1
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
2
|
Liu Y, Huang Y, Le Y, Gao Y, Wang H, Yang J, Wang J, Zou C, Li Q. Prognostic insights, immune infiltration, and therapeutic response: Cytoplasmic poly(A) tail regulators in hepatocellular carcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200816. [PMID: 38948919 PMCID: PMC11214399 DOI: 10.1016/j.omton.2024.200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024]
Abstract
The presence of a poly(A) tail is indispensable for the post-transcriptional regulation of gene expression in cancer. This dynamic and modifiable feature of transcripts is under the control of various nuclear and cytoplasmic proteins. This study aimed to develop a novel cytoplasmic poly(A)-related signature for predicting prognosis, clinical attributes, tumor immune microenvironment (TIME), and treatment response in hepatocellular carcinoma (HCC). Utilizing RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), non-negative matrix factorization (NMF), and principal-component analysis (PCA) were employed to categorize HCC patients into three clusters, thus demonstrating the pivotal prognostic role of cytoplasmic poly(A) tail regulators. Furthermore, machine learning algorithms such as least absolute shrinkage and selection operator (LASSO), survival analysis, and Cox proportional hazards modeling were able to distinguish distinct cytoplasmic poly(A) subtypes. As a result, a 5-gene signature derived from TCGA was developed and validated using International Cancer Genome Consortium (ICGC) HCC datasets. This novel classification based on cytoplasmic poly(A) regulators has the potential to improve prognostic predictions and provide guidance for chemotherapy, immunotherapy, and transarterial chemoembolization (TACE) in HCC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yan Huang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
3
|
Lamacova L, Jansova D, Jiang Z, Dvoran M, Aleshkina D, Iyyappan R, Jindrova A, Fan HY, Jiao Y, Susor A. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 2024; 13:850. [PMID: 38786074 PMCID: PMC11119423 DOI: 10.3390/cells13100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.
Collapse
Affiliation(s)
- Lucie Lamacova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuxuan Jiao
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
4
|
Zhao G, Zhao Z, Xia M, Xiao L, Zhu B, Wang H, Li X, Di J. CPEB2 inhibit cell proliferation through upregulating p21 mRNA stability in glioma. Sci Rep 2023; 13:23103. [PMID: 38158431 PMCID: PMC10756880 DOI: 10.1038/s41598-023-50848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors. However, the role of CPEB2 in glioma progression is unknown. In this study, the functional characterization of the role and molecular mechanism of CPEB2 in glioma were examined using a series of biological and cellular approaches in vitro and in vivo. Our work shows CPEB2 is significantly downregulated in various glioma patient cohorts. Functional characterization of CPEB2 by overexpression and knockdown revealed that it inhibits glioma cell proliferation and promotes apoptosis. CPEB2 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in glioma. Overall, this work stands as the first report of CPEB2 downregulation and involvement in glioma pathogenesis, and identifies CPEB2 as an important tumor suppressor gene through targeting p21 in glioma, which revealed that CPEB2 may become a promising predictive biomarker for prognosis in glioma patients.
Collapse
Affiliation(s)
- Guang Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hui Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiang Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Wang L, Yan ZH, He TR, Liu HX, Li YK, Niu YL, Wang JJ, De Felici M, Ge W, Shen W. In vitro oogenesis from murine premeiotic germ cells using a new three-dimensional culture system. Cell Death Discov 2023; 9:276. [PMID: 37518361 PMCID: PMC10387482 DOI: 10.1038/s41420-023-01577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
A faithful reconstitution of the complete process of oogenesis in vitro is helpful for understanding the molecular mechanisms, genetics, and epigenetic changes related to gametogenesis; it can also be useful for clinical drug screening, disease research, and regenerative medicine. To this end, given the consensus that murine female germ cells initiate meiosis at E13.5, substantial works have reported the successful generation of fertile oocytes using E12.5 female gonads as starting materials. Nevertheless, our data demonstrated that murine germ cells at E12.5 have heterogeneously initiated a meiotic transcriptional program based on a measurement of pre-mRNAs (unspliced) and mature mRNAs (spliced) at a single-cell level. Therefore, to establish a platform that faithfully recapitulates the entire process in vitro (from premeiotic murine germ cells to fully developed oocytes), we here report a novel three-dimensional organoid culture (3-DOC) system, which successfully induced fully developed oocytes from E11.5 premeiotic female germ cells (oogonia). Compared with 2D culture and other 3D culture methods, this new culture system is more cost-effective and can create high-quality oocytes similar to in vivo oocytes. In summary, our new culture platform provides an experimental model for future research in regenerative medicine and reproductive biology.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Xia Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Kang Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yi-Lin Niu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Schlebusch SA, Rídl J, Poignet M, Ruiz-Ruano FJ, Reif J, Pajer P, Pačes J, Albrecht T, Suh A, Reifová R. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat Commun 2023; 14:4579. [PMID: 37516764 PMCID: PMC10387091 DOI: 10.1038/s41467-023-40308-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.
Collapse
Affiliation(s)
- Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jakub Rídl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, San Antonio, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
9
|
Fernández-Alfara M, Sibilio A, Martin J, Tusquets Uxó E, Malumbres M, Alcalde V, Chanes V, Cañellas-Socias A, Palomo-Ponce S, Batlle E, Méndez R. Antitumor T-cell function requires CPEB4-mediated adaptation to chronic endoplasmic reticulum stress. EMBO J 2023; 42:e111494. [PMID: 36919984 PMCID: PMC10152139 DOI: 10.15252/embj.2022111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Tumor growth is influenced by a complex network of interactions between multiple cell types in the tumor microenvironment (TME). These constrained conditions trigger the endoplasmic reticulum (ER) stress response, which extensively reprograms mRNA translation. When uncontrolled over time, chronic ER stress impairs the antitumor effector function of CD8 T lymphocytes. How cells promote adaptation to chronic stress in the TME without the detrimental effects of the terminal unfolded protein response (UPR) is unknown. Here, we find that, in effector CD8 T lymphocytes, RNA-binding protein CPEB4 constitutes a new branch of the UPR that allows cells to adapt to sustained ER stress, yet remains decoupled from the terminal UPR. ER stress, induced during CD8 T-cell activation and effector function, triggers CPEB4 expression. CPEB4 then mediates chronic stress adaptation to maintain cellular fitness, allowing effector molecule production and cytotoxic activity. Accordingly, this branch of the UPR is required for the antitumor effector function of T lymphocytes, and its disruption in these cells exacerbates tumor growth.
