elusive. Here, we studied the K v 1.2 inactivation via a combined simulation/network theoretical approach that revealed two distinct pathways coupling the Voltage Sensor Domain and the Pore Domain to the Selectivity Filter. Additionally, we mutated some residues implicated in these paths and we explained microscopically their function in the inactivation mechanism by computing a contact map. Interestingly, some pathological residues shown to impair the inactivation lay on the paths. In summary, the presented results suggest two pathways as the possible molecular basis of the inactivation mechanism in the K v 1.2 channel. These pathways are consistent with earlier mutational studies and known mutations involved in neuronal channelopathies.
Collapse
Affiliation(s)
| | | | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
6
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
7
|
Díaz-García C, Renart ML, Poveda JA, Giudici AM, González-Ros JM, Prieto M, Coutinho A. Probing the Structural Dynamics of the Activation Gate of KcsA Using Homo-FRET Measurements. Int J Mol Sci 2021; 22:ijms222111954. [PMID: 34769384 PMCID: PMC8584343 DOI: 10.3390/ijms222111954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The allosteric coupling between activation and inactivation processes is a common feature observed in K+ channels. Particularly, in the prokaryotic KcsA channel the K+ conduction process is controlled by the inner gate, which is activated by acidic pH, and by the selectivity filter (SF) or outer gate, which can adopt non-conductive or conductive states. In a previous study, a single tryptophan mutant channel (W67 KcsA) enabled us to investigate the SF dynamics using time-resolved homo-Förster Resonance Energy Transfer (homo-FRET) measurements. Here, the conformational changes of both gates were simultaneously monitored after labelling the G116C position with tetramethylrhodamine (TMR) within a W67 KcsA background. At a high degree of protein labeling, fluorescence anisotropy measurements showed that the pH-induced KcsA gating elicited a variation in the homo-FRET efficiency among the conjugated TMR dyes (TMR homo-FRET), while the conformation of the SF was simultaneously tracked (W67 homo-FRET). The dependence of the activation pKa of the inner gate with the ion occupancy of the SF unequivocally confirmed the allosteric communication between the two gates of KcsA. This simple TMR homo-FRET based ratiometric assay can be easily extended to study the conformational dynamics associated with the gating of other ion channels and their modulation.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
- Correspondence: (M.L.R.); (A.C.)
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - José M. González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Manuel Prieto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (M.L.R.); (A.C.)
| |
Collapse
|
8
|
Kudryashova KS, Nekrasova OV, Kirpichnikov MP, Feofanov AV. Chimeras of KcsA and Kv1 as a bioengineering tool to study voltage-gated potassium channels and their ligands. Biochem Pharmacol 2021; 190:114646. [PMID: 34090876 DOI: 10.1016/j.bcp.2021.114646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Chimeric potassium channels KcsA-Kv1, which are among the most intensively studied hybrid membrane proteins to date, were constructed by replacing a part of the pore domain of bacterial potassium channel KcsA (K channel of streptomyces A) with corresponding regions of the mammalian voltage-gated potassium channels belonging to the Kv1 subfamily. In this way, the pore blocker binding site of Kv1 channels was transferred to KcsA, opening up possibility to use the obtained hybrids as receptors of Kv1-channel pore blockers of different origin. In this review the recent progress in KcsA-Kv1 channel design and applications is discussed with a focus on the development of new assays for studying interactions of pore blockers with the channels. A summary of experimental data is presented demonstrating that hybrid channels reproduce the blocker-binding profiles of parental Kv1 channels. It is overviewed how the KcsA-Kv1 chimeras are used to get new insight into the structure of potassium channels, to determine molecular basis for high affinity and selectivity of binding of peptide blockers to Kv1 channels, as well as to identify new peptide ligands.
Collapse
Affiliation(s)
- Ksenia S Kudryashova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
9
|
Pérez-Conesa S, Keeler EG, Zhang D, Delemotte L, McDermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel. J Chem Phys 2021; 154:165102. [PMID: 33940802 PMCID: PMC9250420 DOI: 10.1063/5.0040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/26/2021] [Indexed: 11/14/2022] Open
Abstract
As the first potassium channel with an x-ray structure determined, and given its homology to eukaryotic channels, the pH-gated prokaryotic channel KcsA has been extensively studied. Nevertheless, questions related, in particular, to the allosteric coupling between its gates remain open. The many currently available x-ray crystallography structures appear to correspond to various stages of activation and inactivation, offering insights into the molecular basis of these mechanisms. Since these studies have required mutations, complexation with antibodies, and substitution of detergents in place of lipids, examining the channel under more native conditions is desirable. Solid-state nuclear magnetic resonance (SSNMR) can be used to study the wild-type protein under activating conditions (low pH), at room temperature, and in bacteriomimetic liposomes. In this work, we sought to structurally assign the activated state present in SSNMR experiments. We used a combination of molecular dynamics (MD) simulations, chemical shift prediction algorithms, and Bayesian inference techniques to determine which of the most plausible x-ray structures resolved to date best represents the activated state captured in SSNMR. We first identified specific nuclei with simulated NMR chemical shifts that differed significantly when comparing partially open vs fully open ensembles from MD simulations. The simulated NMR chemical shifts for those specific nuclei were then compared to experimental ones, revealing that the simulation of the partially open state was in good agreement with the SSNMR data. Nuclei that discriminate effectively between partially and fully open states belong to residues spread over the sequence and provide a molecular level description of the conformational change.
