1
|
Haarkötter C, Saiz M, Gálvez X, Vinueza-Espinosa DC, Medina-Lozano MI, Álvarez JC, Lorente JA. Evaluation of the usefulness of insertion-null markers in critical skeletal remains. Int J Legal Med 2024; 138:1287-1293. [PMID: 38509248 PMCID: PMC11164766 DOI: 10.1007/s00414-024-03205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Forensic DNA analysis in compromised skeletal remains may pose challenges due to DNA degradation, often resulting in partial or negative autosomal STRs profiles. To address this issue, alternative approaches such as mitochondrial DNA or SNPs typing may be employed; however, they are labour-intensive and costly. Insertion-null alleles (INNULs), short interspersed nuclear elements, have been suggested as a valuable tool for human identification in challenging samples due to their small amplicon size. A commercial kit including 20 INNULs markers along with amelogenin (InnoTyper® 21) has been developed. This study assesses its utility using degraded skeletal remains, comparing the results obtained (the number of detected alleles, RFU values, PHR, and the number of reportable markers) to those obtained using GlobalFiler™. Subsequently, the random match probability of the two profiles for each sample was determined using Familias version 3 to evaluate the power of discrimination of the results obtained from each kit. In every sample, InnoTyper® 21 yielded more alleles, higher RFU values, and a greater number of reportable loci. However, in most cases, both profiles were similarly informative. In conclusion, InnoTyper® 21 serves as a valuable complement to the analysis of challenging samples in cases where a poor or negative profile was obtained.
Collapse
Affiliation(s)
- Christian Haarkötter
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| | - María Saiz
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| | - Xiomara Gálvez
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| | - Diana C Vinueza-Espinosa
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| | - María Isabel Medina-Lozano
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| | - Juan Carlos Álvarez
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain.
| | - Jose Antonio Lorente
- Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, University of Granada, Av. Investigación 11 - PTS - 18016, Granada, Spain
| |
Collapse
|
2
|
Haarkötter C, Saiz M, Gálvez X, Vinueza-Espinosa DC, Medina-Lozano MI, Lorente JA, Álvarez JC. Performance comparison of four qPCR and three autosomal STR commercial kits from degraded skeletal remains. Forensic Sci Int 2023; 353:111856. [PMID: 37863006 DOI: 10.1016/j.forsciint.2023.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
This research evaluates the current DNA quantification (Quantifiler™ Trio, PowerQuant®, Investigator® Quantiplex® Pro and InnoQuant® HY Fast) and autosomal STRs amplification kits (GlobalFiler™, PowerPlex® Fusion 6 C, Investigator® 24Plex QS) using 62 degraded skeletal remains from armed conflicts (petrous bone, femur, tibia, and tooth) with several parameters (autosomal small, large, and male target, degradation index, probability of degradation, number of alleles above analytical threshold, number of alleles above stochastic threshold, RFU, peak height ratio, number of reportable loci). The best qPCR/autosomal STRs amplification tandem was determined by comparing quantification results by a DNA quantity estimation based on sample average RFU. InnoQuant® HY Fast was the most sensitive kit, and no significative differences were observed among amplification kits; however, Investigator® 24 Plex QS was found to be the most sensitive in our samples. That is why InnoQuant™ and Investigator® 24Plex QS were determined to be the best tandem.
Collapse
Affiliation(s)
- Christian Haarkötter
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| | - María Saiz
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain.
| | - Xiomara Gálvez
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| | - Diana C Vinueza-Espinosa
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| | - María Isabel Medina-Lozano
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| | - José Antonio Lorente
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| | - Juan Carlos Álvarez
- University of Granada, Laboratory of Genetic Identification. Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, Avd. de la Investigación 11- 18016 - PTS, Granada, Spain
| |
Collapse
|
3
|
Childebayeva A, Zavala EI. Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience 2023; 26:108066. [PMID: 37927550 PMCID: PMC10622734 DOI: 10.1016/j.isci.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Elena I. Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
4
|
Morell Miranda P, Soares AER, Günther T. Demographic reconstruction of the Western sheep expansion from whole-genome sequences. G3 (BETHESDA, MD.) 2023; 13:jkad199. [PMID: 37675574 DOI: 10.1093/g3journal/jkad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
As one of the earliest livestock, sheep (Ovis aries) were domesticated in the Fertile Crescent about 12,000-10,000 years ago and have a nearly worldwide distribution today. Most of our knowledge about the timing of their expansions stems from archaeological data but it is unclear how the genetic diversity of modern sheep fits with these dates. We used whole-genome sequencing data of 63 domestic breeds and their wild relatives, the Asiatic mouflon (O. gmelini, previously known as O. orientalis), to explore the demographic history of sheep. On the global scale, our analysis revealed geographic structuring among breeds with unidirectional recent gene flow from domestics into Asiatic mouflons. We then selected 4 representative breeds from Spain, Morocco, the United Kingdom, and Iran to build a comprehensive demographic model of the Western sheep expansion. We inferred a single domestication event around 11,000 years ago. The subsequent westward expansion is dated to approximately 7,000 years ago, later than the original Neolithic expansion of sheep and slightly predating the Secondary Product Revolution associated with wooly sheep. We see some signals of recent gene flow from an ancestral population into Southern European breeds which could reflect admixture with feral European mouflon. Furthermore, our results indicate that many breeds experienced a reduction of their effective population size during the last centuries, probably associated with modern breed development. Our study provides insights into the complex demographic history of Western Eurasian sheep, highlighting interactions between breeds and their wild counterparts.
Collapse
Affiliation(s)
- Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - André E R Soares
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
5
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Haarkötter C, Vinueza-Espinosa DC, Gálvez X, Saiz M, Medina-Lozano MI, Lorente JA, Álvarez JC. A comparison between petrous bone and tooth, femur and tibia DNA analysis from degraded skeletal remains. Electrophoresis 2023; 44:1559-1568. [PMID: 37469183 DOI: 10.1002/elps.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15-30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains.