Collapse
Affiliation(s)
- Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annarita Sibilio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elsa Tusquets Uxó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Malumbres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Victor Alcalde
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Chanes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sergio Palomo-Ponce
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool. Cell Rep 2023; 42:112242. [PMID: 36924490 DOI: 10.1016/j.celrep.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Collapse
|
11
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Duran-Arqué B, Cañete M, Castellazzi CL, Bartomeu A, Ferrer-Caelles A, Reina O, Caballé A, Gay M, Arauz-Garofalo G, Belloc E, Mendez R. Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation. Genome Biol 2022; 23:192. [PMID: 36096799 PMCID: PMC9465852 DOI: 10.1186/s13059-022-02759-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date. RESULTS Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs. CONCLUSIONS Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.
Collapse
Affiliation(s)
- Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Manuel Cañete
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Chiara Lara Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Ferrer-Caelles
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Eulalia Belloc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Raúl Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
13
|
Suñer C, Sibilio A, Martín J, Castellazzi CL, Reina O, Dotu I, Caballé A, Rivas E, Calderone V, Díez J, Nebreda AR, Méndez R. Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation. eLife 2022; 11:75873. [PMID: 35442882 PMCID: PMC9094754 DOI: 10.7554/elife.75873] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here, we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3′-UTRs, and it is required for the resolution of the lipopolysaccharide (LPS)-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.
Collapse
Affiliation(s)
- Clara Suñer
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | - Judit Martín
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | - Oscar Reina
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Ivan Dotu
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Elisa Rivas
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | - Juana Díez
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| |
Collapse
|
14
|
E F, Zhang H, Yin W, Wang C, Liu Y, Li Y, Wang L, Wu Y, Zhang R, Zou C, Song T, Matunda C, Zou C, Gao X. CPEB3 deficiency in mice affect ovarian follicle development and causes premature ovarian insufficiency. Cell Death Dis 2021; 13:21. [PMID: 34930897 PMCID: PMC8688431 DOI: 10.1038/s41419-021-04374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
Premature ovarian insufficiency (POI) is a heterogeneous and multifactorial disorder. In recent years, there has been an increasing interest in research on the pathogenesis and treatment of POI, owing to the implementation of the second-child policy in China. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that can bind to specific RNA sequences. CPEB3 can bind to and affect the expression, cellular location, and stability of target RNAs. Cpeb3 is highly expressed in the ovary; however, its functions remain unknown. In this study, Cpeb3-mutant mice were used to characterize the physiological functions of CPEB3. Cpeb3-mutant female mice manifested signs of gradual loss of ovarian follicles, ovarian follicle development arrest, increased follicle atresia, and subfertility with a phenotype analogous to POI in women. Further analysis showed that granulosa cell proliferation was inhibited and apoptosis was markedly increased in Cpeb3-mutant ovaries. In addition, the expression of Gdf9, a potential target of CPEB3, was decreased in Cpeb3-mutant ovaries and oocytes. Altogether, these results reveal that CPEB3 is essential for ovarian follicle development and female fertility as it regulates the expression of Gdf9 in oocytes, disruption of which leads to impaired ovarian follicle development and POI.
Collapse
Affiliation(s)
- Fang E
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - He Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.,Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wanli Yin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chongyang Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Linlin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Runze Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Tianjun Song
- Department of General Surgery, Heilongjiang Provincial Hospital Affiliated to Harbin Institute of Technology, Harbin, Heilongjiang, 150000, China
| | - Cedric Matunda
- Department of Biochemistry & Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin, Heilongjiang, 150081, China.
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin, Heilongjiang, 150081, China. .,Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, 150081, China. .,Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
15
|
Balvey A, Fernandez M. Translational Control in Liver Disease. Front Physiol 2021; 12:795298. [PMID: 34912244 PMCID: PMC8667601 DOI: 10.3389/fphys.2021.795298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease is one of the biggest threats to public health worldwide. Worryingly, the incidence of liver disease is dramatically rising due to the aging of the population and the global epidemics of obesity. Both are major risk factors for chronic liver disease and adverse prognostic factors, causing an increase in mortality rate. It is of great concern that 80–95% of obese people have non-alcoholic fatty liver disease, the major precursor for liver failure and a global health challenge. Currently, the only curative treatment for advanced chronic liver disease is liver transplantation, which is, however, hampered by high treatment costs and the scarcity of donor organs. New strategies are therefore urgently needed to prevent and reverse chronic liver disease. And for that it is essential to understand better the molecular mechanisms underlying human disease. This review focuses on the abnormalities in the regulation of translation by RNA-binding proteins during chronic liver disease and their pathological impact on portal hypertension, fibrosis, steatosis, neovascularization, and cancer development.
