1
|
Wang G, Shen G, Xu C, Guo Y, Zhang W, Wang Q, Zhu Y. Caspase-8 promotes innate immunity in the Chinese mitten crab by regulating the expression of antimicrobial peptides and apoptosis in hemocyte. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024:105308. [PMID: 39724998 DOI: 10.1016/j.dci.2024.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
In mammals, caspase-8 primarily functions as an initiator caspase that regulates apoptosis, while in Drosophila, the caspase-8 ortholog DREDD not only induces apoptosis during development but also regulates antimicrobial peptides (AMPs) expression during Gram-negative bacterial infection-induced immune responses. However, the immune-related function of caspase-8 in the crustacean remains unknown. In the present study, the open reading frame of EsCaspase-8 was cloned from the Chinese mitten crab (Eriocheir sinensis). The deduced EsCaspase-8 protein sequence contained only one death effector domain (DED) and a cysteine aspartase cysteine structural domain. The EsCaspase-8 expression was significantly induced after 6 h of Vibrio parahaemolyticus infection and continued to 24 h in hemocyte. Knocking down EsCaspase-8 expression in hemocytes significantly inhibited Relish's nuclear translocation and suppressed the expression of AMPs, including Crustin 1, Crustin 2, Lysosome, and double WAP domain, after V. parahaemolyticus infection. Furthermore, the knockdown of EsCaspase-8 in vivo significantly inhibited hemocyte apoptosis post-bacterial infection. These results demonstrated that EsCaspase-8 can promote antibacterial activities by regulating the expression of AMPs through activation of Relish nuclear translocation in Chinese mitten crabs, thus acting as a critical positive regulator in innate immunity. In addition, EsCaspase-8 also has the function of inducing hemocyte apoptosis. These findings expand our understanding of the molecular mechanisms underlying crustacean immune responses and provide a foundation for future research to improve disease resistance.
Collapse
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chaohui Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youting Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Fioriti F, Rifflet A, Gomperts Boneca I, Zugasti O, Royet J. Bacterial peptidoglycan serves as a critical modulator of the gut-immune-brain axis in Drosophila. Brain Behav Immun 2024; 119:878-897. [PMID: 38710338 DOI: 10.1016/j.bbi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Metabolites and compounds derived from gut-associated bacteria can modulate numerous physiological processes in the host, including immunity and behavior. Using a model of oral bacterial infection, we previously demonstrated that gut-derived peptidoglycan (PGN), an essential constituent of the bacterial cell envelope, influences female fruit fly egg-laying behavior by activating the NF-κB cascade in a subset of brain neurons. These findings underscore PGN as a potential mediator of communication between gut bacteria and the brain in Drosophila, prompting further investigation into its impact on all brain cells. Through high-resolution mass spectrometry, we now show that PGN fragments produced by gut bacteria can rapidly reach the central nervous system. In Addition, by employing a combination of whole-genome transcriptome analyses, comprehensive genetic assays, and reporter gene systems, we reveal that gut bacterial infection triggers a PGN dose-dependent NF-κB immune response in perineurial glia, forming the continuous outer cell layer of the blood-brain barrier. Furthermore, we demonstrate that persistent PGN-dependent NF-κB activation in perineurial glial cells correlates with a reduction in lifespan and early neurological decline. Overall, our findings establish gut-derived PGN as a critical mediator of the gut-immune-brain axis in Drosophila.
Collapse
Affiliation(s)
- Florent Fioriti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France
| | - Aline Rifflet
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Olivier Zugasti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| | - Julien Royet
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| |
Collapse
|
4
|
Zhou H, Liu L, Pang Y, Xu Y, Wu J, Ma F, Jin P, Zhou X. Relish-mediated C2H2 zinc finger protein IMZF restores Drosophila immune homeostasis via inhibiting the transcription of Imd/Tak1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104138. [PMID: 38762126 DOI: 10.1016/j.ibmb.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a Drosophila C2H2 zinc finger protein CG18262, named Immune-mediated Zinc Finger protein (IMZF), capable of suppressing immune responses of Imd pathway. Mechanistically, IMZF serves as a transcription factor that represses the expression of Imd and Tak1. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of IMZF, consequently inhibiting the activation of Imd and Tak1 to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-IMZF-Imd/Tak1 axis in restoring immune homeostasis of Drosophila Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, IMZF, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of Drosophila innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.