Collapse
Affiliation(s)
- Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Eric G. Keeler
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
10
|
Zhang D, Howarth GS, Parkin LA, McDermott AE. NMR studies of lipid regulation of the K + channel KcsA. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183491. [PMID: 33065136 PMCID: PMC9189731 DOI: 10.1016/j.bbamem.2020.183491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
The membrane environment, including specific lipid characteristics, plays important roles in the folding, stability, and gating of the prokaryotic potassium channel KcsA. Here we study the effect of membrane composition on the population of various functional states of KcsA. The spectra provide support for the previous observation of copurifying phospholipids with phosphoglycerol headgroups. Additional, exogenously added anionic lipids do not appear to be required to stabilize the open conductive conformation of KcsA, which was previously thought to be the case. On the contrary, NMR-based binding studies indicate that including anionic lipids in proteoliposomes at acidic pH leads to a weaker potassium ion affinity at the selectivity filter. Since K+ ion loss leads to channel inactivation, these results suggest that anionic lipids promote channel inactivation.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Gary S Howarth
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Lia A Parkin
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America.
| |
Collapse
|
11
|
Giudici AM, Díaz-García C, Renart ML, Coutinho A, Prieto M, González-Ros JM, Poveda JA. Tetraoctylammonium, a Long Chain Quaternary Ammonium Blocker, Promotes a Noncollapsed, Resting-Like Inactivated State in KcsA. Int J Mol Sci 2021; 22:ijms22020490. [PMID: 33419017 PMCID: PMC7825302 DOI: 10.3390/ijms22020490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Alkylammonium salts have been used extensively to study the structure and function of potassium channels. Here, we use the hydrophobic tetraoctylammonium (TOA+) to shed light on the structure of the inactivated state of KcsA, a tetrameric prokaryotic potassium channel that serves as a model to its homologous eukaryotic counterparts. By the combined use of a thermal denaturation assay and the analysis of homo-Förster resonance energy transfer in a mutant channel containing a single tryptophan (W67) per subunit, we found that TOA+ binds the channel cavity with high affinity, either with the inner gate open or closed. Moreover, TOA+ bound at the cavity allosterically shifts the equilibrium of the channel's selectivity filter conformation from conductive to an inactivated-like form. The inactivated TOA+-KcsA complex exhibits a loss in the affinity towards permeant K+ at pH 7.0, when the channel is in its closed state, but maintains the two sets of K+ binding sites and the W67-W67 intersubunit distances characteristic of the selectivity filter in the channel resting state. Thus, the TOA+-bound state differs clearly from the collapsed channel state described by X-ray crystallography and claimed to represent the inactivated form of KcsA.
Collapse
Affiliation(s)
- Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
| | - Clara Díaz-García
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
| | - Ana Coutinho
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
| | - José M. González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
- Correspondence: (J.M.G.-R.); (J.A.P.); Tel.: +34-966-658-757 (J.M.G.-R.); +34-966-658-466 (J.A.P.)
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
- Correspondence: (J.M.G.-R.); (J.A.P.); Tel.: +34-966-658-757 (J.M.G.-R.); +34-966-658-466 (J.A.P.)
| |
Collapse
|
12
|
Iwahashi Y, Toyama Y, Imai S, Itoh H, Osawa M, Inoue M, Shimada I. Conformational equilibrium shift underlies altered K + channel gating as revealed by NMR. Nat Commun 2020; 11:5168. [PMID: 33057011 PMCID: PMC7560842 DOI: 10.1038/s41467-020-19005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023] Open
Abstract
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations. Potassium ion channels control K+ permeation across cell membranes and mutations that cause cardiovascular and neural diseases are known. Here, the authors perform NMR measurements with the prototypical K+ channel from Streptomyces lividans, KcsA and characterise the effects of disease causing mutations on the conformational dynamics of K+ channels in a physiological solution environment.
Collapse
Affiliation(s)
- Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan.
| |
Collapse
|
13
|
Modulation of Function, Structure and Clustering of K + Channels by Lipids: Lessons Learnt from KcsA. Int J Mol Sci 2020; 21:ijms21072554. [PMID: 32272616 PMCID: PMC7177331 DOI: 10.3390/ijms21072554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
KcsA, a prokaryote tetrameric potassium channel, was the first ion channel ever to be structurally solved at high resolution. This, along with the ease of its expression and purification, made KcsA an experimental system of choice to study structure–function relationships in ion channels. In fact, much of our current understanding on how the different channel families operate arises from earlier KcsA information. Being an integral membrane protein, KcsA is also an excellent model to study how lipid–protein and protein–protein interactions within membranes, modulate its activity and structure. In regard to the later, a variety of equilibrium and non-equilibrium methods have been used in a truly multidisciplinary effort to study the effects of lipids on the KcsA channel. Remarkably, both experimental and “in silico” data point to the relevance of specific lipid binding to two key arginine residues. These residues are at non-annular lipid binding sites on the protein and act as a common element to trigger many of the lipid effects on this channel. Thus, processes as different as the inactivation of channel currents or the assembly of clusters from individual KcsA channels, depend upon such lipid binding.