Collapse
Affiliation(s)
- Alexandra Balvey
- Laboratory of Translational Control in Liver Disease and Cancer, IDIBAPS Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernandez
- Laboratory of Translational Control in Liver Disease and Cancer, IDIBAPS Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Gilmutdinov R, Kozlov EN, Yakovlev KV, Olenina LV, Kotov AA, Barr J, Zhukova M, Schedl P, Shidlovskii YV. The 3'UTR of the Drosophila CPEB translation factor gene orb2 plays a crucial role in spermatogenesis. Development 2021; 148:272122. [PMID: 34473243 DOI: 10.1242/dev.198788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/22/2021] [Indexed: 01/27/2023]
Abstract
CPEB proteins are conserved translation regulators involved in multiple biological processes. One of these proteins in Drosophila, Orb2, is a principal player in spermatogenesis. It is required for meiosis and spermatid differentiation. During the later process, orb2 mRNA and protein are localized within the developing spermatid. To evaluate the role of the orb2 mRNA 3'UTR in spermatogenesis, we used the CRISPR/Cas9 system to generate a deletion of the orb2 3'UTR, orb2R. This deletion disrupts the process of spermatid differentiation but has no apparent effect on meiosis. Differentiation abnormalities include defects in the initial polarization of the 64-cell spermatid cysts, mislocalization of mRNAs and proteins in the elongating spermatid tails, altered morphology of the elongating spermatid tails, and defects in the assembly of the individualization complex. These disruptions in differentiation appear to arise because orb2 mRNA and protein are not properly localized within the 64-cell spermatid cyst.
Collapse
Affiliation(s)
- Rudolf Gilmutdinov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene N Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Konstantin V Yakovlev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ludmila V Olenina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, National Research Centre Kurchatov Institute, Moscow 123182, Russia
| | - Alexei A Kotov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, National Research Centre Kurchatov Institute, Moscow 123182, Russia
| | - Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Mariya Zhukova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| |
Collapse
|
17
|
Pascual R, Segura-Morales C, Omerzu M, Bellora N, Belloc E, Castellazzi CL, Reina O, Eyras E, Maurice MM, Millanes-Romero A, Méndez R. mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4. RNA (NEW YORK, N.Y.) 2020; 27:rna.077552.120. [PMID: 33323527 PMCID: PMC7901846 DOI: 10.1261/rna.077552.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression. CPEB1 mediates mRNA localization to the meiotic spindle, which is required to ensure proper chromosome segregation. Temporal translational regulation also takes place in mitosis, where a large repertoire of transcripts are activated or repressed in specific cell cycle phases. However, whether control of localized translation at the spindle is required for mitosis is unclear, as mitotic and acentriolar-meiotic spindles are functionally and structurally different. Furthermore, the large differences in scale-ratio between cell volume and spindle size in oocytes compared to somatic mitotic cells may generate distinct requirements for gene expression compartmentalization in meiosis and mitosis. Here we show that mitotic spindles contain CPE-localized mRNAs and translating ribosomes. Moreover, CPEB1 and CPEB4 localize in the spindles and they may function sequentially in promoting mitotic stage transitions and correct chromosome segregation. Thus, CPEB1 and CPEB4 bind to specific spindle-associated transcripts controlling the expression and/or localization of their encoded factors that, respectively, drive metaphase and anaphase/cytokinesis.
Collapse
Affiliation(s)
- Rosa Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Carolina Segura-Morales
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Manja Omerzu
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue - CONICET
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Chiara Lara Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht
| | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology;
| |
Collapse
|
18
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Meneau F, Dupré A, Jessus C, Daldello EM. Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells 2020; 9:E1502. [PMID: 32575604 PMCID: PMC7348711 DOI: 10.3390/cells9061502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
The study of oocytes has made enormous contributions to the understanding of the G2/M transition. The complementarity of investigations carried out on various model organisms has led to the identification of the M-phase promoting factor (MPF) and to unravel the basis of cell cycle regulation. Thanks to the power of biochemical approaches offered by frog oocytes, this model has allowed to identify the core signaling components involved in the regulation of M-phase. A central emerging layer of regulation of cell division regards protein translation. Oocytes are a unique model to tackle this question as they accumulate large quantities of dormant mRNAs to be used during meiosis resumption and progression, as well as the cell divisions during early embryogenesis. Since these events occur in the absence of transcription, they require cascades of successive unmasking, translation, and discarding of these mRNAs, implying a fine regulation of the timing of specific translation. In the last years, the Xenopus genome has been sequenced and annotated, enabling the development of omics techniques in this model and starting its transition into the genomic era. This review has critically described how the different phases of meiosis are orchestrated by changes in gene expression. The physiological states of the oocyte have been described together with the molecular mechanisms that control the critical transitions during meiosis progression, highlighting the connection between translation control and meiosis dynamics.
Collapse
Affiliation(s)
| | | | | | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine, LBD—IBPS, F-75005 Paris, France; (F.M.); (A.D.); (C.J.)
| |
Collapse
|
20
|
Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020; 9:cells9030662. [PMID: 32182827 PMCID: PMC7140715 DOI: 10.3390/cells9030662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The oocyte faces a particular challenge in terms of gene regulation. When oocytes resume meiosis at the end of the growth phase and prior to ovulation, the condensed chromatin state prevents the transcription of genes as they are required. Transcription is effectively silenced from the late germinal vesicle (GV) stage until embryonic genome activation (EGA) following fertilisation. Therefore, during its growth, the oocyte must produce the mRNA transcripts needed to fulfil its protein requirements during the active period of meiotic completion, fertilisation, and the maternal-to zygote-transition (MZT). After meiotic resumption, gene expression control can be said to be transferred from the nucleus to the cytoplasm, from transcriptional regulation to translational regulation. Maternal RNA-binding proteins (RBPs) are the mediators of translational regulation and their role in oocyte maturation and early embryo development is vital. Understanding these mechanisms will provide invaluable insight into the oocyte's requirements for developmental competence, with important implications for the diagnosis and treatment of certain types of infertility. Here, we give an overview of post-transcriptional regulation in the oocyte, emphasising the current knowledge of mammalian RBP mechanisms, and develop the roles of these mechanisms in the timely activation and elimination of maternal transcripts.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Magali Dhellemmes
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Emeline Lambert
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Pierre F. Ray
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- Correspondence: ; Tel.: +33-(0)4-76-63-74-08
| |
Collapse
|
21
|
Wang Y, Yang J, Chen P, Song Y, An W, Zhang H, Butegeleqi B, Yan J. MicroRNA-320a inhibits invasion and metastasis in osteosarcoma by targeting cytoplasmic polyadenylation element-binding protein 1. Cancer Med 2020; 9:2833-2845. [PMID: 32064777 PMCID: PMC7163091 DOI: 10.1002/cam4.2919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor, which affects children, adolescents, and young adults commonly. MicroRNAs (miRNAs) have been proved to be dysregulated in different cancers, including osteosarcoma. Although miR‐320a has been implicated in many types of malignancies, little is known about the role of miR‐320a in osteosarcoma. In this study, we show that the overexpression of miR‐320a or knockdown of cytoplasmic polyadenylation element‐binding protein 1 (CPEB1) inhibited osteosarcoma cell migration and invasion. miR‐320a downregulates CPEB1 expression by directly targeting the CPEB1 3′‐UTR. Furthermore, CPEB1 reintroduction reversed the antiproliferation, antimigration, and antiinvasion roles of miR‐320a, indicating that miR‐320a might function as a tumor suppressor in osteosarcoma through CPEB1. In conclusion, our study demonstrates that miR‐320a plays a critical role in osteosarcoma progression and may provide a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yanlong Wang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiyu Yang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Pangtao Chen
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yu Song
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weizheng An
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Haoran Zhang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Butegeleqi Butegeleqi
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jinglong Yan
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
22
|
Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. Int J Mol Sci 2020; 21:ijms21041254. [PMID: 32070012 PMCID: PMC7072993 DOI: 10.3390/ijms21041254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.
