1
|
Shang E, Wei K, Lv B, Zhang X, Lin X, Ding Z, Leng J, Tian H, Ding Z. VIK-Mediated Auxin Signaling Regulates Lateral Root Development in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402442. [PMID: 38958531 PMCID: PMC11434109 DOI: 10.1002/advs.202402442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
The crucial role of TIR1-receptor-mediated gene transcription regulation in auxin signaling has long been established. In recent years, the significant role of protein phosphorylation modifications in auxin signal transduction has gradually emerged. To further elucidate the significant role of protein phosphorylation modifications in auxin signaling, a phosphoproteomic analysis in conjunction with auxin treatment has identified an auxin activated Mitogen-activated Protein Kinase Kinase Kinase (MAPKKK) VH1-INTERACTING Kinase (VIK), which plays an important role in auxin-induced lateral root (LR) development. In the vik mutant, auxin-induced LR development is significantly attenuated. Further investigations show that VIK interacts separately with the positive regulator of LR development, LATERAL ORGAN BOUNDARIES-DOMAIN18 (LBD18), and the negative regulator of LR emergence, Ethylene Responsive Factor 13 (ERF13). VIK directly phosphorylates and stabilizes the positive transcription factor LBD18 in LR formation. In the meantime, VIK directly phosphorylates the negative regulator ERF13 at Ser168 and Ser172 sites, causing its degradation and releasing the repression by ERF13 on LR emergence. In summary, VIK-mediated auxin signaling regulates LR development by enhancing the protein stability of LBD18 and inducing the degradation of ERF13, respectively.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Kaijing Wei
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Bingsheng Lv
- College of HorticultureQingdao Agricultural UniversityQingdaoShandong266109China
| | - Xueli Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Zhihui Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Junchen Leng
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| |
Collapse
|
2
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
3
|
Khan S, Molloy JE, Puhl H, Schulman H, Vogel SS. Real-time single-molecule imaging of CaMKII-calmodulin interactions. Biophys J 2024; 123:824-838. [PMID: 38414237 DOI: 10.1016/j.bpj.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIβ isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIβ were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and β isoforms. The study of mutant β holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium at Lawrence Berkeley National Laboratory, Berkeley, California.
| | | | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Howard Schulman
- Panorama Research Institute, Sunnyvale, California; Stanford University School of Medicine, Stanford, California
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
4
|
Özden C, MacManus S, Adafia R, Samkutty A, Torres‐Ocampo AP, Garman SC, Stratton MM. Ca2+/CaM dependent protein kinase II (CaMKII)α and CaMKIIβ hub domains adopt distinct oligomeric states and stabilities. Protein Sci 2024; 33:e4960. [PMID: 38501502 PMCID: PMC10962473 DOI: 10.1002/pro.4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a multidomain serine/threonine kinase that plays important roles in the brain, heart, muscle tissue, and eggs/sperm. The N-terminal kinase and regulatory domain is connected by a flexible linker to the C-terminal hub domain. The hub domain drives the oligomeric organization of CaMKII, assembling the kinase domains into high local concentration. Previous structural studies have shown multiple stoichiometries of the holoenzyme as well as the hub domain alone. Here, we report a comprehensive study of the hub domain stoichiometry and stability in solution. We solved two crystal structures of the CaMKIIβ hub domain that show 14-mer (3.1 Å) and 16-mer (3.4 Å) assemblies. Both crystal structures were determined from crystals grown in the same drop, which suggests that CaMKII oligomers with different stoichiometries likely coexist. To further interrogate hub stability, we employed mass photometry and temperature denaturation studies of CaMKIIβ and CaMKIIα hubs, which highlight major differences between these highly similar domains. We created a dimeric CaMKIIβ hub unit using rational mutagenesis, which is significantly less stable than the oligomer. Both hub domains populate an intermediate during unfolding. We found that multiple CaMKIIβ hub stoichiometries are present in solution and that larger oligomers are more stable. CaMKIIα had a narrower distribution of molecular weight and was distinctly more stable than CaMKIIβ.
Collapse
Affiliation(s)
- Can Özden
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Sara MacManus
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ruth Adafia
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ana P. Torres‐Ocampo
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Scott C. Garman
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
5
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
6
|
Lučić I, Jiang P, Franz A, Bursztyn Y, Liu F, Plested AJR. Controlling the interaction between CaMKII and Calmodulin with a photocrosslinking unnatural amino acid. Protein Sci 2023; 32:e4798. [PMID: 37784242 PMCID: PMC10588329 DOI: 10.1002/pro.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Using unnatural amino acid mutagenesis, we made a mutant of CaMKII that forms a covalent linkage to Calmodulin upon illumination by UV light. Like wild-type CaMKII, the L308BzF mutant stoichiometrically binds to Calmodulin, in a calcium-dependent manner. Using this construct, we demonstrate that Calmodulin binding to CaMKII, even under these stochiometric conditions, does not perturb the CaMKII oligomeric state. Furthermore, we were able to achieve activation of CaMKII L308BzF by UV-induced binding of Calmodulin, which, once established, is further insensitive to calcium depletion. In addition to the canonical auto-inhibitory role of the regulatory segment, inter-subunit crosslinking in the absence of CaM indicates that kinase domains and regulatory segments are substantially mobile in basal conditions. Characterization of CaMKIIL308BzF in vitro, and its expression in mammalian cells, suggests it could be a promising candidate for control of CaMKII activity in mammalian cells with light.