Collapse
Affiliation(s)
- Christian Haarkötter
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Diana C Vinueza-Espinosa
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Xiomara Gálvez
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María Saiz
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María Isabel Medina-Lozano
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - José Antonio Lorente
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Juan Carlos Álvarez
- Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Fernandes DM, Sirak KA, Cheronet O, Novak M, Brück F, Zelger E, Llanos-Lizcano A, Wagner A, Zettl A, Mandl K, Duffet Carlson KS, Oberreiter V, Özdoğan KT, Sawyer S, La Pastina F, Borgia E, Coppa A, Dobeš M, Velemínský P, Reich D, Bell LS, Pinhasi R. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res 2023; 33:622-631. [PMID: 37072186 PMCID: PMC10234301 DOI: 10.1101/gr.277714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Florian Brück
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | | | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kellie Sara Duffet Carlson
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Department of History and Art History, Utrecht University, 3512 BS Utrecht, The Netherlands
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Francesco La Pastina
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, United Kingdom
| | - Emanuela Borgia
- Dipartimento di Scienze dell'Antichità, Sapienza Università di Roma, Rome 00185, Italy
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague 118 00, Czech Republic
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115 79, Czech Republic
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lynne S Bell
- Centre for Forensic Research, School of Criminology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
8
|
Dalal V, Pasupuleti N, Chaubey G, Rai N, Shinde V. Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes (Basel) 2023; 14:479. [PMID: 36833406 PMCID: PMC9956214 DOI: 10.3390/genes14020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Ancient DNA (aDNA) research first began in 1984 and ever since has greatly expanded our understanding of evolution and migration. Today, aDNA analysis is used to solve various puzzles about the origin of mankind, migration patterns, and the spread of infectious diseases. The incredible findings ranging from identifying the new branches within the human family to studying the genomes of extinct flora and fauna have caught the world by surprise in recent times. However, a closer look at these published results points out a clear Global North and Global South divide. Therefore, through this research, we aim to emphasize encouraging better collaborative opportunities and technology transfer to support researchers in the Global South. Further, the present research also focuses on expanding the scope of the ongoing conversation in the field of aDNA by reporting relevant literature published around the world and discussing the advancements and challenges in the field.
Collapse
Affiliation(s)
- Vasundhra Dalal
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Niraj Rai
- Ancient DNA Lab, Birbal Sahni Institute of Palaeosciences, Lucknow 226007, Uttar Pradesh, India
| | - Vasant Shinde
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
9
|
Jaramillo-Valverde L, Vásquez-Domínguez A, Levano KS, Castrejon-Cabanillas R, Novoa-Bellota P, Machacuay-Romero M, Garcia-de-la-Guarda R, Cano RJ, Shady Solis R, Guio1 H. A mobile lab for ancient DNA extraction in Perug. Bioinformation 2022; 18:1114-1118. [PMID: 37701515 PMCID: PMC10492912 DOI: 10.6026/973206300181114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 09/14/2023] Open
Abstract
We report the use of a mobile laboratory set up to extract ancient DNA (aDNA) from 34 human coprolites (fossilized faeces) samples. Our approach enabled the rapid genetic characterization of 5,000 years old archeological samples. It is useful for the on-site screening of museums and freshly excavated samples for DNA. This approach is accessible to other investigators as the mobile laboratory was set up using commercially available instruments.
Collapse
Affiliation(s)
| | | | - Kelly S Levano
- Faculty of Health Sciences, Universidad de Huánuco, Huánuco, Peru
| | - Rony Castrejon-Cabanillas
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | | | | | - Ruth Garcia-de-la-Guarda
- Professional School of Archaeology, Faculty of Social Sciences, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Raul J Cano
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | | - Heinner Guio1
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima, Perú
| |
Collapse
|
10
|
Herman RW, Winger BM, Dittmann DL, Harvey MG. Fine-scale population genetic structure and barriers to gene flow in a widespread seabird ( Ardenna pacifica). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pelagic seabirds are highly mobile, reducing opportunities for population isolation that might promote differentiation and speciation. At the same time, many seabirds are philopatric, and their tendency to return to their natal islands to breed might reduce gene flow sufficiently to permit local adaptation and differentiation. To test the net impact of these competing processes, estimates of differentiation and gene flow based on comprehensive geographical sampling are required. We leveraged diverse source material to achieve comprehensive geographical sampling in a widespread seabird, the Wedge-tailed Shearwater (Ardenna pacifica). Using data from sequence capture and high-throughput sequencing of 2402 loci containing 20 780 single nucleotide polymorphisms, we tested for population differentiation and gene flow among breeding areas. We found little evidence of deep divergences within A. pacifica but were able to resolve fine-scale differentiation across island groups. This differentiation was sufficient to assign individuals sampled away from breeding areas to their likely source populations. Estimated effective migration surfaces revealed reduced migration between the Indian Ocean and Pacific Ocean, presumably owing to land barriers, and across the equatorial Pacific Ocean, perhaps associated with differences in breeding schedule. Our results reveal that, despite their mobility, pelagic seabirds can exhibit fine-scale population differentiation and reduced gene flow among ocean basins.