Collapse
|
23
|
Yang D, Liu K, Fan L, Liang W, Xu T, Jiang W, Lu H, Jiang J, Wang C, Li G, Zhang X. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett 2020; 473:33-49. [PMID: 31904478 DOI: 10.1016/j.canlet.2019.12.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulates the initiation and progression of osteosarcoma (OS), specifically lncRNA RP11-361F15.2 has been shown to play prominent roles in tumorigenesis. Previously, M2-Like polarization of tumor-associated macrophages (TAMs) has been identified to play a key role in cancer migration/invasion. Hence, it is essential to understand the role of RP11-361F15.2 in tumorigenesis and its association with M2-Like polarization of TAMs. The results indicate that RP11-361F15.2 is significantly increased in OS tissues, and its expression is positively correlated with cytoplasmic polyadenylation element binding protein 4 (CPEB4) expression and negatively associated with miR-30c-5p expression. Further, overexpression of RP11-361F15.2 increased OS cell migration/invasion and M2-Like polarization of TAMs in vitro, as well as promoted xenograft tumor growth in vivo. Mechanistically, luciferase reporter assays indicated that RP11-361F15.2 upregulated CPEB4 expression by competitively binding to miR-30c-5p. Further, we have identified that RP11-361F15.2 promotes CPEB4-mediated tumorigenesis and M2-Like polarization of TAMs through miR-30c-5p in OS. We also identified that RP11-361F15.2 acts as competitive endogenous RNA (ceRNA) against miR-30c-5p thereby binding and activating CPEB4. This RP11-361F15.2/miR-30c-5p/CPEB4 loop could be used as a potential therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, PR China.
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Hengli Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Junjie Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Chi Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Xiaoping Zhang
- The Institute of Intervention Vessel, Shanghai Tenth People's Hospital, Shanghai, PR China.
| |
Collapse
|
24
|
Communication Is Key: 5'-3' Interactions that Regulate mRNA Translation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:149-164. [PMID: 31811634 DOI: 10.1007/978-3-030-31434-7_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most eukaryotic mRNAs maintain a 5' cap structure and 3' poly(A) tail, cis-acting elements that are often separated by thousands of nucleotides. Nevertheless, multiple paradigms exist where mRNA 5' and 3' termini interact with each other in order to regulate mRNA translation and turnover. mRNAs recruit translation initiation factors to their termini, which in turn physically interact with each other. This physical bridging of the mRNA termini is known as the "closed loop" model, with years of genetic and biochemical evidence supporting the functional synergy between the 5' cap and 3' poly(A) tail to enhance mRNA translation initiation. However, a number of examples exist of "non-canonical" 5'-3' communication for cellular and viral RNAs that lack 5' cap structures and/or poly(A) tails. Moreover, in several contexts, mRNA 5'-3' communication can function to repress translation. Overall, we detail how various mRNA 5'-3' interactions play important roles in posttranscriptional regulation, wherein depending on the protein factors involved can result in translational stimulation or repression.
Collapse
|
25
|
Tseng CS, Chou SJ, Huang YS. CPEB4-Dependent Neonate-Born Granule Cells Are Required for Olfactory Discrimination. Front Behav Neurosci 2019; 13:5. [PMID: 30728769 PMCID: PMC6351472 DOI: 10.3389/fnbeh.2019.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022] Open
Abstract
The rodent olfactory bulb (OB) contains two distinct populations of postnatally born interneurons, mainly granule cells (GCs), to support local circuits throughout life. During the early postnatal period (i.e., 2 weeks after birth), GCs are mostly produced locally from progenitor cells in the OB with a proportion of them deriving from proliferating cells in the rostral migratory stream (RMS). Afterward, the replenishment of GCs involves differentiated neuroblasts from the subventricular zone (SVZ) in a process known as adult neurogenesis. Although numerous studies have addressed the role of SVZ-born GCs in olfactory behaviors, the function of GCs produced early postnatally in the OB remains elusive. Our previous study demonstrated that the translational regulator, cytoplasmic polyadenylation element-binding protein 4 (CPEB4), is a survival factor exclusively for neonate-born but not SVZ/adult-derived GCs, so CPEB4-knockout (KO) mice provide unique leverage to study early postnatal-born GC-regulated olfactory functions. CPEB4-KO mice with hypoplastic OBs showed normal olfactory sensitivity and short-term memory, but impaired ability to spontaneously discriminate two odors. Such olfactory dysfunction was recapitulated in specific ablation of Cpeb4 gene in inhibitory interneurons but not in excitatory projection neurons or SVZ-derived interneurons. The continuous supply of GCs from adult neurogenesis eventually restored the OB size but not the discrimination function in 6-month-old KO mice. Hence, in the early postnatal OB, whose function cannot be replaced by adult-born GCs, construct critical circuits for odor discrimination.