Collapse
Affiliation(s)
- Iva Lučić
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pin‐Lian Jiang
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and BiochemistryBerlinGermany
| | - Yuval Bursztyn
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
| | - Fan Liu
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Charité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrew J. R. Plested
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- NeuroCure, Charité UniversitätsmedizinBerlinGermany
| |
Collapse
|
7
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
8
|
Elgheznawy A, Öftering P, Englert M, Mott K, Kaiser F, Kusch C, Gbureck U, Bösl MR, Schulze H, Nieswandt B, Vögtle T, Hermanns HM. Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo. Front Immunol 2023; 14:1197894. [PMID: 37359521 PMCID: PMC10285393 DOI: 10.3389/fimmu.2023.1197894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.
Collapse
Affiliation(s)
- Amro Elgheznawy
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Rocco-Machado N, Lai L, Kim G, He Y, Luczak ED, Anderson ME, Levine RL. Oxidative stress–induced autonomous activation of the calcium/calmodulin-dependent kinase II involves disulfide formation in the regulatory domain. J Biol Chem 2022; 298:102579. [PMID: 36220393 PMCID: PMC9643438 DOI: 10.1016/j.jbc.2022.102579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ) has a pivotal role in cardiac signaling. Constitutive and deleterious CaMKII “autonomous” activation is induced by oxidative stress, and the previously reported mechanism involves oxidation of methionine residues in the regulatory domain. Here, we demonstrate that covalent oxidation leads to a disulfide bond with Cys273 in the regulatory domain causing autonomous activity. Autonomous activation was induced by treating CaMKII with diamide or histamine chloramine, two thiol-oxidizing agents. Autonomy was reversed when the protein was incubated with DTT or thioredoxin to reduce disulfide bonds. Tryptic mapping of the activated CaMKII revealed formation of a disulfide between Cys273 and Cys290 in the regulatory domain. We determined the apparent pKa of those Cys and found that Cys273 had a low pKa while that of Cys290 was elevated. The low pKa of Cys273 facilitates oxidation of its thiol to the sulfenic acid at physiological pH. The reactive sulfenic acid then attacks the thiol of Cys290 to form the disulfide. The previously reported CaMKII mutant in which methionine residues 281 and 282 were mutated to valine (MMVV) protects mice and flies from cardiac decompensation induced by oxidative stress. Our initial hypothesis was that the MMVV mutant underwent a conformational change that prevented disulfide formation and autonomous activation. However, we found that the thiol-oxidizing agents induced autonomy in the MMVV mutant and that the mutant undergoes rapid degradation by the cell, potentially preventing accumulation of the injurious autonomous form. Together, our results highlight additional mechanistic details of CaMKII autonomous activation.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Lo Lai
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Yi He
- Fermentation Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth D Luczak
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Physiology and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Bredow M, Monaghan J. Cross-kingdom regulation of calcium- and/or calmodulin-dependent protein kinases by phospho-switches that relieve autoinhibition. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102251. [PMID: 35767936 DOI: 10.1016/j.pbi.2022.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Mechanisms to sense and respond to calcium have evolved in all organisms. Calmodulin is a universal calcium sensor across eukaryotes that directly binds calcium and associates with many downstream signal transducers including protein kinases. All eukaryotes encode calcium-dependent and/or calmodulin-dependent kinases, however there are distinct protein families across kingdoms. Here, we compare the activation mechanisms of calmodulin-dependent protein kinases (CaMKs), calcium- and calmodulin-dependent protein kinases (CCaMKs) and calcium-dependent protein kinases (CDPKs), noting striking similarities regarding phosphorylation in a regulatory segment known as the autoinhibitory junction. We thus propose that conserved regulation by phosphorylation underlies the activation of calcium-responsive proteins from different kingdoms.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology and Microbiology, Iowa State University, Ames IA, USA.