Collapse
|
14
|
Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc Natl Acad Sci U S A 2020; 117:2938-2947. [PMID: 31980523 PMCID: PMC7022178 DOI: 10.1073/pnas.1915010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inward rectifier K+ (Kir) channels play an important role in reestablishing the resting membrane state of the action potential of excitable cells in humans. KirBac1.1 is a prokaryotic Kir channel with a high degree of homology to human Kir channels and can be isotopically labeled in NMR quantities for structural studies. Functional assays and NMR assignments confirm that KirBac1.1 is in a constitutively conductive state. Solid-state NMR assignments further reveal alternate conformations at key sites in the protein that are well conserved through human Kir channels, hinting at a possible allosteric network between channels. These underlying sequential and structural motifs could explain abnormal conductive properties of these channels fundamental to their native gating processes. The conformational changes required for activation and K+ conduction in inward-rectifier K+ (Kir) channels are still debated. These structural changes are brought about by lipid binding. It is unclear how this process relates to fast gating or if the intracellular and extracellular regions of the protein are coupled. Here, we examine the structural details of KirBac1.1 reconstituted into both POPC and an activating lipid mixture of 3:2 POPC:POPG (wt/wt). KirBac1.1 is a prokaryotic Kir channel that shares homology with human Kir channels. We establish that KirBac1.1 is in a constitutively active state in POPC:POPG bilayers through the use of real-time fluorescence quenching assays and Förster resonance energy transfer (FRET) distance measurements. Multidimensional solid-state NMR (SSNMR) spectroscopy experiments reveal two different conformers within the transmembrane regions of the protein in this activating lipid environment, which are distinct from the conformation of the channel in POPC bilayers. The differences between these three distinct channel states highlight conformational changes associated with an open activation gate and suggest a unique allosteric pathway that ties the selectivity filter to the activation gate through interactions between both transmembrane helices, the turret, selectivity filter loop, and the pore helix. We also identify specific residues involved in this conformational exchange that are highly conserved among human Kir channels.
Collapse
|
15
|
Xu Y, McDermott AE. Inactivation in the potassium channel KcsA. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100009. [PMID: 32647814 PMCID: PMC7337057 DOI: 10.1016/j.yjsbx.2019.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
C-type inactivation in potassium channels is a nearly universal regulatory mechanism. A major hypothesis states that C-type inactivation involves ion loss at the selectivity filter as an allosteric response to activation. NMR is used to probe protein conformational changes in response to pH and [K+], demonstrating that H+ and K+ binding are allosterically coupled in KcsA. The lipids are integrated parts of potassium channels in terms of structure, energetics and function.
Inactivation, the slow cessation of transmission after activation, is a general feature of potassium channels. It is essential for their function, and malfunctions in inactivation leads to numerous pathologies. The detailed mechanism for the C-type inactivation, distinct from the N-type inactivation, remains an active area of investigation. Crystallography, computational simulations, and NMR have greatly enriched our understanding of the process. Here we review the major hypotheses regarding C-type inactivation, particularly focusing on the key role played by NMR studies of the prokaryotic potassium channel KcsA, which serves as a good model for voltage gated mammalian channels.
Collapse
Affiliation(s)
- Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| |
Collapse
|
16
|
Eichmann C, Frey L, Maslennikov I, Riek R. Probing Ion Binding in the Selectivity Filter of the KcsA Potassium Channel. J Am Chem Soc 2019; 141:7391-7398. [DOI: 10.1021/jacs.9b01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Neuron 2019; 101:1134-1149.e3. [DOI: 10.1016/j.neuron.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 12/31/2018] [Indexed: 11/22/2022]
|
18
|
Giudici AM, Renart ML, Díaz-García C, Morales A, Poveda JA, González-Ros JM. Accessibility of Cations to the Selectivity Filter of KcsA in the Inactivated State: An Equilibrium Binding Study. Int J Mol Sci 2019; 20:ijms20030689. [PMID: 30764559 PMCID: PMC6387330 DOI: 10.3390/ijms20030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cation binding under equilibrium conditions has been used as a tool to explore the accessibility of permeant and nonpermeant cations to the selectivity filter in three different inactivated models of the potassium channel KcsA. The results show that the stack of ion binding sites (S1 to S4) in the inactivated filter models remain accessible to cations as they are in the resting channel state. The inactivated state of the selectivity filter is therefore “resting-like” under such equilibrium conditions. Nonetheless, quantitative differences in the apparent KD’s of the binding processes reveal that the affinity for the binding of permeant cations to the inactivated channel models, mainly K+, decreases considerably with respect to the resting channel. This is likely to cause a loss of K+ from the inactivated filter and consequently, to promote nonconductive conformations. The most affected site by the affinity loss seems to be S4, which is interesting because S4 is the first site to accommodate K+ coming from the channel vestibule when K+ exits the cell. Moreover, binding of the nonpermeant species, Na+, is not substantially affected by inactivation, meaning that the inactivated channels are also less selective for permeant versus nonpermeant cations under equilibrium conditions.
Collapse
Affiliation(s)
- Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202 Alicante, Spain.
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202 Alicante, Spain.
| | - Clara Díaz-García
- CQFM-IN and IBB-Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03080 Alicante, Spain.
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202 Alicante, Spain.
| | - José Manuel González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202 Alicante, Spain.
| |
Collapse
|
19
|
Identifying coupled clusters of allostery participants through chemical shift perturbations. Proc Natl Acad Sci U S A 2019; 116:2078-2085. [PMID: 30679272 DOI: 10.1073/pnas.1811168116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Allosteric couplings underlie many cellular signaling processes and provide an exciting avenue for development of new diagnostics and therapeutics. A general method for identifying important residues in allosteric mechanisms would be very useful, but remains elusive due to the complexity of long-range phenomena. Here, we introduce an NMR method to identify residues involved in allosteric coupling between two ligand-binding sites in a protein, which we call chemical shift detection of allostery participants (CAP). Networks of functional groups responding to each ligand are defined through correlated NMR perturbations. In this process, we also identify allostery participants, groups that respond to both binding events and likely play a role in the coupling between the binding sites. Such residues exhibit multiple functional states with distinct NMR chemical shifts, depending on binding status at both binding sites. Such a strategy was applied to the prototypical ion channel KcsA. We had previously shown that the potassium affinity at the extracellular selectivity filter is strongly dependent on proton binding at the intracellular pH sensor. Here, we analyzed proton and potassium binding networks and identified groups that depend on both proton and potassium binding (allostery participants). These groups are viewed as candidates for transmitting information between functional units. The vital role of one such identified amino acid was validated through site-specific mutagenesis, electrophysiology functional studies, and NMR-detected thermodynamic analysis of allosteric coupling. This strategy for identifying allostery participants is likely to have applications for many other systems.