Collapse
Affiliation(s)
- Ching-San Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Chen HF, Hsu CM, Huang YS. CPEB2-dependent translation of long 3'-UTR Ucp1 mRNA promotes thermogenesis in brown adipose tissue. EMBO J 2018; 37:embj.201899071. [PMID: 30177570 DOI: 10.15252/embj.201899071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Expression of mitochondrial proton transporter uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is essential for mammalian thermogenesis. While human UCP1 mRNA exists in a long form only, alternative polyadenylation creates two different isoforms in mice with 10% of UCP1 mRNA found in the long form (Ucp1L) and ~90% in the short form (Ucp1S). We generated a mouse model expressing only Ucp1S and found that it showed impaired thermogenesis due to a 60% drop in UCP1 protein levels, suggesting that Ucp1L is more efficiently translated than Ucp1S. In addition, we found that β3 adrenergic receptor signaling promoted the translation of mouse Ucp1L and human Ucp1 in a manner dependent on cytoplasmic polyadenylation element binding protein 2 (CPEB2). CPEB2-knockout mice showed reduced UCP1 levels and impaired thermogenesis in BAT, which was rescued by ectopic expression of CPEB2. Hence, long 3'-UTR Ucp1 mRNA translation activated by CPEB2 is likely conserved and important in humans to produce UCP1 for thermogenesis.
Collapse
Affiliation(s)
- Hui-Feng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Ming Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Olfactory-Experience- and Developmental-Stage-Dependent Control of CPEB4 Regulates c-Fos mRNA Translation for Granule Cell Survival. Cell Rep 2018; 21:2264-2276. [PMID: 29166615 DOI: 10.1016/j.celrep.2017.10.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/13/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Mammalian olfactory bulbs (OBs) require continuous replenishment of interneurons (mainly granule cells [GCs]) to support local circuits throughout life. Two spatiotemporally distinct waves of postnatal neurogenesis contribute to expanding and maintaining the GC pool. Although neonate-born GCs have a higher survival rate than adult-born GCs, the molecular mechanism underlying this survival remains unclear. Here, we find that cytoplasmic polyadenylation element-binding protein 4 (CPEB4) acts as a survival factor exclusively for early postnatal GCs. In mice, during the first 2 postnatal weeks, olfactory experience initiated CPEB4-activated c-Fos mRNA translation. In CPEB4-knockout mice, c-FOS insufficiency reduced neurotrophic signaling to impair GC survival and cause OB hypoplasia. Both cyclic AMP responsive element binding protein (CREB)-dependent transcription and CPEB4-promoted translation support c-FOS expression early postnatal OBs but disengage in adult OBs. Activity-related c-FOS synthesis and GC survival are thus developmentally controlled by distinct molecular mechanisms to govern OB growth.
Collapse
|
28
|
Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-González JL, Picó S, Hernández IH, Díaz-Hernández JI, Belloc E, Rodolosse A, Parikshak NN, Peñagarikano O, Fernández-Chacón R, Irimia M, Navarro P, Geschwind DH, Méndez R, Lucas JJ. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature 2018; 560:441-446. [PMID: 30111840 PMCID: PMC6217926 DOI: 10.1038/s41586-018-0423-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Common genetic contributions to autism spectrum disorder (ASD) reside in risk gene variants that individually have minimal effect sizes. As environmental factors that perturb neurodevelopment also underlie idiopathic ASD, it is crucial to identify altered regulators that can orchestrate multiple ASD risk genes during neurodevelopment. Cytoplasmic polyadenylation element binding proteins 1-4 (CPEB1-4) regulate the translation of specific mRNAs by modulating their poly(A)-tails and thereby participate in embryonic development and synaptic plasticity. Here we find that CPEB4 binds transcripts of most high-confidence ASD risk genes. The brains of individuals with idiopathic ASD show imbalances in CPEB4 transcript isoforms that result from decreased inclusion of a neuron-specific microexon. In addition, 9% of the transcriptome shows reduced poly(A)-tail length. Notably, this percentage is much higher for high-confidence ASD risk genes, correlating with reduced expression of the protein products of ASD risk genes. An equivalent imbalance in CPEB4 transcript isoforms in mice mimics the changes in mRNA polyadenylation and protein expression of ASD risk genes and induces ASD-like neuroanatomical, electrophysiological and behavioural phenotypes. Together, these data identify CPEB4 as a regulator of ASD risk genes.
Collapse
Affiliation(s)
- Alberto Parras
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Héctor Anta
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Santos-Galindo
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Vivek Swarup
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ainara Elorza
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Nieto-González
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Seville, Spain
| | - Sara Picó
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivó H Hernández
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias, Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan I Díaz-Hernández
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annie Rodolosse
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Neelroop N Parikshak
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olga Peñagarikano
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Rafael Fernández-Chacón
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Seville, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Beta RAA, Balatsos NAA. Tales around the clock: Poly(A) tails in circadian gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1484. [PMID: 29911349 DOI: 10.1002/wrna.1484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022]
Abstract
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
30
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
31
|
Harvey RF, Smith TS, Mulroney T, Queiroz RML, Pizzinga M, Dezi V, Villenueva E, Ramakrishna M, Lilley KS, Willis AE. Trans-acting translational regulatory RNA binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1465. [PMID: 29341429 PMCID: PMC5947564 DOI: 10.1002/wrna.1465] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms.