| | | |
Collapse
|
11
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
12
|
Cai Q, Zeng M, Wu X, Wu H, Zhan Y, Tian R, Zhang M. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Res 2020; 31:37-51. [PMID: 33235361 DOI: 10.1038/s41422-020-00439-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022] Open
Abstract
Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) is essential for synaptic plasticity and learning by decoding synaptic Ca2+ oscillations. Despite decades of extensive research, new mechanisms underlying CaMKIIα's function in synapses are still being discovered. Here, we discover that Shank3 is a specific binding partner for autoinhibited CaMKIIα. We demonstrate that Shank3 and GluN2B, via combined actions of Ca2+ and phosphatases, reciprocally bind to CaMKIIα. Under basal condition, CaMKIIα is recruited to the Shank3 subcompartment of postsynaptic density (PSD) via phase separation. Rise of Ca2+ concentration induces GluN2B-mediated recruitment of active CaMKIIα and formation of the CaMKIIα/GluN2B/PSD-95 condensates, which are autonomously dispersed upon Ca2+ removal. Protein phosphatases control the Ca2+-dependent shuttling of CaMKIIα between the two PSD subcompartments and PSD condensate formation. Activation of CaMKIIα further enlarges the PSD assembly and induces structural LTP. Thus, Ca2+-induced and phosphatase-checked shuttling of CaMKIIα between distinct PSD nano-domains can regulate phase separation-mediated PSD assembly and synaptic plasticity.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yumeng Zhan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Wu X, Cai Q, Chen Y, Zhu S, Mi J, Wang J, Zhang M. Structural Basis for the High-Affinity Interaction between CASK and Mint1. Structure 2020; 28:664-673.e3. [DOI: 10.1016/j.str.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
|
14
|
Glu 60 of α-Calcium/calmodulin dependent protein kinase II mediates crosstalk between the regulatory T-site and protein substrate binding region of the active site. Arch Biochem Biophys 2020; 685:108348. [PMID: 32198047 DOI: 10.1016/j.abb.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Memory formation transpires to be by activation and persistent modification of synapses. A chain of biochemical events accompany synaptic activation and culminate in memory formation. These biochemical events are steered by interplay and modulation of various synaptic proteins, achieved by conformational changes and phosphorylation/dephosphorylation of these proteins. Calcium/calmodulin dependent protein kinase II (CaMKII) and N-methyl-d-aspartate receptors (NMDARs) are synaptic proteins whose interactions play a pivotal role in learning and memory process. Catalytic activity of CaMKII is modulated upon its interaction with the GluN2B subunit of NMDAR. The structural basis of this interaction is not clearly understood. We have investigated the role of Glu60 of α-CaMKII, a conserved residue present in the ATP binding region of kinases, in the regulation of catalysis of CaMKII by GluN2B. Mutation of Glu60 to Gly exerts different effects on the kinetic parameters of phosphorylation of GluN2B and GluN2A, of which only GluN2B binds to the T-site of CaMKII. GluN2B induced modulation of the kinetic parameters of peptide substrate was altered in the E60G mutant. The mutation almost abolished the modulation of the apparent Km value for protein substrate. However, although kinetic parameters for ATP were altered by mutating Glu60, modulation of the apparent Km value for ATP by GluN2B seen in WT was exhibited by the E60G mutant of α-CaMKII. Hence our results posit that the communication of the T-site of CaMKII with protein substrate binding region of active site is mediated through Glu60 while the communication of the T-site with the ATP binding region is not entirely dependent on Glu60.
Collapse
|
15
|
Pharris MC, Patel NM, VanDyk TG, Bartol TM, Sejnowski TJ, Kennedy MB, Stefan MI, Kinzer-Ursem TL. A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Comput Biol 2019; 15:e1006941. [PMID: 31869343 PMCID: PMC6957207 DOI: 10.1371/journal.pcbi.1006941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/13/2020] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic shifts in the size and signaling strength of neuronal connections, a process known as synaptic plasticity. Increasingly, computational models are used to explore synaptic plasticity and the mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude biophysical detail due to the impractical number of state combinations that arise when explicitly monitoring the conformational changes, ligand binding, and phosphorylation events that occur on each of the CaMKII holoenzyme's subunits. To manage the combinatorial explosion without necessitating bias or loss in biological accuracy, we use a specialized syntax in the software MCell to create a rule-based model of a twelve-subunit CaMKII holoenzyme. Here we validate the rule-based model against previous experimental measures of CaMKII activity and investigate molecular mechanisms of CaMKII regulation. Specifically, we explore how Ca2+/CaM-binding may both stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. Noting that Ca2+/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, we compare model scenarios in which Ca2+/CaM and protein phosphatase do or do not structurally exclude each other's binding to CaMKII. Our results suggest a functional mechanism for the so-called "CaM trapping" phenomenon, wherein Ca2+/CaM may structurally exclude phosphatase binding and thereby prolong CaMKII autophosphorylation. We conclude that structural protection of autophosphorylated CaMKII by Ca2+/CaM may be an important mechanism for regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Tyler G. VanDyk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas M. Bartol
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Melanie I. Stefan
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- EMBL-European Bioinformatics Institute, Hinxton, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
- * E-mail: (MIS); (TLKU)
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (MIS); (TLKU)
| |
Collapse
|
16
|
Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II. PLoS Comput Biol 2019; 15:e1006796. [PMID: 31150387 PMCID: PMC6576796 DOI: 10.1371/journal.pcbi.1006796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/17/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
The calcium calmodulin-dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium-calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phosphorylates the regulatory domain peptide of a donor kinase forming a chained dimer as the first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase cooperativity to enrich the discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects. Protein kinases play central roles in intracellular signalling. Auto-phosphorylation by bound nucleotide typically precedes phosphate transfer to multiple substrates. Protein conformational changes are central to kinase function, altering binding affinities to change cellular location and shunt from one signal pathway to another. In the brain, the multi-subunit kinase, CaMKII is activated by calcium-calmodulin upon calcium jumps produced by synaptic stimulation. Auto-transphosphorylation of a regulatory peptide enables the kinase to remain activated and mediate long-term behavioural effects after return to basal calcium levels. A database of mutated residues responsible for these effects is difficult to reconcile solely with impaired nucleotide or substrate binding. Therefore, we have computationally generated interaction networks to map the conformational plasticity of the kinase domains where most mutations localize. The network generated from the atomic structure of a phosphorylated dimer resolves protein sectors based on their collective motions. The sectors link nucleotide and substrate binding sites in self-reinforcing relays between regulatory peptides. The self-reinforcement is strengthened by phosphorylation consistent with the reported positive cooperativity of kinase activity with calcium-calmodulin concentration. The network gives a better match with the mutations and, in addition, reveals target sites for drug development.