Collapse
|
20
|
Hirano M, Ide T. Electrostatic state of the cytoplasmic domain influences inactivation at the selectivity filter of the KcsA potassium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:220-227. [PMID: 30053405 DOI: 10.1016/j.bbamem.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
KcsA is a proton-activated K+ channel that is regulated at two gates: an activation gate located in the inner entrance of the pore and an inactivation gate at the selectivity filter. Previously, we revealed that the cytoplasmic domain (CPD) of KcsA senses proton and that electrostatic changes of the CPD influences the opening and closing of the activation gate. However, our previous studies did not reveal the effect of CPD on the inactivation gate because we used a non-inactivating mutant (E71A). In the present study, we used mutants that did not harbor the E71A mutation, and showed that the electrostatic state of the CPD influences the inactivation gate. Three novel CPD mutants were generated in which some negatively charged amino acids were replaced with neutral amino acids. These CPD mutants conducted K+, but showed various inactivation properties. Mutants carrying the D149N mutation showed high open probability and slow inactivation, whereas those without the D149N mutation showed low open probability and fast inactivation, similar to wild-type KcsA. In addition, mutants with D149N showed poor K+ selectivity, and permitted Na+ to flow. These results indicated that electrostatic changes in the CPD by D149N mutation triggered the loss of fast inactivation and changes in the conformation of selectivity filter. Additionally, the loss of fast inactivation induced by D149N was reversed by R153A mutation, suggesting that not only the electrostatic state of D149, but also that of R153 affects inactivation.
Collapse
Affiliation(s)
- Minako Hirano
- Bio Photonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| | - Toru Ide
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| |
Collapse
|
21
|
Inverted allosteric coupling between activation and inactivation gates in K + channels. Proc Natl Acad Sci U S A 2018; 115:5426-5431. [PMID: 29735651 DOI: 10.1073/pnas.1800559115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The selectivity filter and the activation gate in potassium channels are functionally and structurally coupled. An allosteric coupling underlies C-type inactivation coupled to activation gating in this ion-channel family (i.e., opening of the activation gate triggers the collapse of the channel's selectivity filter). We have identified the second Threonine residue within the TTVGYGD signature sequence of K+ channels as a crucial residue for this allosteric communication. A Threonine to Alanine substitution at this position was studied in three representative members of the K+-channel family. Interestingly, all of the mutant channels exhibited lack of C-type inactivation gating and an inversion of their allosteric coupling (i.e., closing of the activation gate collapses the channel's selectivity filter). A state-dependent crystallographic study of KcsA-T75A proves that, on activation, the selectivity filter transitions from a nonconductive and deep C-type inactivated conformation to a conductive one. Finally, we provide a crystallographic demonstration that closed-state inactivation can be achieved by the structural collapse of the channel's selectivity filter.
Collapse
|
22
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
23
|
Abstract
A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
24
|
Abstract
Isothermal titration calorimetry (ITC) is an emerging, label-free technology used to measure ligand binding to membrane proteins. This technology utilizes a titration calorimeter to measure the heat exchange upon ligands binding to proteins, the magnitude of which is based on the overall enthalpy of the reaction. In this protocol, the steps we and others use to measure ion binding to ion transport proteins are described.
Collapse
Affiliation(s)
- Shian Liu
- Department of Biology, Texas A&M University, 3474 TAMU, College Station, TX, 77843-3474, USA
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20148, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, 3474 TAMU, College Station, TX, 77843-3474, USA.
| |
Collapse
|
25
|
Cuello LG, Cortes DM, Perozo E. The gating cycle of a K + channel at atomic resolution. eLife 2017; 6:28032. [PMID: 29165243 PMCID: PMC5711375 DOI: 10.7554/elife.28032] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
C-type inactivation in potassium channels helps fine-tune long-term channel activity through conformational changes at the selectivity filter. Here, through the use of cross-linked constitutively open constructs, we determined the structures of KcsA’s mutants that stabilize the selectivity filter in its conductive (E71A, at 2.25 Å) and deep C-type inactivated (Y82A at 2.4 Å) conformations. These structural snapshots represent KcsA’s transient open-conductive (O/O) and the stable open deep C-type inactivated states (O/I), respectively. The present structures provide an unprecedented view of the selectivity filter backbone in its collapsed deep C-type inactivated conformation, highlighting the close interactions with structural waters and the local allosteric interactions that couple activation and inactivation gating. Together with the structures associated with the closed-inactivated state (C/I) and in the well-known closed conductive state (C/O), this work recapitulates, at atomic resolution, the key conformational changes of a potassium channel pore domain as it progresses along its gating cycle.