Collapse
Affiliation(s)
- Rachael W Herman
- Department of Ecology and Evolution, Stony Brook University , Stony Brook, NY , USA
| | - Benjamin M Winger
- Museum of Zoology, University of Michigan , Ann Arbor, MI , USA
- Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI, USA
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University , Baton Rouge, LA, USA
| | - Michael G Harvey
- Museum of Zoology, University of Michigan , Ann Arbor, MI , USA
- Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
11
|
Srigyan M, Bolívar H, Ureña I, Santana J, Petersen A, Iriarte E, Kırdök E, Bergfeldt N, Mora A, Jakobsson M, Abdo K, Braemer F, Smith C, Ibañez JJ, Götherström A, Günther T, Valdiosera C. Bioarchaeological evidence of one of the earliest Islamic burials in the Levant. Commun Biol 2022; 5:554. [PMID: 35672445 PMCID: PMC9174286 DOI: 10.1038/s42003-022-03508-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
The Middle East plays a central role in human history harbouring a vast diversity of ethnic, cultural and religious groups. However, much remains to be understood about past and present genomic diversity in this region. Here we present a multidisciplinary bioarchaeological analysis of two individuals dated to the late 7th and early 8th centuries, the Umayyad Era, from Tell Qarassa, an open-air site in modern-day Syria. Radiocarbon dates and burial type are consistent with one of the earliest Islamic Arab burials in the Levant. Interestingly, we found genomic similarity to a genotyped group of modern-day Bedouins and Saudi rather than to most neighbouring Levantine groups. This study represents the genomic analysis of a secondary use site with characteristics consistent with an early Islamic burial in the Levant. We discuss our findings and possible historic scenarios in the light of forces such as genetic drift and their possible interaction with religious and cultural processes (including diet and subsistence practices). Ancient genomic and archaeological data combine to identify a surprisingly early Islamic burial in modern day Syria.
Collapse
Affiliation(s)
- Megha Srigyan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Héctor Bolívar
- Centre for Palaeogenetics, 10691, Stockholm, Sweden.,Instituto del Patrimonio Cultural de España, 28040, Madrid, Spain
| | - Irene Ureña
- Centre for Palaeogenetics, 10691, Stockholm, Sweden
| | - Jonathan Santana
- Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de G.C., E35001, Spain
| | | | - Eneko Iriarte
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain
| | - Emrah Kırdök
- Department of Biotechnology, Mersin University, 33343, Mersin, Turkey
| | | | - Alice Mora
- Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Khaled Abdo
- General Directorate of Antiquities and Museums, Damascus, Syrian Arab Republic
| | - Frank Braemer
- Université Côte d'Azur, CNRS, Culture et Environment, Préhistoire Antiquité Moyen Age, Nice, France
| | - Colin Smith
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain.,Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Juan José Ibañez
- Archaeology of Social Dynamics, Milà i Fontanals Institution, Spanish National Research Council (CSIC), Barcelona, Spain
| | | | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Cristina Valdiosera
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain. .,Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Irestedt M, Thörn F, Müller IA, Jønsson KA, Ericson PGP, Blom MPK. A guide to avian museomics: Insights gained from resequencing hundreds of avian study skins. Mol Ecol Resour 2022; 22:2672-2684. [PMID: 35661418 PMCID: PMC9542604 DOI: 10.1111/1755-0998.13660] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Biological specimens in natural history collections constitute a massive repository of genetic information. Many specimens have been collected in areas in which they no longer exist or in areas where present‐day collecting is not possible. There are also specimens in collections representing populations or species that have gone extinct. Furthermore, species or populations may have been sampled throughout an extensive time period, which is particularly valuable for studies of genetic change through time. With the advent of high‐throughput sequencing, natural history museum resources have become accessible for genomic research. Consequently, these unique resources are increasingly being used across many fields of natural history. In this paper, we summarize our experiences of resequencing hundreds of genomes from historical avian museum specimens. We publish the protocols we have used and discuss the entire workflow from sampling and laboratory procedures, to the bioinformatic processing of historical specimen data.
Collapse
Affiliation(s)
- Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Filip Thörn
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ingo A Müller
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Mozes P K Blom
- Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
13
|
Suchan T, Chauvey L, Poullet M, Tonasso‐Calvière L, Schiavinato S, Clavel P, Clavel B, Lepetz S, Seguin‐Orlando A, Orlando L. Assessing the impact of USER‐treatment on hyRAD capture applied to ancient DNA. Mol Ecol Resour 2022; 22:2262-2274. [DOI: 10.1111/1755-0998.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Tomasz Suchan
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
- W. Szafer Institute of Botany Polish Academy of Sciences Lubicz 46 31‐512 Kraków Poland
| | - Lorelei Chauvey
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Marine Poullet
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Laure Tonasso‐Calvière
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Stéphanie Schiavinato
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Pierre Clavel
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Benoit Clavel
- Archéozoologie, Archéobotanique: sociétés, pratiques et environnements (AASPE) Muséum National d’Histoire Naturelle CNRS CP 55 rue Buffon Paris France
| | - Sébastien Lepetz
- Archéozoologie, Archéobotanique: sociétés, pratiques et environnements (AASPE) Muséum National d’Histoire Naturelle CNRS CP 55 rue Buffon Paris France
| | - Andaine Seguin‐Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT) Université Paul Sabatier Faculté de Santé 37 allées Jules Guesde, Bâtiment A 31000 Toulouse France
| |
Collapse
|
14
|
Peng MS, Li JB, Cai ZF, Liu H, Tang X, Ying R, Zhang JN, Tao JJ, Yin TT, Zhang T, Hu JY, Wu RN, Zhou ZY, Zhang ZG, Yu L, Yao YG, Shi ZL, Lu XM, Lu J, Zhang YP. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zool Res 2021; 42:834-844. [PMID: 34766482 PMCID: PMC8645874 DOI: 10.24272/j.issn.2095-8137.2021.334] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/07/2022] Open
Abstract
Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Jian-Bo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Zheng-Fei Cai
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Hang Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruochen Ying
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Nan Zhang
- Molbreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Jia-Jun Tao
- Molbreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Jing-Yang Hu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Ru-Nian Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Gang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650201, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China. E-mail:
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| |
Collapse
|
15
|
Wang CC, Posth C, Furtwängler A, Sümegi K, Bánfai Z, Kásler M, Krause J, Melegh B. Genome-wide autosomal, mtDNA, and Y chromosome analysis of King Bela III of the Hungarian Arpad dynasty. Sci Rep 2021; 11:19210. [PMID: 34584164 PMCID: PMC8478946 DOI: 10.1038/s41598-021-98796-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
The ancient Hungarians, "Madzsars", established their control of the Carpathian Basin in the late ninth century and founded the Hungarian Kingdom around 1000AD. The origin of the Magyars as a tribal federation has been much debated in the past. From the time of the conquest to the early fourteenth century they were ruled by descendants of the Arpad family. In order to learn more about the genetic origin of this family, we here analyzed the genome of Bela III one of the most prominent members of the early Hungarian dynasty that ruled the Hungarian Kingdom from 1172 to 1196. The Y-Chromosome of Bela III belongs to haplogroup R1a-Z2123 that is today found in highest frequency in Central Asia, supporting a Central Asian origin for the ruling lineage of the Hungarian kingdom. The autosomal DNA profile of Bela III, however, falls within the genetic variation of present-day east European populations. This is further supported through his mtDNA genome that belongs to haplogroup H, the most common European maternal lineage, but also found in Central Asia. However, we didn't find an exact haplotype match for Bela III. The typical autosomal and maternal Central Eastern European ancestry among Bela III autosomes might be best explained by consecutive intermarriage with local European ruling families.