Collapse
Affiliation(s)
| | - Tom S. Smith
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rayner M. L. Queiroz
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | - Eneko Villenueva
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
32
|
Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One 2018. [PMID: 29529035 PMCID: PMC5846722 DOI: 10.1371/journal.pone.0192544] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tight correlation between mRNA distribution and subsequent protein localization and function indicate a major role for mRNA localization within the cell. RNA localization, followed by local translation, presents a mechanism for spatial and temporal gene expression regulation utilized by various cell types. However, little is known about mRNA localization and translation in the mammalian oocyte and early embryo. Importantly, fully-grown oocyte becomes transcriptionally inactive and only utilizes transcripts previously synthesized and stored during earlier development. We discovered an abundant RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. We also characterized specific ribosomal proteins, which contribute to translation in the oocyte and embryo. By applying selected markers to mouse and human oocytes, we found that there might be a similar mechanism of RNA metabolism in both species. In conclusion, we visualized the localization of RNAs and translation machinery in the oocyte, that could shed light on this terra incognita of these unique cell types in mouse and human.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
- * E-mail: (DJ); (AS)
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- * E-mail: (DJ); (AS)
| |
Collapse
|
33
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
34
|
Lou WPK, Mateos A, Koch M, Klussman S, Yang C, Lu N, Kumar S, Limpert S, Göpferich M, Zschaetzsch M, Sliwinski C, Kenzelmann M, Seedorf M, Maillo C, Senis E, Grimm D, Puttagunta R, Mendez R, Liu K, Hassan BA, Martin-Villalba A. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1. Front Mol Neurosci 2018; 10:445. [PMID: 29379413 PMCID: PMC5770975 DOI: 10.3389/fnmol.2017.00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Adult mammalian central nervous system (CNS) neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE) as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.
Collapse
Affiliation(s)
- Wilson Pak-Kin Lou
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Alvaro Mateos
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Marta Koch
- VIB Center for the Biology of Disease and Center for Human Genetics, VIB and KU Leuven, Leuven, Belgium
| | - Stefan Klussman
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Chao Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Na Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Sachin Kumar
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Limpert
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Manuel Göpferich
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Marlen Zschaetzsch
- VIB Center for the Biology of Disease and Center for Human Genetics, VIB and KU Leuven, Leuven, Belgium
| | - Christopher Sliwinski
- Department of Neuroregeneration, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Kenzelmann
- Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie, University of Heidelberg, Heidelberg, Germany
| | - Carlos Maillo
- Translational Control of Cell Cycle and Differentiation, Institute for Research in Biomedicine, Barcelona, Spain
| | - Elena Senis
- Virus Host Interaction, Heidelberg University Hospital, Center for Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant, Heidelberg, Germany
| | - Dirk Grimm
- Virus Host Interaction, Heidelberg University Hospital, Center for Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant, Heidelberg, Germany
| | - Radhika Puttagunta
- Department of Neuroregeneration, University Hospital Heidelberg, Heidelberg, Germany
| | - Raul Mendez
- Translational Control of Cell Cycle and Differentiation, Institute for Research in Biomedicine, Barcelona, Spain
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Bassem A. Hassan
- VIB Center for the Biology of Disease and Center for Human Genetics, VIB and KU Leuven, Leuven, Belgium
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et de la Moelle epiniere - Hôpital Pitié-Salpêtrière, Paris, France
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
35
|
Lasko P. Dueling RNA-binding proteins promote translational activation. Nat Struct Mol Biol 2017; 24:609-610. [PMID: 28771463 DOI: 10.1038/nsmb.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul Lasko
- Department of Biology at McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Weill L, Belloc E, Castellazzi CL, Méndez R. Musashi 1 regulates the timing and extent of meiotic mRNA translational activation by promoting the use of specific CPEs. Nat Struct Mol Biol 2017; 24:672-681. [DOI: 10.1038/nsmb.3434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 06/14/2017] [Indexed: 12/31/2022]
|
37
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
38
|
Garcia-Pras E, Gallego J, Coch L, Mejias M, Fernandez-Miranda G, Pardal R, Bosch J, Mendez R, Fernandez M. Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut 2017; 66:1306-1320. [PMID: 26984852 DOI: 10.1136/gutjnl-2015-311157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pathological neovascularisation is intimately involved in portal hypertension (PH). Here, we determined the contribution of vascular stem/progenitor cells (VSPCs) to neovessel growth in PH and whether the RNA-binding protein cytoplasmic polyadenylation element binding protein-4 (CPEB4) was behind the mechanism controlling VSPC function. DESIGN To identify and monitor VSPCs in PH rats (portal vein-ligated), we used a combinatorial approach, including sphere-forming assay, assessment of self-renewal, 5-bromo-2'-desoxyuridine label retention technique, in vitro and in vivo stem/progenitor cell (SPC) differentiation and vasculogenic capability, cell sorting, as well as immunohistochemistry, immunofluorescence and confocal microscopy expression analysis. We also determined the role of CPEB4 on VSPC proliferation using genetically engineered mouse models. RESULTS We demonstrated the existence in the mesenteric vascular bed of VSPCs displaying capability to form cellular spheres in suspension culture, self-renewal ability, expression of molecules commonly found in SPCs, slow-cycling features, in addition to other cardinal properties exhibited by SPCs, like capacity to differentiate into endothelial cells and pericytes with remarkable vasculogenic activity. Such VSPCs showed, after PH induction, an early switch in proliferation, and differentiated in vivo into endothelial cells and pericytes, contributing, structurally and functionally, to abnormal neovessel formation. Quantification of VSPC-dependent neovessel formation in PH further illustrated the key role played by VSPCs. We also demonstrated that CPEB4 regulates the proliferation of the activated VSPC progeny upon PH induction. CONCLUSIONS These findings demonstrate that VSPC-derived neovessel growth (ie, vasculogenesis) and angiogenesis cooperatively stimulate mesenteric neovascularisation in PH and identify VSPC and CPEB4 as potential therapeutic targets.