Collapse
|
17
|
Zhong X, Cui P, Cai Y, Wang L, He X, Long P, Lu K, Yan R, Zhang Y, Pan X, Zhao X, Li W, Zhang H, Zhou Q, Gao P. Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metab 2019; 29:979-992.e4. [PMID: 30527743 DOI: 10.1016/j.cmet.2018.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
While the pluripotency of stem cells is known to determine the fate of embryonic development, the mechanisms underlying the acquisition and maintenance of full pluripotency largely remain elusive. Here, we show that the balance between mitochondrial fission and fusion is critical for the full pluripotency of stem cells. By analyzing induced pluripotent stem cells with differential developmental potential, we found that excess mitochondrial fission is associated with an impaired embryonic developmental potential. We further uncover that the disruption of mitochondrial dynamics impairs the differentiation and embryonic development of pluripotent stem cells; most notably, pluripotent stem cells that display excess mitochondrial fission fail to produce live-born offspring by tetraploid complementation. Mechanistically, excess mitochondrial fission increases cytosolic Ca2+ entry and CaMKII activity, leading to ubiquitin-mediated proteasomal degradation of β-Catenin protein. Our results reveal a previously unappreciated fundamental role for mitochondrial dynamics in determining the full pluripotency and embryonic developmental potential of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiuying Zhong
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peng Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei 230022, China
| | - Lihua Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoping He
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peipei Long
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangyang Lu
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei 230022, China
| | - Ronghui Yan
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100853, China
| | - Xiaoyang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huafeng Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
18
|
The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity by Binding to Ca 2+/CaM. J Mol Biol 2019; 431:1440-1459. [PMID: 30753871 DOI: 10.1016/j.jmb.2019.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/14/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca2+/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca2+/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII. The demonstration of its critical roles in pathophysiological processes has elevated CaMKII to a key target in the management of numerous diseases. The molecule KN-93 is the most widely used inhibitor for studying the cellular and in vivo functions of CaMKII. It is widely believed that KN-93 binds directly to CaMKII, thus preventing kinase activation by competing with Ca2+/CaM. Herein, we employed surface plasmon resonance, NMR, and isothermal titration calorimetry to characterize this presumed interaction. Our results revealed that KN-93 binds directly to Ca2+/CaM and not to CaMKII. This binding would disrupt the ability of Ca2+/CaM to interact with CaMKII, effectively inhibiting CaMKII activation. Our findings also indicated that KN-93 can specifically compete with a CaMKIIδ-derived peptide for binding to Ca2+/CaM. As indicated by the surface plasmon resonance and isothermal titration calorimetry data, apparently at least two KN-93 molecules can bind to Ca2+/CaM. Our findings provide new insight into how in vitro and in vivo data obtained with KN-93 should be interpreted. They further suggest that other Ca2+/CaM-dependent, non-CaMKII activities should be considered in KN-93-based mechanism-of-action studies and drug discovery efforts.
Collapse
|
19
|
Khan S, Downing KH, Molloy JE. Architectural Dynamics of CaMKII-Actin Networks. Biophys J 2018; 116:104-119. [PMID: 30527447 PMCID: PMC6341221 DOI: 10.1016/j.bpj.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022] Open
Abstract
Calcium-calmodulin-dependent kinase II (CaMKII) has an important role in dendritic spine remodeling upon synaptic stimulation. Using fluorescence video microscopy and image analysis, we investigated the architectural dynamics of rhodamine-phalloidin stabilized filamentous actin (F-actin) networks cross-linked by CaMKII. We used automated image analysis to identify F-actin bundles and crossover junctions and developed a dimensionless metric to characterize network architecture. Similar networks were formed by three different CaMKII species with a 10-fold length difference in the linker region between the kinase domain and holoenzyme hub, implying linker length is not a primary determinant of F-actin cross-linking. Electron micrographs showed that at physiological molar ratios, single CaMKII holoenzymes cross-linked multiple F-actin filaments at random, whereas at higher CaMKII/F-actin ratios, filaments bundled. Light microscopy established that the random network architecture resisted macromolecular crowding with polyethylene glycol and blocked ATP-powered compaction by myosin-II miniature filaments. Importantly, the networks disassembled after the addition of calcium-calmodulin and were then spaced within 3 min into compacted foci by myosin motors or more slowly (30 min) aggregated by crowding. Single-molecule total internal reflection fluorescence microscopy showed CaMKII dissociation from surface-immobilized globular actin exhibited a monoexponential dwell-time distribution, whereas CaMKII bound to F-actin networks had a long-lived fraction, trapped at crossover junctions. Release of CaMKII from F-actin, triggered by calcium-calmodulin, was too rapid to measure with flow-cell exchange (<20 s). The residual bound fraction was reduced substantially upon addition of an N-methyl-D-aspartate receptor peptide analog but not ATP. These results provide mechanistic insights to CaMKII-actin interactions at the collective network and single-molecule level. Our findings argue that CaMKII-actin networks in dendritic spines maintain spine size against physical stress. Upon synaptic stimulation, CaMKII is disengaged by calcium-calmodulin, triggering network disassembly, expansion, and subsequent compaction by myosin motors with kinetics compatible with the times recorded for the poststimulus changes in spine volume.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, California; The Francis Crick Institute, London, United Kingdom.