Collapse
Affiliation(s)
- Chuan-Chao Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070, Tübingen, Germany
| | - Anja Furtwängler
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070, Tübingen, Germany
| | - Katalin Sümegi
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti u. 12, Pécs, 7624, Hungary.,Szentágothai Research Center, University of Pécs, Ifjúság út 24, Pécs, 7624, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti u. 12, Pécs, 7624, Hungary
| | - Zsolt Bánfai
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti u. 12, Pécs, 7624, Hungary.,Szentágothai Research Center, University of Pécs, Ifjúság út 24, Pécs, 7624, Hungary
| | - Miklós Kásler
- National Institute of Oncology, Rácz Gy. u. 7-9, Budapest, 1122, Hungary
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, 72070, Tübingen, Germany
| | - Béla Melegh
- Department of Medical Genetics, Medical School, University of Pécs, Szigeti u. 12, Pécs, 7624, Hungary. .,Szentágothai Research Center, University of Pécs, Ifjúság út 24, Pécs, 7624, Hungary.
| |
Collapse
|
16
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
17
|
Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France. Curr Biol 2021; 31:1072-1083.e10. [PMID: 33434506 DOI: 10.1016/j.cub.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.
Collapse
|
18
|
Xu W, Lin Y, Zhao K, Li H, Tian Y, Ngatia JN, Ma Y, Sahu SK, Guo H, Guo X, Xu YC, Liu H, Kristiansen K, Lan T, Zhou X. An efficient pipeline for ancient DNA mapping and recovery of endogenous ancient DNA from whole-genome sequencing data. Ecol Evol 2021; 11:390-401. [PMID: 33437437 PMCID: PMC7790629 DOI: 10.1002/ece3.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next-generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole-genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.
Collapse
Affiliation(s)
- Wenhao Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yu Lin
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and WriteBGI‐ShenzhenShenzhenChina
| | - Keliang Zhao
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Haimeng Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yinping Tian
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | | | - Yue Ma
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huabing Guo
- Forest Inventory and Planning Institute of Jilin ProvinceChangchunChina
| | - Xiaosen Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenShenzhenChina
| | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Karsten Kristiansen
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Tianming Lan
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Xinying Zhou
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| |
Collapse
|
19
|
Peyrégne S, Peter BM. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol 2020; 21:246. [PMID: 32933569 PMCID: PMC7490890 DOI: 10.1186/s13059-020-02123-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Contamination from present-day DNA is a fundamental issue when studying ancient DNA from historical or archaeological material, and quantifying the amount of contamination is essential for downstream analyses. We present AuthentiCT, a command-line tool to estimate the proportion of present-day DNA contamination in ancient DNA datasets generated from single-stranded DNA libraries. The prediction is based solely on the patterns of post-mortem damage observed on ancient DNA sequences. The method has the power to quantify contamination from as few as 10,000 mapped sequences, making it particularly useful for analysing specimens that are poorly preserved or for which little data is available.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Dommain R, Andama M, McDonough MM, Prado NA, Goldhammer T, Potts R, Maldonado JE, Nkurunungi JB, Campana MG. The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA: A 2200-Year-Long Metagenomic Record From Bwindi Impenetrable Forest, Uganda. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Peyrégne S, Prüfer K. Present-Day DNA Contamination in Ancient DNA Datasets. Bioessays 2020; 42:e2000081. [PMID: 32648350 DOI: 10.1002/bies.202000081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Present-day contamination can lead to false conclusions in ancient DNA studies. A number of methods are available to estimate contamination, which use a variety of signals and are appropriate for different types of data. Here an overview of currently available methods highlighting their strengths and weaknesses is provided, and a classification based on the signals used to estimate contamination is proposed. This overview aims at enabling researchers to choose the most appropriate methods for their dataset. Based on this classification, potential avenues for the further development of methods are discussed.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| |
Collapse
|
22
|
Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom 2020; 6:mgen000384. [PMID: 32598277 PMCID: PMC7478633 DOI: 10.1099/mgen.0.000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis. Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
23
|
Philips A, Stolarek I, Handschuh L, Nowis K, Juras A, Trzciński D, Nowaczewska W, Wrzesińska A, Potempa J, Figlerowicz M. Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia. BMC Genomics 2020; 21:402. [PMID: 32539695 PMCID: PMC7296668 DOI: 10.1186/s12864-020-06810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent advances in the next-generation sequencing (NGS) allowed the metagenomic analyses of DNA from many different environments and sources, including thousands of years old skeletal remains. It has been shown that most of the DNA extracted from ancient samples is microbial. There are several reports demonstrating that the considerable fraction of extracted DNA belonged to the bacteria accompanying the studied individuals before their death. RESULTS In this study we scanned 344 microbiomes from 1000- and 2000- year-old human teeth. The datasets originated from our previous studies on human ancient DNA (aDNA) and on microbial DNA accompanying human remains. We previously noticed that in many samples infection-related species have been identified, among them Tannerella forsythia, one of the most prevalent oral human pathogens. Samples containing sufficient amount of T. forsythia aDNA for a complete genome assembly were selected for thorough analyses. We confirmed that the T. forsythia-containing samples have higher amounts of the periodontitis-associated species than the control samples. Despites, other pathogens-derived aDNA was found in the tested samples it was too fragmented and damaged to allow any reasonable reconstruction of these bacteria genomes. The anthropological examination of ancient skulls from which the T. forsythia-containing samples were obtained revealed the pathogenic alveolar bone loss in tooth areas characteristic for advanced periodontitis. Finally, we analyzed the genetic material of ancient T. forsythia strains. As a result, we assembled four ancient T. forsythia genomes - one 2000- and three 1000- year-old. Their comparison with contemporary T. forsythia genomes revealed a lower genetic diversity within the four ancient strains than within contemporary strains. We also investigated the genes of T. forsythia virulence factors and found that several of them (KLIKK protease and bspA genes) differ significantly between ancient and modern bacteria. CONCLUSIONS In summary, we showed that NGS screening of the ancient human microbiome is a valid approach for the identification of disease-associated microbes. Following this protocol, we provided a new set of information on the emergence, evolution and virulence factors of T. forsythia, the member of the oral dysbiotic microbiome.
Collapse
Affiliation(s)
- Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ireneusz Stolarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Katarzyna Nowis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Dawid Trzciński
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Wioletta Nowaczewska
- Department of Human Biology, Faculty of Biological Sciences, Wroclaw University, 50-138, Wroclaw, Poland
| | - Anna Wrzesińska
- Anthropological Laboratory, Museum of the First Piasts at Lednica, 62-261, Lednogora, Poland
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland.
| |
Collapse
|
24
|
Chan EKF, Timmermann A, Baldi BF, Moore AE, Lyons RJ, Lee SS, Kalsbeek AMF, Petersen DC, Rautenbach H, Förtsch HEA, Bornman MSR, Hayes VM. Human origins in a southern African palaeo-wetland and first migrations. Nature 2019; 575:185-189. [PMID: 31659339 DOI: 10.1038/s41586-019-1714-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023]
Abstract
Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.
Collapse
Affiliation(s)
- Eva K F Chan
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Benedetta F Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andy E Moore
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Anton M F Kalsbeek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Desiree C Petersen
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,The Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Hannes Rautenbach
- Climate Change and Variability, South African Weather Service, Pretoria, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Akademia, Johannesburg, South Africa
| | | | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. .,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa. .,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
26
|
van der Valk T, Vezzi F, Ormestad M, Dalén L, Guschanski K. Index hopping on the Illumina HiseqX platform and its consequences for ancient DNA studies. Mol Ecol Resour 2019; 20:1171-1181. [DOI: 10.1111/1755-0998.13009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tom van der Valk
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | | | | | - Love Dalén
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
27
|
Renaud G, Schubert M, Sawyer S, Orlando L. Authentication and Assessment of Contamination in Ancient DNA. Methods Mol Biol 2019; 1963:163-194. [PMID: 30875054 DOI: 10.1007/978-1-4939-9176-1_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contamination from both present-day humans and postmortem microbial sources is a common challenge in ancient DNA studies. Here we present a suite of tools to assist in the assessment of contamination in ancient DNA data sets. These tools perform standard tests of authenticity of ancient DNA data including detecting the presence of postmortem damage signatures in sequence alignments and quantifying the amount of present-day human contamination.
Collapse
Affiliation(s)
- Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Susanna Sawyer
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark.
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, University Paul Sabatier, Toulouse, France.
| |
Collapse
|
28
|
Kawash JK, Smith SD, Karaiskos S, Grigoriev A. ARIADNA: machine learning method for ancient DNA variant discovery. DNA Res 2018; 25:619-627. [PMID: 30215675 PMCID: PMC6289774 DOI: 10.1093/dnares/dsy029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Ancient DNA (aDNA) studies often rely on standard methods of mutation calling, optimized for high-quality contemporary DNA but not for excessive contamination, time- or environment-related damage of aDNA. In the absence of validated datasets and despite showing extreme sensitivity to aDNA quality, these methods have been used in many published studies, sometimes with additions of arbitrary filters or modifications, designed to overcome aDNA degradation and contamination problems. The general lack of best practices for aDNA mutation calling may lead to inaccurate results. To address these problems, we present ARIADNA (ARtificial Intelligence for Ancient DNA), a novel approach based on machine learning techniques, using specific aDNA characteristics as features to yield improved mutation calls. In our comparisons of variant callers across several ancient genomes, ARIADNA consistently detected higher-quality genome variants with fast runtimes, while reducing the false positive rate compared with other approaches.