Collapse
Affiliation(s)
- Ester Garcia-Pras
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Javier Gallego
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Laura Coch
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marc Mejias
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Gonzalo Fernandez-Miranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jaime Bosch
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Wu C, Xu B, Li X, Ma W, Zhang P, Chen X, Wu J. Tracing and Characterizing the Development of Transplanted Female Germline Stem Cells In Vivo. Mol Ther 2017; 25:1408-1419. [PMID: 28528817 DOI: 10.1016/j.ymthe.2017.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/25/2022] Open
Abstract
It has long been believed that most female mammalian species lose the ability to generate oocytes in postnatal ovaries. Recent evidence has demonstrated the isolation and culture of female germline stem cells (FGSCs) from adult mice and humans. However, the process and mechanisms of FGSC differentiation in vivo following transplantation have not yet been studied. Here, we isolated and characterized FGSCs from a single EGFP-transgenic mouse, and traced the development and behavior of transplanted FGSCs (F-TFs) in vivo. Comparisons of folliculogenesis between recipients with FGSC transplantation and wild-type (WT) mice were performed by single follicle RNA-sequencing (RNA-seq). Results showed that FGSCs exhibited a homing ability and began to differentiate into early-stage oocytes only when they reached the edge of the ovarian cortex. The F-TFs restored function of premature ovarian failure (gdf9iCre; PtenloxP/loxP genotype) and generated offspring. Furthermore, results demonstrated that the developmental mechanisms of follicles derived from F-TFs were similar to that of WT follicles. Weighted gene co-expression network analysis identified two potential sub-networks and core genes that played a critical role in follicular development. These findings provide a theoretical basis and lay a technology platform for specific or personalized medical treatment of ovarian failure or other ovarian diseases.
Collapse
Affiliation(s)
- Changqing Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Xu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
40
|
Rouhana L, Tasaki J, Saberi A, Newmark PA. Genetic dissection of the planarian reproductive system through characterization of Schmidtea mediterranea CPEB homologs. Dev Biol 2017; 426:43-55. [PMID: 28434803 PMCID: PMC5544531 DOI: 10.1016/j.ydbio.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 01/30/2023]
Abstract
Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA; Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | - Junichi Tasaki
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
41
|
Translational reprogramming in tumour cells can generate oncoselectivity in viral therapies. Nat Commun 2017; 8:14833. [PMID: 28300077 PMCID: PMC5357308 DOI: 10.1038/ncomms14833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/02/2017] [Indexed: 01/06/2023] Open
Abstract
Systemic treatment of cancer requires tumour-selective therapies that eliminate cancer cells yet preserve healthy tissues from undesired damage. Tumoral transformation is associated with profound effects in translational reprogramming of gene expression, such that tumour-specific translational regulation presents an attractive possibility for generating oncoselective therapies. We recently discovered that mRNA translational control by cytoplasmic polyadenylation element-binding proteins (CPEBs) is reactivated in cancer. Here we present a novel approach to restrict genetic-engineered therapies to malignant tissues based on CPEB translational regulation of target mRNAs. We demonstrate that tumour reprogramming of CPEB-mediated mRNA stability and translational regulation modulates tumour-specific expression of viral proteins. For oncolytic adenoviruses, insertion of CPE regulatory sequences in the 3'-untranslated region of the E1A gene provides oncoselectivity, with full potency in cancer cells but attenuated in normal tissues. Our results demonstrate the potential of this strategy to improve oncolytic virus design and provide a framework for exploiting CPE-regulated transgenes for therapy.
Collapse
|
42
|
Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 2017; 19:94-105. [PMID: 28092655 DOI: 10.1038/ncb3461] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022]
Abstract
The cytoplasmic polyadenylation element-binding (CPEB) proteins regulate pre-mRNA processing and translation of CPE-containing mRNAs in early embryonic development and synaptic activity. However, specific functions in adult organisms are poorly understood. Here we show that CPEB4 is required for adaptation to high-fat-diet- and ageing-induced endoplasmic reticulum (ER) stress, and subsequent hepatosteatosis. Stress-activated liver CPEB4 expression is dual-mode regulated. First, Cpeb4 mRNA transcription is controlled by the circadian clock, and then its translation is regulated by the unfolded protein response (UPR) through upstream open reading frames within the 5'UTR. Thus, the CPEB4 protein is synthesized only following ER stress but the induction amplitude is circadian. In turn, CPEB4 activates a second wave of UPR translation required to maintain ER and mitochondrial homeostasis. Our results suggest that combined transcriptional and translational Cpeb4 regulation generates a 'circadian mediator', which coordinates hepatic UPR activity with periods of high ER-protein-folding demand. Accordingly, CPEB4 deficiency results in non-alcoholic fatty liver disease.
Collapse
|
43
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
44
|
Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers. Nat Commun 2016; 7:13418. [PMID: 27857118 PMCID: PMC5120223 DOI: 10.1038/ncomms13418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma. Cytoplasmic polyadenylated transcripts have been poorly characterized, particularly in cancer. Here the authors identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma and show that it controls melanoma drivers MITF and RAB27A.
Collapse
|
45
|
Guillén-Boixet J, Buzon V, Salvatella X, Méndez R. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. eLife 2016; 5. [PMID: 27802129 PMCID: PMC5089860 DOI: 10.7554/elife.19298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
The four members of the vertebrate CPEB family of RNA-binding proteins share similar RNA-binding domains by which they regulate the translation of CPE-containing mRNAs, thereby controlling cell cycle and differentiation or synaptic plasticity. However, the N-terminal domains of CPEBs are distinct and contain specific regulatory post-translational modifications that presumably differentially integrate extracellular signals. Here we show that CPEB4 activity is regulated by ERK2- and Cdk1-mediated hyperphosphorylation. These phosphorylation events additively activate CPEB4 in M-phase by maintaining it in its monomeric state. In contrast, unphosphorylated CPEB4 phase separates into inactive, liquid-like droplets through its intrinsically disordered regions in the N-terminal domain. This dynamic and reversible regulation of CPEB4 is coordinated with that of CPEB1 through Cdk1, which inactivates CPEB1 while activating CPEB4, thereby integrating phase-specific signal transduction pathways to regulate cell cycle progression.