| |
Collapse
|
5
|
Hu Y, Kong F, Guo H, Hua Y, Zhu Y, Zhang C, Qadeer A, Xiao Y, Cai Q, Ji S. Drosophila eIF3f1 mediates host immune defense by targeting dTak1. EMBO Rep 2024; 25:1415-1435. [PMID: 38279019 PMCID: PMC10933477 DOI: 10.1038/s44319-024-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Eukaryotic translation initiation factors have long been recognized for their critical roles in governing the translation of coding RNAs into peptides/proteins. However, whether they harbor functional activities at the post-translational level remains poorly understood. Here, we demonstrate that eIF3f1 (eukaryotic translation initiation factor 3 subunit f1), which encodes an archetypal deubiquitinase, is essential for the antimicrobial innate immune defense of Drosophila melanogaster. Our in vitro and in vivo evidence indicate that the immunological function of eIF3f1 is dependent on the N-terminal JAMM (JAB1/MPN/Mov34 metalloenzymes) domain. Mechanistically, eIF3f1 physically associates with dTak1 (Drosophila TGF-beta activating kinase 1), a key regulator of the IMD (immune deficiency) signaling pathway, and mediates the turnover of dTak1 by specifically restricting its K48-linked ubiquitination. Collectively, these results provide compelling insight into a noncanonical molecular function of a translation initiation factor that controls the post-translational modification of a target protein.
Collapse
Affiliation(s)
- Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Institutes of Brain Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Huimin Guo
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Center for Biological Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Abdul Qadeer
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yihua Xiao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Qingshuang Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| |
Collapse
|
6
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
7
|
Kietz C, Meinander A. Drosophila caspases as guardians of host-microbe interactions. Cell Death Differ 2023; 30:227-236. [PMID: 35810247 PMCID: PMC9950452 DOI: 10.1038/s41418-022-01038-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
An intact cell death machinery is not only crucial for successful embryonic development and tissue homeostasis, but participates also in the defence against pathogens and contributes to a balanced immune response. Centrally involved in the regulation of both cell death and inflammatory immune responses is the evolutionarily conserved family of cysteine proteases named caspases. The Drosophila melanogaster genome encodes for seven caspases, several of which display dual functions, participating in apoptotic signalling and beyond. Among the Drosophila caspases, the caspase-8 homologue Dredd has a well-characterised role in inflammatory signalling activated by bacterial infections, and functions as a driver of NF-κB-mediated immune responses. Regarding the other Drosophila caspases, studies focusing on tissue-specific immune signalling and host-microbe interactions have recently revealed immunoregulatory functions of the initiator caspase Dronc and the effector caspase Drice. The aim of this review is to give an overview of the signalling cascades involved in the Drosophila humoral innate immune response against pathogens and of their caspase-mediated regulation. Furthermore, the apoptotic role of caspases during antibacterial and antiviral immune activation will be discussed.
Collapse
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland.
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
8
|
Zhu Y, Liu L, Zhang C, Zhang C, Han T, Duan R, Jin Y, Guo H, She K, Xiao Y, Goto A, Cai Q, Ji S. Endoplasmic reticulum-associated protein degradation contributes to Toll innate immune defense in Drosophila melanogaster. Front Immunol 2023; 13:1099637. [PMID: 36741393 PMCID: PMC9893508 DOI: 10.3389/fimmu.2022.1099637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
In Drosophila, the endoplasmic reticulum-associated protein degradation (ERAD) is engaged in regulating pleiotropic biological processes, with regard to retinal degeneration, intestinal homeostasis, and organismal development. The extent to which it functions in controlling the fly innate immune defense, however, remains largely unknown. Here, we show that blockade of the ERAD in fat bodies antagonizes the Toll but not the IMD innate immune defense in Drosophila. Genetic approaches further suggest a functional role of Me31B in the ERAD-mediated fly innate immunity. Moreover, we provide evidence that silence of Xbp1 other than PERK or Atf6 partially rescues the immune defects by the dysregulated ERAD in fat bodies. Collectively, our study uncovers an essential function of the ERAD in mediating the Toll innate immune reaction in Drosophila.