Collapse
Affiliation(s)
- Luis G Cuello
- Center for Membrane Protein Research, Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - D Marien Cortes
- Center for Membrane Protein Research, Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
26
|
Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M. Hydrogen bond strength in membrane proteins probed by time-resolved 1H-detected solid-state NMR and MD simulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:80-85. [PMID: 28342732 DOI: 10.1016/j.ssnmr.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved 1H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
27
|
Renart ML, Montoya E, Giudici AM, Poveda JA, Fernández AM, Morales A, González-Ros JM. Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel. J Biol Chem 2017; 292:15552-15560. [PMID: 28778926 DOI: 10.1074/jbc.m117.795807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
The selectivity filter in potassium channels, a main component of the ion permeation pathway, configures a stack of binding sites (sites S1-S4) to which K+ and other cations may bind. Specific ion binding to such sites induces changes in the filter conformation, which play a key role in defining both selectivity and permeation. Here, using the potassium channel KcsA as a model, we contribute new evidence to reinforce this assertion. First, ion binding to KcsA blocked by tetrabutylammonium at the most cytoplasmic site in the selectivity filter (S4) suggests that such a site, when in the nonconductive filter conformation, has a higher affinity for cation binding than the most extracellular S1 site. This filter asymmetry, along with differences in intracellular and extracellular concentrations of K+versus Na+ under physiological conditions, should strengthen selection of the permeant K+ by the channel. Second, we used different K+ concentrations to shift the equilibrium between nonconductive and conductive states of the selectivity filter in which to test competitive binding of Na+ These experiments disclosed a marked decrease in the affinity of Na+ to bind the channel when the conformational equilibrium shifts toward the conductive state. This finding suggested that in addition to the selective binding of K+ and other permeant species over Na+, there is a selective exclusion of nonpermeant species from binding the channel filter, once it reaches a fully conductive conformation. We conclude that selective binding and selective exclusion of permeant and nonpermeant cations, respectively, are important determinants of ion channel selectivity.
Collapse
Affiliation(s)
- M Lourdes Renart
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Estefanía Montoya
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - A Marcela Giudici
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - José A Poveda
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Asia M Fernández
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain and
| |
Collapse
|
28
|
Transmembrane allosteric energetics characterization for strong coupling between proton and potassium ion binding in the KcsA channel. Proc Natl Acad Sci U S A 2017; 114:8788-8793. [PMID: 28768808 DOI: 10.1073/pnas.1701330114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The slow spontaneous inactivation of potassium channels exhibits classic signatures of transmembrane allostery. A variety of data support a model in which the loss of K+ ions from the selectivity filter is a major factor in promoting inactivation, which defeats transmission, and is allosterically coupled to protonation of key channel activation residues, more than 30 Å from the K+ ion binding site. We show that proton binding at the intracellular pH sensor perturbs the potassium affinity at the extracellular selectivity filter by more than three orders of magnitude for the full-length wild-type KcsA, a pH-gated bacterial channel, in membrane bilayers. Studies of F103 in the hinge of the inner helix suggest an important role for its bulky sidechain in the allosteric mechanism; we show that the energetic strength of coupling of the gates is strongly altered when this residue is mutated to alanine. These results provide quantitative site-specific measurements of allostery in a bilayer environment, and highlight the power of describing ion channel gating through the lens of allosteric coupling.
Collapse
|
29
|
Andranovits S, Beyl S, Hohaus A, Zangerl-Plessl EM, Timin E, Hering S. Key role of segment IS4 in Cav1.2 inactivation: link between activation and inactivation. Pflugers Arch 2017; 469:1485-1493. [PMID: 28766141 PMCID: PMC5629230 DOI: 10.1007/s00424-017-2038-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022]
Abstract
Inactivation of L-type calcium channel (Cav1.2) is an important determinant of the length of the cardiac action potential. Here, we report a key role of the voltage-sensing segment IS4 in Cav1.2 inactivation. Neutralization of IS4 charges gradually shifted the steady-state inactivation curve on the voltages axis from 5.1 ± 3.7 mV in single point mutant IS4(K1Q) to −26.7 ± 1.3 mV in quadruple mutant IS4(K1Q/R2Q/R3Q/R4Q) compared to wild-type (WT) and accelerated inactivation. The slope factor of the Boltzmann curve of inactivation was decreased from 17.4 ± 3.5 mV (IS4(K1Q)) to 6.2 ± 0.7 mV (IS4(K1Q/R2Q/R3Q/R4Q)). Neutralizations of single or multiple charges in IIS4 and IIIS4 did not significantly affect the time course of inactivation. Neutralization of individual IVS4 charges shifted the inactivation curve between 17.4 ± 1.7 mV (IVS4(R2Q)) and −4.6 ± 1.4 mV (IVS4(R4Q)) on the voltage axis and affected the slope of the inactivation curves (IVS4(R2Q): 10.2 ± 1.2 mV, IVS4(R4Q): 9.7 ± 0.7 mV and IVS4(K5Q): 8.1 ± 0.7 mV vs WT: 14.1 ± 0.8 mV). IS4(K1Q) attenuated while IS4(K1Q/R2Q/R3Q) and IS4(K1Q/R2Q/R4Q/R3Q) enhanced the development of inactivation. Shifts in the voltage dependence of inactivation curves induced by IS4 neutralizations significantly correlated with shifts of the voltage dependence of channel activation (r = 0.95, p < 0.01) indicating that IS4 movement is not only rate limiting for activation but also initiates inactivation. The paradoxical decrease of the slope factor of the steady-state inactivation and acceleration of inactivation kinetics upon charge neutralization in segment IS4 may reflect the loss of stabilizing interactions of arginines and lysine with surrounding residues.
Collapse
Affiliation(s)
- Stanislav Andranovits
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Stanislav Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Austrian Science Fund (FWF), Haus der Forschung, Sensengasse 1, 1090, Vienna, Austria.
| | - Annette Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Eugen Timin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Austrian Science Fund (FWF), Haus der Forschung, Sensengasse 1, 1090, Vienna, Austria.
| |
Collapse
|
30
|
van der Cruijsen EAW, Prokofyev AV, Pongs O, Baldus M. Probing Conformational Changes during the Gating Cycle of a Potassium Channel in Lipid Bilayers. Biophys J 2017; 112:99-108. [PMID: 28076820 DOI: 10.1016/j.bpj.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.