Collapse
Affiliation(s)
- Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
29
|
de Filippo C, Meyer M, Prüfer K. Quantifying and reducing spurious alignments for the analysis of ultra-short ancient DNA sequences. BMC Biol 2018; 16:121. [PMID: 30359256 PMCID: PMC6202837 DOI: 10.1186/s12915-018-0581-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The study of ancient DNA is hampered by degradation, resulting in short DNA fragments. Advances in laboratory methods have made it possible to retrieve short DNA fragments, thereby improving access to DNA preserved in highly degraded, ancient material. However, such material contains large amounts of microbial contamination in addition to DNA fragments from the ancient organism. The resulting mixture of sequences constitutes a challenge for computational analysis, since microbial sequences are hard to distinguish from the ancient sequences of interest, especially when they are short. RESULTS Here, we develop a method to quantify spurious alignments based on the presence or absence of rare variants. We find that spurious alignments are enriched for mismatches and insertion/deletion differences and lack substitution patterns typical of ancient DNA. The impact of spurious alignments can be reduced by filtering on these features and by imposing a sample-specific minimum length cutoff. We apply this approach to sequences from four ~ 430,000-year-old Sima de los Huesos hominin remains, which contain particularly short DNA fragments, and increase the amount of usable sequence data by 17-150%. This allows us to place a third specimen from the site on the Neandertal lineage. CONCLUSIONS Our method maximizes the sequence data amenable to genetic analysis from highly degraded ancient material and avoids pitfalls that are associated with the analysis of ultra-short DNA sequences.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Furtwängler A, Reiter E, Neumann GU, Siebke I, Steuri N, Hafner A, Lösch S, Anthes N, Schuenemann VJ, Krause J. Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci Rep 2018; 8:14075. [PMID: 30232341 PMCID: PMC6145933 DOI: 10.1038/s41598-018-32083-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
In the last decade, ancient DNA research has grown rapidly and started to overcome several of its earlier limitations through Next-Generation-Sequencing (NGS). Among other advances, NGS allows direct estimation of sample contamination from modern DNA sources. First NGS-based approaches of estimating contamination measured heterozygosity. These measurements, however, could only be performed on haploid genomic regions, i.e. the mitochondrial genome or male X chromosomes, but provided no measures of contamination in the nuclear genome of females with their two X chromosomes. Instead, female nuclear contamination is routinely extrapolated from mitochondrial contamination estimates, but it remains unclear if this extrapolation is reliable and to what degree variation in mitochondrial to nuclear DNA ratios affects this extrapolation. We therefore analyzed ancient DNA from 317 samples of different skeletal elements from multiple sites, spanning a temporal range from 7,000 BP to 386 AD. We found that the mitochondrial to nuclear DNA (mt/nc) ratio negatively correlates with an increase in endogenous DNA content and strongly influenced mitochondrial and nuclear contamination estimates in males. The ratio of mt to nc contamination estimates remained stable for overall mt/nc ratios below 200, as found particularly often in petrous bones but less in other skeletal elements and became more variable above that ratio.
Collapse
Affiliation(s)
- Anja Furtwängler
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany.
| | - Ella Reiter
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Gunnar U Neumann
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Inga Siebke
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Noah Steuri
- Institute of Archaeological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Albert Hafner
- Institute of Archaeological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Nils Anthes
- Institute of Ecology and Evolution, Animal Evolutionary Ecology group University of Tübingen, Tübingen, Germany
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany. .,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany. .,Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
31
|
Pratas D, Hosseini M, Grilo G, Pinho AJ, Silva RM, Caetano T, Carneiro J, Pereira F. Metagenomic Composition Analysis of an Ancient Sequenced Polar Bear Jawbone from Svalbard. Genes (Basel) 2018; 9:E445. [PMID: 30200636 PMCID: PMC6162538 DOI: 10.3390/genes9090445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
The sequencing of ancient DNA samples provides a novel way to find, characterize, and distinguish exogenous genomes of endogenous targets. After sequencing, computational composition analysis enables filtering of undesired sources in the focal organism, with the purpose of improving the quality of assemblies and subsequent data analysis. More importantly, such analysis allows extinct and extant species to be identified without requiring a specific or new sequencing run. However, the identification of exogenous organisms is a complex task, given the nature and degradation of the samples, and the evident necessity of using efficient computational tools, which rely on algorithms that are both fast and highly sensitive. In this work, we relied on a fast and highly sensitive tool, FALCON-meta, which measures similarity against whole-genome reference databases, to analyse the metagenomic composition of an ancient polar bear (Ursus maritimus) jawbone fossil. The fossil was collected in Svalbard, Norway, and has an estimated age of 110,000 to 130,000 years. The FASTQ samples contained 349 GB of nonamplified shotgun sequencing data. We identified and localized, relative to the FASTQ samples, the genomes with significant similarities to reference microbial genomes, including those of viruses, bacteria, and archaea, and to fungal, mitochondrial, and plastidial sequences. Among other striking features, we found significant similarities between modern-human, some bacterial and viral sequences (contamination) and the organelle sequences of wild carrot and tomato relative to the whole samples. For each exogenous candidate, we ran a damage pattern analysis, which in addition to revealing shallow levels of damage in the plant candidates, identified the source as contamination.
Collapse
Affiliation(s)
- Diogo Pratas
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Morteza Hosseini
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Gonçalo Grilo
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando J Pinho
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Raquel M Silva
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Institute for Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tânia Caetano
- Department of Biology, University of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.
- Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João Carneiro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
32
|
Taron UH, Lell M, Barlow A, Paijmans JLA. Testing of Alignment Parameters for Ancient Samples: Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool. Genes (Basel) 2018. [PMID: 29533977 PMCID: PMC5867878 DOI: 10.3390/genes9030157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present 'TAPAS', (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material.