Collapse
Affiliation(s)
- Jordina Guillén-Boixet
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Víctor Buzon
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
46
|
Abstract
Localized protein translation is critical in many biological contexts, particularly in highly polarized cells, such as neurons, to regulate gene expression in a spatiotemporal manner. The cytoplasmic polyadenylation element-binding (CPEB) family of RNA-binding proteins has emerged as a key regulator of mRNA transport and local translation required for early embryonic development, synaptic plasticity, and long-term memory (LTM). Drosophila Orb and Orb2 are single members of the CPEB1 and CPEB2 subfamilies of the CPEB proteins, respectively. At present, the identity of the mRNA targets they regulate is not fully known, and the binding specificity of the CPEB2 subfamily is a matter of debate. Using transcriptome-wide UV cross-linking and immunoprecipitation, we define the mRNA-binding sites and targets of Drosophila CPEBs. Both Orb and Orb2 bind linear cytoplasmic polyadenylation element-like sequences in the 3' UTRs of largely overlapping target mRNAs, with Orb2 potentially having a broader specificity. Both proteins use their RNA-recognition motifs but not the Zinc-finger region for RNA binding. A subset of Orb2 targets is translationally regulated in cultured S2 cells and fly head extracts. Moreover, pan-neuronal RNAi knockdown of these targets suggests that a number of these targets are involved in LTM. Our results provide a comprehensive list of mRNA targets of the two CPEB proteins in Drosophila, thus providing insights into local protein synthesis involved in various biological processes, including LTM.
Collapse
|
47
|
He X, Lin X, Cai M, Fan D, Chen X, Wang L, Wu X, Lan P, Wang J. High expression of cytoplasmic polyadenylation element-binding protein 4 correlates with poor prognosis of patients with colorectal cancer. Virchows Arch 2016; 470:37-45. [PMID: 27771769 DOI: 10.1007/s00428-016-2037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/05/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022]
Abstract
Cytoplasmic polyadenylation element-binding protein 4 (CPEB4), a zinc-finger-containing sequence-specific RNA-binding protein, has been associated with tumor proliferation, invasion, and migration. Expression of CPEB4 and its prognostic significance in human colorectal cancer (CRC) have not been studied. The aim of the present study was to investigate expression of CPEB4 and its prognostic significance in CRC. Expression of CPEB4 in CRC tissues from two independent cohorts was examined by immunohistochemistry. Prognostic significance was analyzed using receiver operating characteristic curve analysis, Kaplan-Meier curves, and Cox regression analysis. High expression of CPEB4 was observed in 14.8 % of CRCs in the training cohort and 12.2 % of CRCs in the validation cohort. High expression of CPEB4 was significantly correlated with the pM classification, TNM stage, and poorer overall survival in both cohorts. Through multivariate Cox regression analysis, high expression of CPEB4 was found to be an independent prognostic biomarker for overall survival in CRC patients. High expression of CPEB4 may be an independent and useful biomarker for predicting the poor survival of patients with CRC.
Collapse
Affiliation(s)
- Xiaosheng He
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Xutao Lin
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Dejun Fan
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Xiuting Chen
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Lei Wang
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Xiaojian Wu
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China
| | - Ping Lan
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.
| | - Jianping Wang
- Department of Colorectal Surgery,the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
48
|
Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma. PLoS One 2016; 11:e0155025. [PMID: 27158894 PMCID: PMC4861299 DOI: 10.1371/journal.pone.0155025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/22/2016] [Indexed: 01/16/2023] Open
Abstract
Cytoplasmic polyadenylation element binding protein 4 (CPEB4) is a sequence-specific RNA-binding protein and translational regulator, with expression associated with tumor progression. Nevertheless, CPEB4 seems to play paradoxical roles in cancers–an oncogenic promoter in pancreatic ductal adenocarcinoma (PDA) and glioblastomas but a tumor suppressor in hepatocellular carcinoma (HCC). To assess whether CPEB4-regulated carcinogenesis is tissue-specific, we reevaluated the role of CPEB4 in HCC. Although proliferation of hepatocytes appeared normal in CPEB4-knockout (KO) mice after partial hepatectomy, knockdown (KD) of CPEB4 in HepG2 liver cancer cells promoted colony formation in vitro. Moreover, the growth of CPEB4-KD cells was accelerated in an in vivo xenograft mouse model. In tumorous and adjacent non-tumorous paired liver specimens from 49 HCC patients, the protein level of CPEB4 was significantly upregulated in early-stage HCC but decreased toward late-stage HCC. This finding agrees with changes in CPEB4 mRNA level from analysis of two sets of HCC microarray data from the Gene Expression Omnibus (GEO) database. Taken together, downregulation of CPEB4 likely occurs at the late cancer stage to facilitate HCC progression. Biphasic alteration of CPEB4 expression during HCC progression suggests its complicated role in tumorigenesis.
Collapse
|
49
|
Calderone V, Gallego J, Fernandez-Miranda G, Garcia-Pras E, Maillo C, Berzigotti A, Mejias M, Bava FA, Angulo-Urarte A, Graupera M, Navarro P, Bosch J, Fernandez M, Mendez R. Sequential Functions of CPEB1 and CPEB4 Regulate Pathologic Expression of Vascular Endothelial Growth Factor and Angiogenesis in Chronic Liver Disease. Gastroenterology 2016; 150:982-97.e30. [PMID: 26627607 DOI: 10.1053/j.gastro.2015.11.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Vittorio Calderone
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gallego
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Gonzalo Fernandez-Miranda
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Garcia-Pras
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Carlos Maillo
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annalisa Berzigotti
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Marc Mejias
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Felice-Alessio Bava
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ana Angulo-Urarte
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jaime Bosch
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernandez
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain.
| | - Raul Mendez
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
50
|
Kaczmarczyk L, Labrie-Dion É, Sehgal K, Sylvester M, Skubal M, Josten M, Steinhäuser C, De Koninck P, Theis M. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein. PLoS One 2016; 11:e0150000. [PMID: 26915047 PMCID: PMC4767366 DOI: 10.1371/journal.pone.0150000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- * E-mail:
| | | | - Kapil Sehgal
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paul De Koninck
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|