Collapse
Affiliation(s)
- Elwin A W van der Cruijsen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Alexander V Prokofyev
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Olaf Pongs
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Montoya E, Lourdes Renart M, Marcela Giudici A, Poveda JA, Fernández AM, Morales A, González-Ros JM. Differential binding of monovalent cations to KcsA: Deciphering the mechanisms of potassium channel selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:779-788. [PMID: 28088447 DOI: 10.1016/j.bbamem.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022]
Abstract
This work explores whether the ion selectivity and permeation properties of a model potassium channel, KcsA, could be explained based on ion binding features. Non-permeant Na+ or Li+ bind with low affinity (millimolar KD's) to a single set of sites contributed by the S1 and S4 sites seen at the selectivity filter in the KcsA crystal structure. Conversely, permeant K+, Rb+, Tl+ and even Cs+ bind to two different sets of sites as their concentration increases, consistent with crystallographic evidence on the ability of permeant species to induce concentration-dependent transitions between conformational states (non-conductive and conductive) of the channel's selectivity filter. The first set of such sites, assigned also to the crystallographic S1 and S4 sites, shows similarly high affinities for all permeant species (micromolar KD's), thus, securing displacement of potentially competing non-permeant cations. The second set of sites, available only to permeant cations upon the transition to the conductive filter conformation, shows low affinity (millimolar KD's), thus, favoring cation dissociation and permeation and results from the contribution of all S1 through S4 crystallographic sites. The differences in affinities between permeant and non-permeant cations and the similarities in binding behavior within each of these two groups, correlate fully with their permeabilities relative to K+, suggesting that binding is an important determinant of the channel's ion selectivity. Conversely, the complexity observed in permeation features cannot be explained just in terms of binding and likely relates to reported differences in the occupancy of the S2 and S3 sites by the permeant cations.
Collapse
Affiliation(s)
- Estefanía Montoya
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - A Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Asia M Fernández
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Andrés Morales
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| |
Collapse
|
32
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
33
|
Abstract
AbstractIncreasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane–protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein–protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein–ligand and protein–protein interactions that underlie essential biological functions in cellular membranes.
Collapse
|
34
|
Kim DM, Dikiy I, Upadhyay V, Posson DJ, Eliezer D, Nimigean CM. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles. J Gen Physiol 2016; 148:119-32. [PMID: 27432996 PMCID: PMC4969796 DOI: 10.1085/jgp.201611602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022] Open
Abstract
The process of ion channel gating-opening and closing-involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating.
Collapse
Affiliation(s)
- Dorothy M Kim
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Igor Dikiy
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Vikrant Upadhyay
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - David J Posson
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
35
|
Kaur H, Lakatos A, Spadaccini R, Vogel R, Hoffmann C, Becker-Baldus J, Ouari O, Tordo P, Mchaourab H, Glaubitz C. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities. Biol Chem 2016; 396:1135-49. [PMID: 25849794 DOI: 10.1515/hsz-2015-0119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/26/2015] [Indexed: 01/20/2023]
Abstract
ATP binding cassette (ABC) transporters form a superfamily of integral membrane proteins involved in translocation of substrates across the membrane driven by ATP hydrolysis. Despite available crystal structures and extensive biochemical data, many open questions regarding their transport mechanisms remain. Therefore, there is a need to explore spectroscopic techniques such as solid state NMR in order to bridge the gap between structural and mechanistic data. In this study, we investigate the feasibility of using Escherichia coli MsbA as a model ABC transporter for solid state NMR studies. We show that optimised solubilisation and reconstitution procedures enable preparing stable and homogenous protein samples. Depending on the duration of solubilisation, MsbA can be obtained in either an apo- or in a native lipid A bound form. Building onto these optimisations, the first promising MAS-NMR spectra with narrow lines have been recorded. However, further sensitivity improvements are required so that complex NMR experiments can be recorded within a reasonable amount of time. We therefore demonstrate the usability of paramagnetic doping for rapid data acquisition and explore dynamic nuclear polarisation as a method for general signal enhancement. Our results demonstrate that solid state NMR provides an opportunity to address important biological questions related to complex mechanisms of ABC transporters.
Collapse
|
36
|
Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation. Structure 2016; 24:750-761. [PMID: 27150040 DOI: 10.1016/j.str.2016.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
Abstract
The selectivity filter of K(+) channels contains four ion binding sites (S1-S4) and serves dual functions of discriminating K(+) from Na(+) and acting as a gate during C-type inactivation. C-type inactivation is modulated by ion binding to the selectivity filter sites, but the underlying mechanism is not known. Here we evaluate how the ion binding sites in the selectivity filter of the KcsA channel participate in C-type inactivation and in recovery from inactivation. We use unnatural amide-to-ester substitutions in the protein backbone to manipulate the S1-S3 sites and a side-chain substitution to perturb the S4 site. We develop an improved semisynthetic approach for generating these amide-to-ester substitutions in the selectivity filter. Our combined electrophysiological and X-ray crystallographic analysis of the selectivity filter mutants show that the ion binding sites play specific roles during inactivation and provide insights into the structural changes at the selectivity filter during C-type inactivation.
Collapse
|
37
|
Rivera-Torres IO, Jin TB, Cadene M, Chait BT, Poget SF. Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA. Sci Rep 2016; 6:23904. [PMID: 27044983 PMCID: PMC4820689 DOI: 10.1038/srep23904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 increases potassium flow through KcsA by allosterically reducing inactivation of the channel.