Collapse
Affiliation(s)
- Ulrike H Taron
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Moritz Lell
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
33
|
Leonardi M, Librado P, Der Sarkissian C, Schubert M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Gamba C, Willerslev E, Orlando L. Evolutionary Patterns and Processes: Lessons from Ancient DNA. Syst Biol 2018; 66:e1-e29. [PMID: 28173586 PMCID: PMC5410953 DOI: 10.1093/sysbio/syw059] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/02/2022] Open
Abstract
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Collapse
Affiliation(s)
- Michela Leonardi
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, Toulouse, France
| |
Collapse
|
34
|
Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples. Genes (Basel) 2018; 9:genes9010049. [PMID: 29361782 PMCID: PMC5793200 DOI: 10.3390/genes9010049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
The application of next generation sequencing (NGS) for the analysis of mitochondrial (mt) DNA, short tandem repeats (STRs), and single nucleotide polymorphism (SNPs) has demonstrated great promise for challenging forensic specimens, such as degraded, limited, and mixed samples. Target enrichment using probe capture rather than PCR amplification offers advantages for analysis of degraded DNA since two intact PCR primer sites in the template DNA molecule are not required. Furthermore, NGS software programs can help remove PCR duplicates to determine initial template copy numbers of a shotgun library. Moreover, the same shotgun library prepared from a limited DNA source can be enriched for mtDNA as well as nuclear markers by hybrid capture with the relevant probe panels. Here, we demonstrate the use of this strategy in the analysis of limited and mock degraded samples using our custom probe capture panels for massively parallel sequencing of the whole mtgenome and 426 SNP markers. We also applied the mtgenome capture panel in a mixed sample and analyzed using both phylogenetic and variant frequency based bioinformatics tools to resolve the minor and major contributors. Finally, the results obtained on individual telogen hairs demonstrate the potential of probe capture NGS analysis for both mtDNA and nuclear SNPs for challenging forensic specimens.
Collapse
|
35
|
Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, Gower G, Llamas B, Soubrier J, Heider TN, Menzies BR, Cooper A, O'Neill RJ, Pask AJ. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol 2017; 2:182-192. [PMID: 29230027 DOI: 10.1038/s41559-017-0417-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas N Heider
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Brandon R Menzies
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. .,Museums Victoria, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Llamas B, Willerslev E, Orlando L. Human evolution: a tale from ancient genomes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0484. [PMID: 27994125 DOI: 10.1098/rstb.2015.0484] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Bastien Llamas
- Australian Centre for ADNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 K Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Wellcome Genome Campus Hinxton, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 K Copenhagen, Denmark .,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Université de Toulouse, University Paul Sabatier, CNRS UMR 5288, 31000 Toulouse, France
| |
Collapse
|
37
|
Renaud G, Hanghøj K, Willerslev E, Orlando L. gargammel: a sequence simulator for ancient DNA. Bioinformatics 2017; 33:577-579. [PMID: 27794556 PMCID: PMC5408798 DOI: 10.1093/bioinformatics/btw670] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Summary Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico, we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets. Availability and Implementation The package is publicly available on github: https://grenaud.github.io/gargammel/ and released under the GPL. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gabriel Renaud
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Kristian Hanghøj
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| | - Eske Willerslev
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ludovic Orlando
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| |
Collapse
|
38
|
Eduardoff M, Xavier C, Strobl C, Casas-Vargas A, Parson W. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin. Genes (Basel) 2017; 8:genes8100237. [PMID: 28934125 PMCID: PMC5664087 DOI: 10.3390/genes8100237] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022] Open
Abstract
The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories.
Collapse
Affiliation(s)
- Mayra Eduardoff
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Andrea Casas-Vargas
- Grupo de Genética de Poblaciones e Identificación, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL, Burbano HA, Orlando L, Krause J. A Robust Framework for Microbial Archaeology. Annu Rev Genomics Hum Genet 2017; 18:321-356. [PMID: 28460196 PMCID: PMC5581243 DOI: 10.1146/annurev-genom-091416-035526] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.
Collapse
Affiliation(s)
- Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| | - Allison Mann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| | - Clemens L Weiß
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Hernán A Burbano
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Toulouse III - Paul Sabatier, Toulouse 31000, France
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| |
Collapse
|
40
|
Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proc Natl Acad Sci U S A 2017; 114:9152-9157. [PMID: 28784790 DOI: 10.1073/pnas.1710186114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.
Collapse
|
41
|
Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining Metagenomic Data Sets for Ancient DNA: Recommended Protocols for Authentication. Trends Genet 2017; 33:508-520. [PMID: 28688671 DOI: 10.1016/j.tig.2017.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
While a comparatively young area of research, investigations relying on ancient DNA data have been highly valuable in revealing snapshots of genetic variation in both the recent and the not-so-recent past. Born out of a tradition of single-locus PCR-based approaches that often target individual species, stringent criteria for both data acquisition and analysis were introduced early to establish high standards of data quality. Today, the immense volume of data made available through next-generation sequencing has significantly increased the analytical resolution offered by processing ancient tissues and permits parallel analyses of host and microbial communities. The adoption of this new approach to data acquisition, however, requires an accompanying update on methods of DNA authentication, especially given that ancient molecules are expected to exist in low proportions in archaeological material, where an environmental signal is likely to dominate. In this review, we provide a summary of recent data authentication approaches that have been successfully used to distinguish between endogenous and nonendogenous DNA sequences in metagenomic data sets. While our discussion mostly centers on the detection of ancient human and ancient bacterial pathogen DNA, their applicability is far wider.