Collapse
Affiliation(s)
- Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Lei Liu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Chao Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Tingting Han
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Yiheng Jin
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Kan She
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Yihua Xiao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Akira Goto
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,*Correspondence: Qingshuang Cai, ; Shanming Ji,
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,*Correspondence: Qingshuang Cai, ; Shanming Ji,
| |
Collapse
|
9
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Aalto A, Martínez‐Chacón G, Kietz C, Tsyganova N, Kreutzer J, Kallio P, Broemer M, Meinander A. M1-linked ubiquitination facilitates NF-κB activation and survival during sterile inflammation. FEBS J 2022; 289:5180-5197. [PMID: 35263507 PMCID: PMC9543601 DOI: 10.1111/febs.16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/03/2023]
Abstract
Methionine 1 (M1)-linked ubiquitination plays a key role in the regulation of inflammatory nuclear factor-κB (NF-κB) signalling and is important for clearance of pathogen infection in Drosophila melanogaster. M1-linked ubiquitin (M1-Ub) chains are assembled by the linear ubiquitin E3 ligase (LUBEL) in flies. Here, we have studied the role of LUBEL in sterile inflammation induced by different types of cellular stresses. We have found that the LUBEL catalyses formation of M1-Ub chains in response to hypoxic, oxidative and mechanical stress conditions. LUBEL is shown to be important for flies to survive low oxygen conditions and paraquat-induced oxidative stress. This protective action seems to be driven by stress-induced activation of the NF-κB transcription factor Relish via the immune deficiency (Imd) pathway. In addition to LUBEL, the intracellular mediators of Relish activation, including the transforming growth factor activating kinase 1 (Tak1), Drosophila inhibitor of apoptosis (IAP) Diap2, the IκB kinase γ (IKKγ) Kenny and the initiator caspase Death-related ced-3/Nedd2-like protein (Dredd), but not the membrane receptor peptidoglycan recognition protein (PGRP)-LC, are shown to be required for sterile inflammatory response and survival. Finally, we showed that the stress-induced upregulation of M1-Ub chains in response to hypoxia, oxidative and mechanical stress is also induced in mammalian cells and protects from stress-induced cell death. Taken together, our results suggest that M1-Ub chains are important for NF-κB signalling in inflammation induced by stress conditions often observed in chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Anna Aalto
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | | | - Christa Kietz
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Nadezhda Tsyganova
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
| | - Joose Kreutzer
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Pasi Kallio
- Faculty of Medicine and Health TechnologyBioMediTechTampere UniversityFinland
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Annika Meinander
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi University, BioCityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
11
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Benoit I, Di Curzio D, Civetta A, Douville RN. Drosophila as a Model for Human Viral Neuroinfections. Cells 2022; 11:cells11172685. [PMID: 36078091 PMCID: PMC9454636 DOI: 10.3390/cells11172685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The study of human neurological infection faces many technical and ethical challenges. While not as common as mammalian models, the use of Drosophila (fruit fly) in the investigation of virus–host dynamics is a powerful research tool. In this review, we focus on the benefits and caveats of using Drosophila as a model for neurological infections and neuroimmunity. Through the examination of in vitro, in vivo and transgenic systems, we highlight select examples to illustrate the use of flies for the study of exogenous and endogenous viruses associated with neurological disease. In each case, phenotypes in Drosophila are compared to those in human conditions. In addition, we discuss antiviral drug screening in flies and how investigating virus–host interactions may lead to novel antiviral drug targets. Together, we highlight standardized and reproducible readouts of fly behaviour, motor function and neurodegeneration that permit an accurate assessment of neurological outcomes for the study of viral infection in fly models. Adoption of Drosophila as a valuable model system for neurological infections has and will continue to guide the discovery of many novel virus–host interactions.
Collapse
Affiliation(s)
- Ilena Benoit
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Domenico Di Curzio
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
| | - Renée N. Douville
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
- Correspondence:
| |
Collapse
|
13
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
14
|
Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23126499. [PMID: 35742941 PMCID: PMC9223523 DOI: 10.3390/ijms23126499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host–pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.
Collapse
|
15
|
Zhao Z, Lin S, Wu W, Zhang Z, Wu P, Shen M, Qian H, Guo X. A cypovirus encoded microRNA negatively regulates the NF-κB pathway to enhance viral multiplication in Silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104382. [PMID: 35245604 DOI: 10.1016/j.dci.2022.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKβ), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.