| | - Kenneth H Downing
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | | |
Collapse
|
20
|
Biondi B, Peggion C, De Zotti M, Pignaffo C, Dalzini A, Bortolus M, Oancea S, Hilma G, Bortolotti A, Stella L, Pedersen JZ, Syryamina VN, Tsvetkov YD, Dzuba SA, Toniolo C, Formaggio F. Conformational properties, membrane interaction, and antibacterial activity of the peptaibiotic chalciporin A: Multitechnique spectroscopic and biophysical investigations on the natural compound and labeled analogs. Biopolymers 2017; 110. [PMID: 29127716 DOI: 10.1002/bip.23083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 02/28/2024]
Abstract
In this work, an extensive set of spectroscopic and biophysical techniques (including FT-IR absorption, CD, 2D-NMR, fluorescence, and CW/PELDOR EPR) was used to study the conformational preferences, membrane interaction, and bioactivity properties of the naturally occurring synthetic 14-mer peptaibiotic chalciporin A, characterized by a relatively low (≈20%), uncommon proportion of the strongly helicogenic Aib residue. In addition to the unlabeled peptide, we gained in-depth information from the study of two labeled analogs, characterized by one or two residues of the helicogenic, nitroxyl radical-containing TOAC. All three compounds were prepared using the SPPS methodology, which was carefully modified in the course of the syntheses of TOAC-labeled analogs in view of the poorly reactive α-amino function of this very bulky residue and the specific requirements of its free-radical side chain. Despite its potentially high flexibility, our results point to a predominant, partly amphiphilic, α-helical conformation for this peptaibiotic. Therefore, not surprisingly, we found an effective membrane affinity and a remarkable penetration propensity. However, chalciporin A exhibits a selectivity in its antibacterial activity not in agreement with that typical of the other members of this peptide class.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Chiara Pignaffo
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Geta Hilma
- Department of Medicine, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jens Z Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Yuri D Tsvetkov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Claudio Toniolo
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| |
Collapse
|
21
|
The CaMKII holoenzyme structure in activation-competent conformations. Nat Commun 2017; 8:15742. [PMID: 28589927 PMCID: PMC5467236 DOI: 10.1038/ncomms15742] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15–35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions. Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a 12 subunit holoenzyme central to synaptic plasticity. Here the authors report a 3D structure of the CaMKII holoenzyme in an activation-competent state obtained by single particle EM, and suggest a role for the intrinsically disordered linker domain in facilitating cooperative activation.
Collapse
|
22
|
Hoffman L, Li L, Alexov E, Sanabria H, Waxham MN. Cytoskeletal-like Filaments of Ca 2+-Calmodulin-Dependent Protein Kinase II Are Formed in a Regulated and Zn 2+-Dependent Manner. Biochemistry 2017; 56:2149-2160. [PMID: 28318265 DOI: 10.1021/acs.biochem.7b00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ca2+-calmodulin-dependent protein kinase II (CaMKII) is highly abundant in neurons, where its concentration reaches that typically found for cytoskeletal proteins. Functional reasons for such a high concentration are not known, but given the multitude of known binding partners for CaMKII, a role as a scaffolding molecule has been proposed. In this report, we provide experimental evidence that demonstrates a novel structural role for CaMKII. We discovered that CaMKII forms filaments that can extend for several micrometers in the presence of certain divalent cations (Zn2+, Cd2+, and Cu2+) but not with others (Ca2+, Mg2+, Co2+, and Ni2+). Once formed, depleting the divalent ion concentration with chelators completely dissociated the filaments, and this process could be repeated by cyclic addition and removal of divalent ions. Using the crystal structure of the CaMKII holoenzyme, we computed an electrostatic potential map of the dodecameric complex to predict divalent ion binding sites. This analysis revealed a potential surface-exposed divalent ion binding site involving amino acids that also participate in calmodulin (CaM) binding and suggested CaM binding might inhibit formation of the filaments. As predicted, Ca2+/CaM binding both inhibited divalent ion-induced filament formation and could disassemble preformed filaments. Interestingly, CaMKII within the filaments retains the capacity to autophosphorylate; however, activity toward exogenous substrates is significantly decreased. Activity is restored upon filament disassembly. We compile our results with structural and mechanistic data from the literature to propose a model of Zn2+-mediated CaMKII filament formation, in which assembly and activity are further regulated by Ca2+/CaM.