Collapse
Affiliation(s)
- Iván O. Rivera-Torres
- LaGuardia Community College, City University of New York, Long Island City, NY 11101, USA
| | - Tony B. Jin
- Department of Chemistry, CUNY Graduate Center and Institute for Macromolecular Assemblies, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | | | | | - Sébastien F. Poget
- Department of Chemistry, CUNY Graduate Center and Institute for Macromolecular Assemblies, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
38
|
Brettmann JB, Urusova D, Tonelli M, Silva JR, Henzler-Wildman KA. Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc Natl Acad Sci U S A 2015; 112:15366-71. [PMID: 26621745 PMCID: PMC4687598 DOI: 10.1073/pnas.1515965112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flux-dependent inactivation that arises from functional coupling between the inner gate and the selectivity filter is widespread in ion channels. The structural basis of this coupling has only been well characterized in KcsA. Here we present NMR data demonstrating structural and dynamic coupling between the selectivity filter and intracellular constriction point in the bacterial nonselective cation channel, NaK. This transmembrane allosteric communication must be structurally different from KcsA because the NaK selectivity filter does not collapse under low-cation conditions. Comparison of NMR spectra of the nonselective NaK and potassium-selective NaK2K indicates that the number of ion binding sites in the selectivity filter shifts the equilibrium distribution of structural states throughout the channel. This finding was unexpected given the nearly identical crystal structure of NaK and NaK2K outside the immediate vicinity of the selectivity filter. Our results highlight the tight structural and dynamic coupling between the selectivity filter and the channel scaffold, which has significant implications for channel function. NaK offers a distinct model to study the physiologically essential connection between ion conduction and channel gating.
Collapse
Affiliation(s)
- Joshua B Brettmann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Darya Urusova
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
39
|
Stas JI, Bocksteins E, Labro AJ, Snyders DJ. Modulation of Closed-State Inactivation in Kv2.1/Kv6.4 Heterotetramers as Mechanism for 4-AP Induced Potentiation. PLoS One 2015; 10:e0141349. [PMID: 26505474 PMCID: PMC4623978 DOI: 10.1371/journal.pone.0141349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
The voltage-gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5-Kv6 and Kv8-Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4-aminopyridine (4-AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4-AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4-AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4-mediated closed-state inactivation: suppression by 4-AP of the Kv2.1/Kv6.4 closed-state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of -80 mV. This modulation also resulted in a slower initiation and faster recovery from closed-state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4-AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4-AP on Kv2.1/Kv6.4 channels.
Collapse
Affiliation(s)
- Jeroen I. Stas
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerp, Belgium
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerp, Belgium
| | - Alain J. Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerp, Belgium
| | - Dirk J. Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
40
|
van der Cruijsen EAW, Koers EJ, Sauvée C, Hulse RE, Weingarth M, Ouari O, Perozo E, Tordo P, Baldus M. Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling. Chemistry 2015; 21:12971-7. [DOI: 10.1002/chem.201501376] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/24/2022]
|
41
|
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72:3677-93. [PMID: 26070303 PMCID: PMC4565861 DOI: 10.1007/s00018-015-1948-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022]
Abstract
Potassium channels ubiquitously exist in nearly all kingdoms of life and perform diverse but important functions. Since the first atomic structure of a prokaryotic potassium channel (KcsA, a channel from Streptomyces lividans) was determined, tremendous progress has been made in understanding the mechanism of potassium channels and channels conducting other ions. In this review, we discuss the structure of various kinds of potassium channels, including the potassium channel with the pore-forming domain only (KcsA), voltage-gated, inwardly rectifying, tandem pore domain, and ligand-gated ones. The general properties shared by all potassium channels are introduced first, followed by specific features in each class. Our purpose is to help readers to grasp the basic concepts, to be familiar with the property of the different domains, and to understand the structure and function of the potassium channels better.
Collapse
Affiliation(s)
- Qie Kuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden.
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden.
| | - Pasi Purhonen
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden
| |
Collapse
|
42
|
Baba A, Tachi M, Maruyama Y, Kazama I. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes. Pharmacol Rep 2015; 67:959-64. [PMID: 26398391 DOI: 10.1016/j.pharep.2015.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. METHODS Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. RESULTS Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. CONCLUSIONS This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Asuka Baba
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshio Maruyama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
43
|
Hornig S, Ohmert I, Trauner D, Ader C, Baldus M, Pongs O. Tetraphenylporphyrin derivative specifically blocks members of the voltage-gated potassium channel subfamily Kv1. Channels (Austin) 2014; 7:473-82. [PMID: 24722265 DOI: 10.4161/chan.25848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tetraphenylporphyrin derivatives represent a promising class of high-affinity ligands for voltage-gated potassium (Kv) channels. Herein, we investigated the mode of Kv channel block of one tetraphenylporphyrin derivative, por3, using electrophysiological methods, structure-based mutagenesis, and solid-state NMR spectroscopy. The combined data showed that por3 specifically blocks Kv1.x channels. Unexpectedly, 2 different por3 binding modes lead to Kv1.x channel block exerted through multiple por3 binding sites: first, por3 interacts in a highly cooperative and specific manner with the voltage sensor domain stabilizing closed Kv1 channel state(s). Therefore, stronger depolarization is needed to activate Kv1.x channels in the presence of por3. Second, por3 bind to a single site at the external pore entrance to block the ion conduction pathway of activated Kv1.x channels. This block is voltage-independent. Por3 appears to have equal affinities for voltage-sensor and pore. However, at negative voltage and low por3 concentration, por3 gating modifier properties prevail due to the high cooperativity of binding. By contrast, at positive voltages, when Kv1.x channels are fully activated, por3 pore blocking properties predominate.