Collapse
Affiliation(s)
- Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China.
| |
Collapse
|
16
|
Tendulkar S, Hegde S, Garg L, Thulasidharan A, Kaduskar B, Ratnaparkhi A, Ratnaparkhi GS. Caspar, an adapter for VAPB and TER94, modulates the progression of ALS8 by regulating IMD/NFκB mediated glial inflammation in a drosophila model of human disease. Hum Mol Genet 2022; 31:2857-2875. [PMID: 35377453 PMCID: PMC9433731 DOI: 10.1093/hmg/ddac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin–proteasome system appear significantly impaired in patients and animal models of ALS. We have studied cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model [Moustaqim-Barrette, A., Lin, Y.Q., Pradhan, S., Neely, G.G., Bellen, H.J. and Tsuda, H. (2014) The ALS 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet., 23, 1975–1989], which mimics many systemic aspects of the human disease. Here, we show that VAPB, located on the cytoplasmic face of the endoplasmic reticulum membrane, interacts with Caspar, an orthologue of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly orthologue of ALS14 (VCP/p97, valosin-containing protein). Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 disease model, a phenomenon that we ascribe to its ability to restrain age-dependent inflammation, which is modulated by Relish/NFκB signalling. Caspar binds to VAPB via an FFAT motif, and we find that Caspar’s ability to negatively regulate NFκB signalling is not dependent on the VAPB:Caspar interaction. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. The VAPB:Caspar:TER94 complex appears to be a candidate for regulating both protein homeostasis and NFκB signalling, with our study highlighting a role for Caspar in glial inflammation. We project human FAF1 as an important protein target to alleviate the progression of motor neuron disease.
Collapse
Affiliation(s)
- Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Lovleen Garg
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | | | | | | | | |
Collapse
|
17
|
Kietz C, Mohan AK, Pollari V, Tuominen IE, Ribeiro PS, Meier P, Meinander A. Drice restrains Diap2-mediated inflammatory signalling and intestinal inflammation. Cell Death Differ 2022; 29:28-39. [PMID: 34262145 PMCID: PMC8738736 DOI: 10.1038/s41418-021-00832-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The Drosophila IAP protein, Diap2, is a key mediator of NF-κB signalling and innate immune responses. Diap2 is required for both local immune activation, taking place in the epithelial cells of the gut and trachea, and for mounting systemic immune responses in the cells of the fat body. We have found that transgenic expression of Diap2 leads to a spontaneous induction of NF-κB target genes, inducing chronic inflammation in the Drosophila midgut, but not in the fat body. Drice is a Drosophila effector caspase known to interact and form a stable complex with Diap2. We have found that this complex formation induces its subsequent degradation, thereby regulating the amount of Diap2 driving NF-κB signalling in the intestine. Concordantly, loss of Drice activity leads to accumulation of Diap2 and to chronic intestinal inflammation. Interestingly, Drice does not interfere with pathogen-induced signalling, suggesting that it protects from immune responses induced by resident microbes. Accordingly, no inflammation was detected in transgenic Diap2 flies and Drice-mutant flies reared in axenic conditions. Hence, we show that Drice, by restraining Diap2, halts unwanted inflammatory signalling in the intestine.
Collapse
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Aravind K Mohan
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Vilma Pollari
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Ida-Emma Tuominen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland.
| |
Collapse
|
18
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
19
|
Zhou J, Wu P, Xiong Z, Liu N, Zhao N, Ji M, Qiu Y, Yang B. Chromosome-Level Genome Assembly Reveals Significant Gene Expansion in the Toll and IMD Signaling Pathways of Dendrolimus kikuchii. Front Genet 2021; 12:728418. [PMID: 34777464 PMCID: PMC8589036 DOI: 10.3389/fgene.2021.728418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.
Collapse
Affiliation(s)
- Jielong Zhou
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhongping Xiong
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ning Zhao
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Mei Ji
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yu Qiu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| |
Collapse
|
20
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Zhu Y, Cai Q, Zheng X, Liu L, Hua Y, Du B, Zhao G, Yu J, Zhuo Z, Xie Z, Ji S. Aspirin Positively Contributes to Drosophila Intestinal Homeostasis and Delays Aging through Targeting Imd. Aging Dis 2021; 12:1821-1834. [PMID: 34631223 PMCID: PMC8460307 DOI: 10.14336/ad.2020.1008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
The intestine, a high-turnover tissue, plays a critical role in regulating aging and health in both vertebrates and invertebrates. Maintaining the epithelial barrier function of the intestine by preserving innate immune homeostasis significantly delays aging and prevents mortality. In an effort to explore effective chemicals and materials that can improve intestinal integrity, we performed a nonbiased screen utilizing Drosophila as an animal model. We showed that long-term uptake of aspirin markedly prevented age-onset gut leakage, the over-proliferation of intestinal stem cells, and the dysbiosis of commensal microbiota in fruit flies. Mechanistically, aspirin efficiently downregulated chronic activation of intestinal immune deficiency signaling during aging. Furthermore, our in vivo and in vitro biochemical analyses indicated that aspirin is a negative modulator in control of the K63-linked ubiquitination of Imd. Our findings uncover a novel regulatory mechanism by which aspirin positively modulates intestinal homeostasis, thus delaying aging, in Drosophila.