Collapse
Affiliation(s)
- Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
42
|
González-Fortes G, Jones ER, Lightfoot E, Bonsall C, Lazar C, Grandal-d'Anglade A, Garralda MD, Drak L, Siska V, Simalcsik A, Boroneanţ A, Vidal Romaní JR, Vaqueiro Rodríguez M, Arias P, Pinhasi R, Manica A, Hofreiter M. Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin. Curr Biol 2017; 27:1801-1810.e10. [PMID: 28552360 PMCID: PMC5483232 DOI: 10.1016/j.cub.2017.05.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
The transition from hunting and gathering to farming involved profound cultural and technological changes. In Western and Central Europe, these changes occurred rapidly and synchronously after the arrival of early farmers of Anatolian origin [1-3], who largely replaced the local Mesolithic hunter-gatherers [1, 4-6]. Further east, in the Baltic region, the transition was gradual, with little or no genetic input from incoming farmers [7]. Here we use ancient DNA to investigate the relationship between hunter-gatherers and farmers in the Lower Danube basin, a geographically intermediate area that is characterized by a rapid Neolithic transition but also by the presence of archaeological evidence that points to cultural exchange, and thus possible admixture, between hunter-gatherers and farmers. We recovered four human paleogenomes (1.1× to 4.1× coverage) from Romania spanning a time transect between 8.8 thousand years ago (kya) and 5.4 kya and supplemented them with two Mesolithic genomes (1.7× and 5.3×) from Spain to provide further context on the genetic background of Mesolithic Europe. Our results show major Western hunter-gatherer (WHG) ancestry in a Romanian Eneolithic sample with a minor, but sizeable, contribution from Anatolian farmers, suggesting multiple admixture events between hunter-gatherers and farmers. Dietary stable-isotope analysis of this sample suggests a mixed terrestrial/aquatic diet. Our results provide support for complex interactions among hunter-gatherers and farmers in the Danube basin, demonstrating that in some regions, demic and cultural diffusion were not mutually exclusive, but merely the ends of a continuum for the process of Neolithization.
Collapse
Affiliation(s)
- Gloria González-Fortes
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara 44100, Italy; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam OT Golm, Germany.
| | - Eppie R Jones
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Emma Lightfoot
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, William Robertson Wing, Old Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Catalin Lazar
- National History Museum of Romania, Bucharest 030026, Romania
| | | | - María Dolores Garralda
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid 28040, Spain
| | - Labib Drak
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid 28040, Spain
| | - Veronika Siska
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Angela Simalcsik
- "Olga Necrasov" Centre for Anthropological Research of the Romanian Academy, Iaşi Branch, Theodor Codrescu Strada 2, 700481 Iaşi, Romania
| | - Adina Boroneanţ
- "Vasile Pârvan" Institute of Archaeology, Romanian Academy, Henri Coandă Strada 11, Bucharest 010667, Romania
| | | | | | - Pablo Arias
- International Institute of Prehistorical Research, University of Cantabria-Government of Cantabria-Bank of Santander, Santander 39005, Spain
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland; Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam OT Golm, Germany.
| |
Collapse
|
43
|
Slon V, Hopfe C, Weiß CL, Mafessoni F, de la Rasilla M, Lalueza-Fox C, Rosas A, Soressi M, Knul MV, Miller R, Stewart JR, Derevianko AP, Jacobs Z, Li B, Roberts RG, Shunkov MV, de Lumley H, Perrenoud C, Gušić I, Kućan Ž, Rudan P, Aximu-Petri A, Essel E, Nagel S, Nickel B, Schmidt A, Prüfer K, Kelso J, Burbano HA, Pääbo S, Meyer M. Neandertal and Denisovan DNA from Pleistocene sediments. Science 2017; 356:605-608. [DOI: 10.1126/science.aam9695] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
|
44
|
Abstract
At its core, genetics is a historical discipline. Mutations are passed on from generation to generation and accumulate as a result of chance as well as of selection within and between populations and species. However, until recently, geneticists were confined to the study of present-day genetic variation and could only indirectly make inferences about the historical processes that resulted in the variation in present-day gene pools. This "time trap" has now been overcome thanks to the ability to analyze DNA extracted from ancient remains, and this is about to revolutionize several aspects of genetics.
Collapse
|
45
|
Garafutdinov RR, Galimova AA, Sakhabutdinova AR. Polymerase chain reaction with nearby primers. Anal Biochem 2016; 518:126-133. [PMID: 27908595 DOI: 10.1016/j.ab.2016.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 02/05/2023]
Abstract
DNA analysis of biological specimens containing degraded nucleic acids such as mortal remains, archaeological artefacts, forensic samples etc. has gained more attention in recent years. DNA extracted from these samples is often inapplicable for conventional polymerase chain reaction (PCR), so for its amplification the nearby primers are commonly used. Here we report the data that clarify the features of PCR with nearby and abutting primers. We have shown that the proximity of primers leads to significant reduction of the reaction time and ensures the successful performance of DNA amplification even in the presence of PCR inhibitors. The PCR with abutting primers is usually characterized by the absence of nonspecific amplification products that causes extreme sensitivity with limit of detection on single copy level. The feasibility of PCR with abutting primers was demonstrated on species identification of 100 years old rotten wood.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Aizilya A Galimova
- Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| |
Collapse
|
46
|
A Molecular Approach to the Sexing of the Triple Burial at the Upper Paleolithic Site of Dolní Věstonice. PLoS One 2016; 11:e0163019. [PMID: 27706187 PMCID: PMC5051676 DOI: 10.1371/journal.pone.0163019] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
In the past decades ancient DNA research has brought numerous insights to archaeological research where traditional approaches were limited. The determination of sex in human skeletal remains is often challenging for physical anthropologists when dealing with incomplete, juvenile or pathological specimens. Molecular approaches allow sexing on the basis of sex-specific markers or by calculating the ratio of DNA derived from different chromosomes. Here we propose a novel approach that relies on the ratio of X chromosome-derived shotgun sequencing data to the autosomal coverage, thus establishing the probability of an XX or XY karyotype. Applying this approach to the individuals of the Upper Paleolithic triple burial of Dolní Věstonice reveals that all three skeletons, including the individual DV 15, whose sex has long been debated due to a pathological condition, were male.
Collapse
|
47
|
Vai S, Lari M, Caramelli D. DNA Sequencing in Cultural Heritage. Top Curr Chem (Cham) 2016; 374:8. [PMID: 27572991 DOI: 10.1007/s41061-015-0009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022]
Abstract
During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy.
| | - Martina Lari
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
48
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
|
50
|
Abstract
We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history.
Collapse
Affiliation(s)
- Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
| | - Fernando Racimo
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
| |
Collapse
|