Collapse
Affiliation(s)
- Laurel Hoffman
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| | - Lin Li
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| |
Collapse
|
23
|
Bortolus M, Dalzini A, Maniero AL, Panighel G, Siano A, Toniolo C, De Zotti M, Formaggio F. Insights into peptide-membrane interactions of newly synthesized, nitroxide-containing analogs of the peptaibiotic trichogin GAIV using EPR. Biopolymers 2017; 108. [DOI: 10.1002/bip.22913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Bortolus
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Annalisa Dalzini
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Giacomo Panighel
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Alvaro Siano
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Departamento de Química Orgánica; Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL); 3000 Santa Fe Argentina
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| |
Collapse
|
24
|
Laxmi V, Tamuli R. The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development. Arch Microbiol 2016; 199:531-542. [PMID: 27888323 DOI: 10.1007/s00203-016-1319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
We isolated a Neurospora crassa mutant of the calmodulin (cmd) gene using repeat-induced point mutation and studied its phenotypes. The cmd RIP mutant showed a defect in growth, reduced aerial hyphae, decreased carotenoid accumulation, a severe reduction in viability upon ultraviolet (UV) irradiation, and a fertility defect. Moreover, meiotic silencing of the cmd gene resulted in a barren phenotype. In addition, we also performed site-directed mutational analysis of the calcium/calmodulin-dependent kinase-2 (Ca2+/CaMK-2), a target of the CaM protein encoded by the cmd gene. The camk-2 S247A and the camk-2 T267A mutants in a homozygous cross, or in a cross with a Δcamk-2 mutant, displayed an intermediate phenotype, suggesting that serine 247 and threonine 267 phosphorylation sites of the Ca2+/CaMK-2 are essential for full fertility in N. crassa. Therefore, CaM in N. crassa is required for normal vegetative growth, UV survival, and sexual development. Additionally, serine 247 and threonine 267 phosphorylation sites are important for the Ca2+/CaMK-2 function.
Collapse
Affiliation(s)
- Vijya Laxmi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
25
|
Haws HJ, McNeil MA, Hansen MDH. Control of cell mechanics by RhoA and calcium fluxes during epithelial scattering. Tissue Barriers 2016; 4:e1187326. [PMID: 27583192 DOI: 10.1080/21688370.2016.1187326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial tissues use adherens junctions to maintain tight interactions and coordinate cellular activities. Adherens junctions are remodeled during epithelial morphogenesis, including instances of epithelial-mesenchymal transition, or EMT, wherein individual cells detach from the tissue and migrate as individual cells. EMT has been recapitulated by growth factor induction of epithelial scattering in cell culture. In culture systems, cells undergo a highly reproducible series of cell morphology changes, most notably cell spreading followed by cellular compaction and cell migration. These morphology changes are accompanied by striking actin rearrangements. The current evidence suggests that global changes in actomyosin-based cellular contractility, first a loss of contractility during spreading and its activation during cell compaction, are the main drivers of epithelial scattering. In this review, we focus on how spreading and contractility might be controlled during epithelial scattering. While we propose a central role for RhoA, which is well known to control cellular contractility in multiple systems and whose role in epithelial scattering is well accepted, we suggest potential roles for additional cellular systems whose role in epithelial cell biology has been less well documented. In particular, we propose critical roles for vesicle recycling, calcium channels, and calcium-dependent kinases.
Collapse
Affiliation(s)
- Hillary J Haws
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| | - Melissa A McNeil
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| | - Marc D H Hansen
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| |
Collapse
|
26
|
Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach. Sci Rep 2016; 6:24000. [PMID: 27039838 PMCID: PMC4819177 DOI: 10.1038/srep24000] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Barbara Biondi
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marta De Zotti
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giacomo Panighel
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Cristina Peggion
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Bortolus
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy.,Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Anna Lisa Maniero
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
27
|
Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, Vogel SS. Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophys J 2016; 108:2158-70. [PMID: 25954874 DOI: 10.1016/j.bpj.2015.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 11/29/2022] Open
Abstract
Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jithesh V Veetil
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Kaitlin A Davis
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
28
|
Bortolus M, Dalzini A, Formaggio F, Toniolo C, Gobbo M, Maniero AL. An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles. Phys Chem Chem Phys 2016; 18:749-60. [DOI: 10.1039/c5cp04136h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
EPR/CD spectroscopies reveal that the peptaibol ampullosporin A changes the orientation and conformation depending on its concentration and bilayer thickness.
Collapse
Affiliation(s)
- Marco Bortolus
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
- Dipartimento di Scienza dei Materiali
| | - Annalisa Dalzini
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Fernando Formaggio
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Marina Gobbo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Anna Lisa Maniero
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
29
|
Simon B, Huart AS, Wilmanns M. Molecular mechanisms of protein kinase regulation by calcium/calmodulin. Bioorg Med Chem 2015; 23:2749-60. [PMID: 25963826 DOI: 10.1016/j.bmc.2015.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
Many human protein kinases are regulated by the calcium-sensor protein calmodulin, which binds to a short flexible segment C-terminal to the enzyme's catalytic kinase domain. Our understanding of the molecular mechanism of kinase activity regulation by calcium/calmodulin has been advanced by the structures of two protein kinases-calmodulin kinase II and death-associated protein kinase 1-bound to calcium/calmodulin. Comparison of these two structures reveals a surprising level of diversity in the overall kinase-calcium/calmodulin arrangement and functional readout of activity, as well as complementary mechanisms of kinase regulation such as phosphorylation.