Collapse
Affiliation(s)
- Yangyang Zhu
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingshuang Cai
- 2State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xianrui Zheng
- 3Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Lei Liu
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongzhi Hua
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Beibei Du
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guomin Zhao
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiangliu Yu
- 4School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhao Zhuo
- 5College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongwen Xie
- 2State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shanming Ji
- 1Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
22
|
Salem Wehbe L, Barakat D, Acker A, El Khoury R, Reichhart JM, Matt N, El Chamy L. Protein Phosphatase 4 Negatively Regulates the Immune Deficiency-NF-κB Pathway during the Drosophila Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1616-1626. [PMID: 34452932 PMCID: PMC7616922 DOI: 10.4049/jimmunol.1901497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
The evolutionarily conserved immune deficiency (IMD) signaling pathway shields Drosophila against bacterial infections. It regulates the expression of antimicrobial peptides encoding genes through the activation of the NF-κB transcription factor Relish. Tight regulation of the signaling cascade ensures a balanced immune response, which is otherwise highly harmful. Several phosphorylation events mediate intracellular progression of the IMD pathway. However, signal termination by dephosphorylation remains largely elusive. Here, we identify the highly conserved protein phosphatase 4 (PP4) complex as a bona fide negative regulator of the IMD pathway. RNA interference-mediated gene silencing of PP4-19c, PP4R2, and Falafel, which encode the catalytic and regulatory subunits of the phosphatase complex, respectively, caused a marked upregulation of bacterial-induced antimicrobial peptide gene expression in both Drosophila melanogaster S2 cells and adult flies. Deregulated IMD signaling is associated with reduced lifespan of PP4-deficient flies in the absence of any infection. In contrast, flies overexpressing this phosphatase are highly sensitive to bacterial infections. Altogether, our results highlight an evolutionarily conserved function of PP4c in the regulation of NF-κB signaling from Drosophila to mammals.
Collapse
Affiliation(s)
- Layale Salem Wehbe
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | - Dana Barakat
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | - Adrian Acker
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
| | - Rita El Khoury
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | | | - Nicolas Matt
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
| | - Laure El Chamy
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| |
Collapse
|
23
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
25
|
Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103964. [PMID: 33301792 DOI: 10.1016/j.dci.2020.103964] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are vectors of a large number of viral pathogens. In recent years, increased urbanization and climate change has expanded the range of many vector mosquitoes. The lack of effective medical interventions has made the control of mosquito-borne viral diseases very difficult. Understanding the interactions between the mosquito immune system and viruses is critical if we are to develop effective control strategies against these diseases. Mosquitoes harbor multiple conserved immune pathways that curb invading viral pathogens. Despite the conservation of these pathways, the activation and intensity of the mosquito immune response varies with the mosquito species, tissue, and the infecting virus. This article reviews major conserved antiviral immune pathways in vector mosquitoes, their interactions with invading viral pathogens, and how these interactions restrict or promote infection of these medically important viruses.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| |
Collapse
|
26
|