Collapse
Affiliation(s)
- Sönke Hornig
- ZMNH; University-Hospital Hamburg-Eppendorf; Hamburg, Germany
| | - Iris Ohmert
- ZMNH, University-Hospital Hamburg-Eppendorf; Hamburg, Germany
| | - Dirk Trauner
- Chemistry Department; Ludwig-Maximilians University; Munich, Germany
| | - Christian Ader
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Faculty of Science; Utrecht University; Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Faculty of Science; Utrecht University; Utrecht, The Netherlands
| | - Olaf Pongs
- ZMNH, University-Hospital Hamburg-Eppendorf; Hamburg, Germany; Department of Physiology; School of Medicine; University of Saarlands; Homburg, Germany
| |
Collapse
|
44
|
Distinct configurations of cations and water in the selectivity filter of the KcsA potassium channel probed by 3D-RISM theory. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Koers EJ, van der Cruijsen EAW, Rosay M, Weingarth M, Prokofyev A, Sauvée C, Ouari O, van der Zwan J, Pongs O, Tordo P, Maas WE, Baldus M. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. JOURNAL OF BIOMOLECULAR NMR 2014; 60:157-68. [PMID: 25284462 DOI: 10.1007/s10858-014-9865-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/23/2014] [Indexed: 05/04/2023]
Abstract
Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.
Collapse
Affiliation(s)
- Eline J Koers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
47
|
Weingarth M, van der Cruijsen EAW, Ostmeyer J, Lievestro S, Roux B, Baldus M. Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes. J Am Chem Soc 2014; 136:2000-7. [PMID: 24410583 DOI: 10.1021/ja411450y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recovery in K(+) channels, that is, the transition from the inactivated nonconductive selectivity filter conformation toward the conductive conformation, occurs on a time scale of the order of seconds, which is astonishingly long, given that the structural differences among the filter conformations are faint (<1 Å). Computational studies and electrophysiological measurements suggested that buried water molecules bound behind the selectivity filter are at the origin of the slowness of recovery in K(+) channels. Using a combination of solid-state NMR spectroscopy (ssNMR) and long molecular dynamics simulations, we sketch a high-resolution map of the spatial and temporal distribution of water behind the selectivity filter of a membrane-embedded K(+) channel in two different gating modes. Our study demonstrates that buried water molecules with long residence times are spread all along the rear of the inactivated filter, which explains the recovery kinetics. In contrast, the same region of the structure appears to be dewetted when the selectivity filter is in the conductive state. Using proton-detected ssNMR on fully protonated channels, we demonstrate the presence of a pathway that allows for the interchange of buried and bulk water, as required for a functional influence of buried water on recovery and slow inactivation. Furthermore, we provide direct experimental evidence for the presence of additional ordered water molecules that surround the filter and that are modulated by the channel's gating mode.
Collapse
Affiliation(s)
- Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University , 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
It has been hypothesized that transmembrane allostery is the basis for inactivation of the potassium channel KcsA: opening the intracellular gate is spontaneously followed by ion expulsion at the extracellular selectivity filter. This suggests a corollary: following ion expulsion at neutral pH, a spontaneous global conformation change of the transmembrane helices, similar to the motion involved in opening, is expected. Consequently, both the low potassium state and the low pH state of the system could provide useful models for the inactivated state. Unique NMR studies of full-length KcsA in hydrated bilayers provide strong evidence for such a mutual coupling across the bilayer: namely, upon removing ambient potassium ions, changes are seen in the NMR shifts of carboxylates E118 and E120 in the pH gate in the hinges of the inner transmembrane helix (98-103), and in the selectivity filter, all of which resemble changes seen upon acid-induced opening and inhibition and suggest that ion release can trigger channel helix opening.
Collapse
|
49
|
Malik C, Ghosh S. S6 peptide derived from KvAP channel shows cooperativity in gating on bilayer lipid membrane. PLoS One 2013; 8:e78845. [PMID: 24265723 PMCID: PMC3827124 DOI: 10.1371/journal.pone.0078845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Collective behavior of S6 peptide channels derived from KvAP (a bacterial potassium channel) incorporated in lipid bilayer membrane, has been investigated at various applied potentials through multi-channel electrophysiological experiments. The current versus time traces at any particular membrane potential show clear steps for sequential opening of the multi-channels. The minimum current (representing one-channel current) was found out from the amplitude histograms. Accordingly, the number of open channels corresponding to a particular open state was calculated. It was observed that the above-mentioned one channel current is higher than the corresponding single-channel current at most of the applied membrane potentials. Moreover, the difference between the single and one channel conductances is a nonlinear function of the membrane potential. We conclude that the S6 multi-channels show co-operative gating. Voltage relaxation studies support the above-mentioned conclusion.
Collapse
Affiliation(s)
- Chetan Malik
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
50
|
Allosteric coupling of the inner activation gate to the outer pore of a potassium channel. Sci Rep 2013; 3:3025. [PMID: 24149575 PMCID: PMC3806241 DOI: 10.1038/srep03025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/04/2013] [Indexed: 11/09/2022] Open
Abstract
In potassium channels, functional coupling of the inner and outer pore gates may result from energetic interactions between residues and conformational rearrangements that occur along a structural path between them. Here, we show that conservative mutations of a residue near the inner activation gate of the Shaker potassium channel (I470) modify the rate of C-type inactivation at the outer pore, pointing to this residue as part of a pathway that couples inner gate opening to changes in outer pore structure and reduction of ion flow. Because they remain equally sensitive to rises in extracellular potassium, altered inactivation rates of the mutant channels are not secondary to modified binding of potassium to the outer pore. Conservative mutations of I470 also influence the interaction of the Shaker N-terminus with the inner gate, which separately affects the outer pore.
Collapse
|