Collapse
Affiliation(s)
- Bertrand Simon
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Anne-Sophie Huart
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Matthias Wilmanns
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany.
| |
Collapse
|
30
|
Ithychanda SS, Fang X, Mohan ML, Zhu L, Tirupula KC, Naga Prasad SV, Wang YX, Karnik SS, Qin J. A mechanism of global shape-dependent recognition and phosphorylation of filamin by protein kinase A. J Biol Chem 2015; 290:8527-38. [PMID: 25666618 PMCID: PMC4375502 DOI: 10.1074/jbc.m114.633446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Indexed: 12/23/2022] Open
Abstract
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.
Collapse
Affiliation(s)
- Sujay Subbayya Ithychanda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Maradumane L Mohan
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Liang Zhu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kalyan C Tirupula
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sathyamangla V Naga Prasad
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Sadashiva S Karnik
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
31
|
Mobbili G, Crucianelli E, Barbon A, Marcaccio M, Pisani M, Dalzini A, Ussano E, Bortolus M, Stipa P, Astolfi P. Liponitroxides: EPR study and their efficacy as antioxidants in lipid membranes. RSC Adv 2015. [DOI: 10.1039/c5ra18963b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fighting lipid peroxidation on its own ground: the antioxidant activity of new synthesized lipid-functionalized nitroxides is maximized in the PUFA region and correlates with the nitroxide location within the lipid bilayer as found by EPR spectroscopy.
Collapse
Affiliation(s)
- Giovanna Mobbili
- Department of Life and Environmental Sciences
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Emanuela Crucianelli
- Department of Life and Environmental Sciences
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Antonio Barbon
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
| | - Massimo Marcaccio
- Department of Chemistry “G. Ciamician”
- Università di Bologna
- I-40126 Bologna
- Italy
| | - Michela Pisani
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
| | - Eleonora Ussano
- Department of Chemistry “G. Ciamician”
- Università di Bologna
- I-40126 Bologna
- Italy
| | - Marco Bortolus
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
- Department of Material Sciences
| | - Pierluigi Stipa
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Paola Astolfi
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| |
Collapse
|
32
|
Villers A, Giese KP, Ris L. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. ACTA ACUST UNITED AC 2014; 21:616-26. [PMID: 25322797 PMCID: PMC4201817 DOI: 10.1101/lm.035972.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| | - Karl Peter Giese
- MRC Centre for Neurodegeneration, Institute of Psychiatry, King's College London, SE5 9NU, London, United Kingdom
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
33
|
Bortolus M, Dalzini A, Toniolo C, Hahm KS, Maniero AL. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. J Pept Sci 2014; 20:517-25. [PMID: 24863176 DOI: 10.1002/psc.2645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 02/03/2023]
Abstract
Bicelles are model membrane systems that can be macroscopically oriented in a magnetic field at physiological temperature. The macroscopic orientation of bicelles allows to detect, by means of magnetic resonance spectroscopies, small changes in the order of the bilayer caused by solutes interacting with the membrane. These changes would be hardly detectable in isotropic systems such as vesicles or micelles. The aim of this work is to show that bicelles represent a convenient tool to investigate the behavior of antimicrobial peptides (AMPs) interacting with membranes, using electron paramagnetic resonance (EPR) spectroscopy. We performed the EPR experiments on spin-labeled bicelles using various AMPs of different length, charge, and amphipathicity: alamethicin, trichogin GA IV, magainin 2, HP(2-20), and HPA3. We evaluated the changes in the order parameter of the spin-labeled lipids as a function of the peptide-to-lipid ratio. We show that bicelles labeled at position 5 of the lipid chains are very sensitive to the perturbation induced by the AMPs even at low peptide concentrations. Our study indicates that peptides that are known to disrupt the membrane by different mechanisms (i.e., alamethicin vs magainin 2) show very distinct trends of the order parameter as a function of peptide concentration. Therefore, spin-labeled bicelles proved to be a good system to evaluate the membrane disruption mechanism of new AMPs.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemistry, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | | | | | | | | |
Collapse
|
34
|
Bortolus M, De Zotti M, Formaggio F, Maniero AL. Alamethicin in bicelles: Orientation, aggregation, and bilayer modification as a function of peptide concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2620-7. [DOI: 10.1016/j.bbamem.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
35
|
Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. J Mol Med (Berl) 2013; 91:907-16. [PMID: 23775230 DOI: 10.1007/s00109-013-1060-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Calcium (Ca(2+)) has long been recognized as a crucial intracellular messenger attaining stimuli-specific cellular outcomes via localized signaling. Ca(2+)-binding proteins, such as calmodulin (CaM), and its target proteins are key to the segregation and refinement of these Ca(2+)-dependent signaling events. This review not only summarizes the recent technological advances enabling the study of subcellular Ca(2+)-CaM and Ca(2+)-CaM-dependent protein kinase (CaMKII) signaling events but also highlights the outstanding challenges in the field.
Collapse
|
36
|
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr Opin Struct Biol 2013; 23:292-301. [PMID: 23632248 DOI: 10.1016/j.sbi.2013.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/24/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022]
Abstract
Ca(2+)/calmodulin dependent protein kinase II (CaMKII) is a broadly distributed metazoan Ser/Thr protein kinase that is important in neuronal and cardiac signaling. CaMKII forms oligomeric assemblies, typically dodecameric, in which the calcium-responsive kinase domains are organized around a central hub. We review the results of crystallographic analyses of CaMKII, including the recently determined structure of a full-length and autoinhibited form of the holoenzyme. These structures, when combined with other data, allow informed speculation about how CaMKII escapes calcium-dependence when calcium spikes exceed threshold frequencies.