Yuan C, Wu J, Peng Y, Li Y, Shen S, Deng F, Hu Z, Zhou J, Wang M, Zou Z. Transcriptome analysis of the innate immune system of Hyalomma asiaticum. J Invertebr Pathol 2020; 177:107481. [PMID: 33035534 DOI: 10.1016/j.jip.2020.107481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023]
Abstract
Ticks are considered to be the second most important vectors of human infectious diseases. The innate immune system is the key factor that affects its vector competence. Hyalomma asiaticum is the primary vector of Crimean-Congo hemorrhagic fever virus (CCHFV). However, the immune system of H. asiaticum remains virtually unknown. Here, a high throughput full-length mRNA sequencing method was adopted to define the immunotranscriptome of H. asiaticum infected with the fungal pathogen Beauveria bassiana and gram-negative bacterium Enterobacter cloacae. The analysis yielded 22,300 isoforms with an average length of 3233 bps. In total, 68 potential immunity-related genes were identified based on similarity to the homologs known to be involved in immunity. These included most members of the Toll and JAK/STAT signaling pathways, but not the IMD signaling pathway. Moreover, two copies of Dicer-2 and five copies of Argonaute-2 were detected. These genes are postulated to be involved in the RNA interference (RNAi) pathway, which is an important defense against RNA viruses. Overall, this study provides the foundation for understanding the immune response of H. asiaticum to CCHFV.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
27
|
Cammarata-Mouchtouris A, Nguyen XH, Acker A, Bonnay F, Goto A, Orian A, Fauvarque MO, Boutros M, Reichhart JM, Matt N. Hyd ubiquitinates the NF-κB co-factor Akirin to operate an effective immune response in Drosophila. PLoS Pathog 2020; 16:e1008458. [PMID: 32339205 PMCID: PMC7205318 DOI: 10.1371/journal.ppat.1008458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/07/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish. We showed that this Hyd-dependent interaction was required for the transcription of immunity-related genes that are activated by both Relish and Akirin but was dispensable for the transcription of genes that depend solely on Relish. Therefore Hyd is key in NF-κB transcriptional selectivity downstream of the IMD pathway. Drosophila depleted of Akirin or Hyd failed to express the full set of genes encoding immune-induced anti-microbial peptides and succumbed to immune challenges. We showed further that UBR5, the mammalian homolog of Hyd, was also required downstream of the NF-κB pathway for the activation of Interleukin 6 (IL6) transcription by LPS or IL-1β in cultured human cells. Our findings link the action of an E3 ubiquitin ligase to the activation of immune effector genes, deepening our understanding of the involvement of ubiquitination in inflammation and identifying a potential target for the control of inflammatory diseases. Ubiquitination has been recently identified in pathogenesis and progression of various diseases where inflammation is critical. NF-κB transcription factors are key actors in the transcriptional cascade leading to inflammation as they activate genes with pro- or anti-inflammatory activities. The similarity between the immune pathways in flies and mammals makes Drosophila melanogaster an excellent model to study the innate response. Accordingly, we decided to identify E3 ubiquitin-ligases involved in the regulation of NF-κB pathway, using Drosophila as a model system. A RNAi based screen in immortalized embryonic macrophage-like Drosophila cells points to the HECT-E3 ubiquitin ligase Hyd as a new regulator of the Immune-deficiency (IMD) NF-κB pathway, activated after Gram-negative immune challenge. More precisely, we showed that Hyd acts at the level of Akirin, an evolutionarily conserved player in the NF-κB pathway, required for the transcription of pro-inflammatory genes, but not for the NF-κB-dependent genes contributing to the down-regulation of inflammation. In addition, we could show that the human homologue of Hyd (UBR5) acts genetically at the level of human AKIRIN2, pointing to a unique dichotomy between Hyd/Akirin-dependent and -independent gene activation, allowing for the decoupling activation and resolution of inflammation. These results identified UBR5 as a putative target for anti-inflammatory compounds.