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
37
|
Coultrap SJ, Bayer KU. CaMKII regulation in information processing and storage. Trends Neurosci 2012; 35:607-18. [PMID: 22717267 DOI: 10.1016/j.tins.2012.05.003] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022]
Abstract
The Ca(2+)/Calmodulin(CaM)-dependent protein kinase II (CaMKII) is activated by Ca(2+)/CaM, but becomes partially autonomous (Ca(2+)-independent) upon autophosphorylation at T286. This hallmark feature of CaMKII regulation provides a form of molecular memory and is indeed important in long-term potentiation (LTP) of excitatory synapse strength and memory formation. However, emerging evidence supports a direct role in information processing, while storage of synaptic information may instead be mediated by regulated interaction of CaMKII with the NMDA receptor (NMDAR) complex. These and other CaMKII regulation mechanisms are discussed here in the context of the kinase structure and their impact on postsynaptic functions. Recent findings also implicate CaMKII in long-term depression (LTD), as well as functional roles at inhibitory synapses, lending renewed emphasis on better understanding the spatiotemporal control of CaMKII regulation.
Collapse
Affiliation(s)
- Steven J Coultrap
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
38
|
Jalan-Sakrikar N, Bartlett RK, Baucum AJ, Colbran RJ. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J Biol Chem 2012; 287:15275-83. [PMID: 22427672 PMCID: PMC3346149 DOI: 10.1074/jbc.m112.351817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Roger J. Colbran
- From the Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
39
|
Stefan MI, Marshall DP, Le Novère N. Structural analysis and stochastic modelling suggest a mechanism for calmodulin trapping by CaMKII. PLoS One 2012; 7:e29406. [PMID: 22279535 PMCID: PMC3261145 DOI: 10.1371/journal.pone.0029406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
Activation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as "calmodulin trapping". It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high and low affinities, respectively. We built structural models of calmodulin bound to both of these sites. Molecular dynamics simulation showed that while binding of calmodulin to the supposed low-affinity binding site on CaMKII is compatible with closing (and hence, inactivation) of the kinase, and could even favour it, binding to the high-affinity site is not. Stochastic simulations of a biochemical model showed that the existence of two such binding sites, one of them accessible only in the active, open conformation, would be sufficient to explain calmodulin trapping by CaMKII. We can explain the effect of CaMKII autophosphorylation at Thr286 on calmodulin trapping: It stabilises the active state and therefore makes the high-affinity binding site accessible. Crucially, a model with only one binding site where calmodulin binding and CaMKII inactivation are strictly mutually exclusive cannot reproduce calmodulin trapping. One of the predictions of our study is that calmodulin binding in itself is not sufficient for CaMKII activation, although high-affinity binding of calmodulin is.
Collapse
|
40
|
CaMKII binding to GluN2B is critical during memory consolidation. EMBO J 2012; 31:1203-16. [PMID: 22234183 DOI: 10.1038/emboj.2011.482] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 11/08/2022] Open
Abstract
Memory is essential for our normal daily lives and our sense of self. Ca(2+) influx through the NMDA-type glutamate receptor (NMDAR) and the ensuing activation of the Ca(2+) and calmodulin-dependent protein kinase (CaMKII) are required for memory formation and its physiological correlate, long-term potentiation (LTP). The Ca(2+) influx induces CaMKII binding to the NMDAR to strategically recruit CaMKII to synapses that are undergoing potentiation. We generated mice with two point mutations that impair CaMKII binding to the NMDAR GluN2B subunit. Ca(2+)-triggered postsynaptic accumulation is largely abrogated for CaMKII and destabilized for TARPs, which anchor AMPA-type glutamate receptors (AMPAR). LTP is reduced by 50% and phosphorylation of the AMPAR GluA1 subunit by CaMKII, which enhances AMPAR conductance, impaired. The mutant mice learn the Morris water maze (MWM) as well as WT but show deficiency in recall during the period of early memory consolidation. Accordingly, the activity-driven interaction of CaMKII with the NMDAR is important for recall of MWM memory as early as 24 h, but not 1-2 h, after training potentially due to impaired consolidation.
Collapse
|
41
|
Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin- dependent kinase II holoenzyme. Cell 2011; 146:732-45. [PMID: 21884935 DOI: 10.1016/j.cell.2011.07.038] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/11/2011] [Accepted: 07/29/2011] [Indexed: 01/16/2023]
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected compact arrangement of kinase domains docked against a central hub, with the calmodulin-binding sites completely inaccessible. We show that this compact docking is important for the autoinhibition of the kinase domains and for setting the calcium response of the holoenzyme. Comparison of CaMKII isoforms, which differ in the length of the linker between the kinase domain and the hub, demonstrates that these interactions can be strengthened or weakened by changes in linker length. This equilibrium between autoinhibited states provides a simple mechanism for tuning the calcium response without changes in either the hub or the kinase domains.
Collapse
Affiliation(s)
- Luke H Chao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|