Collapse
Affiliation(s)
| | - Xuan-Hung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG) and College of Health Sciences, VinUniversity Hanoi, Vietnam
| | - Adrian Acker
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Akira Goto
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France
| | - Amir Orian
- Rappaport Research Institute and Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion—Israel Institute of Technology, Haifa, Israel
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | | | - Nicolas Matt
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France
- * E-mail:
| |
Collapse
|
28
|
Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci Rep 2019; 9:10138. [PMID: 31300668 PMCID: PMC6626034 DOI: 10.1038/s41598-019-46222-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Immune deficiency (IMD) is a death domain-containing protein that is essential for the IMD/NF-κB humoral and epithelial immune responses to Gram-negative bacteria and viruses in insects. In the immune signaling cascade, IMD is recruited together with FADD and the caspase DREDD after the mobilization of PGRP receptors. Activated IMD regulates the expression of effector antimicrobial peptides (AMP) that protect against invading microorganisms. To date, most studies of the IMD pathway, and the IMD gene in particular, have been restricted to Drosophila; few similar studies have been conducted in other model insects. Herein, we cloned and functionally characterized an IMD homolog from the mealworm beetle Tenebrio molitor (TmIMD) and studied its role in host survival in the context of pathogenic infections. Phylogenetic analysis revealed the conserved caspase cleavage site and inhibitor of apoptosis (IAP)-binding motif (IBM). TmIMD expression was high in the hemocytes and Malpighian tubules of Tenebrio late-instar larvae and adults. At 3 and 6 hours’ post-infection with Escherichia coli, Staphylococcus aureus, or Candida albicans, TmIMD expression significantly increased compared with mock-infected controls. Knockdown of the TmIMD transcript by RNAi significantly reduced host resistance to the Gram-negative bacterium E. coli and fungus C. albicans in a survival assay. Strikingly, the expression of nine T. molitor AMPs (TmTenecin1, TmTenecin2, TmTenecin4, TmDefensin2, TmColeoptericin1, TmColeoptericin2, TmAttacin1a, TmAttacin1b, and TmAttacin2) showed significant downregulation in TmIMD knockdown larvae challenged with E. coli. These results suggest that TmIMD is required to confer humoral immunity against the Gram-negative bacteria, E. coli by inducing the expression of critical transcripts that encode AMPs.
Collapse
|
29
|
Kleino A, Silverman N. Regulation of the Drosophila Imd pathway by signaling amyloids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:16-23. [PMID: 30857831 PMCID: PMC6474834 DOI: 10.1016/j.ibmb.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-κB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.
Collapse
Affiliation(s)
- Anni Kleino
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000, Aarhus C, Denmark
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
p47 licenses activation of the immune deficiency pathway in the tick Ixodes scapularis. Proc Natl Acad Sci U S A 2018; 116:205-210. [PMID: 30559180 DOI: 10.1073/pnas.1808905116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) acts as a molecular rheostat for the immune deficiency (IMD) pathway of the tick Ixodes scapularis How XIAP activates the IMD pathway in response to microbial infection remains ill defined. Here, we identified the XIAP enzymatic substrate p47 as a positive regulator of the I. scapularis IMD network. XIAP polyubiquitylates p47 in a lysine 63-dependent manner and interacts with the p47 ubiquitin-like (UBX) module. p47 also binds to Kenny (IKKγ/NEMO), the regulatory subunit of the inhibitor of nuclear factor (NF)- κB kinase complex. Replacement of the amino acid lysine to arginine within the p47 linker region completely abrogated molecular interactions with Kenny. Furthermore, mitigation of p47 transcription levels through RNA interference in I. scapularis limited Kenny accumulation, reduced phosphorylation of IKKβ (IRD5), and impaired cleavage of the NF-κB molecule Relish. Accordingly, disruption of p47 expression increased microbial colonization by the Lyme disease spirochete Borrelia burgdorferi and the rickettsial agent Anaplasma phagocytophilum Collectively, we highlight the importance of ticks for the elucidation of paradigms in arthropod immunology. Manipulating immune signaling cascades within I. scapularis may lead to innovative approaches to reducing the burden of tick-borne diseases.
Collapse
|
31
|
Wang F, Xia Q. Back to homeostasis: Negative regulation of NF-κB immune signaling in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:216-223. [PMID: 29908201 DOI: 10.1016/j.dci.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Maintenance of homeostasis requires prompt activation and down-regulation of immune signaling pathways. This review attempts to summarize our current knowledge regarding the negative regulation of two NF-κB signaling pathways in insects, Toll and IMD pathway, which are mostly essential for host defense against bacteria and fungus. Various types of negative regulators and their mechanisms are discussed here with the emphasis on the prominent roles of ubiquitination. The counterbalance between these two pathways, the crosstalk with other physiological pathways, and the difference in their repertoires of negative regulators are also discussed.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
32
|
Aalto AL, Mohan AK, Schwintzer L, Kupka S, Kietz C, Walczak H, Broemer M, Meinander A. M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila. Cell Death Differ 2018; 26:860-876. [PMID: 30026495 PMCID: PMC6462001 DOI: 10.1038/s41418-018-0164-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications such as ubiquitination play a key role in regulation of inflammatory nuclear factor-κB (NF-κB) signalling. The Drosophila IκB kinase γ (IKKγ) Kenny is a central regulator of the Drosophila Imd pathway responsible for activation of the NF-κB Relish. We found the Drosophila E3 ligase and HOIL-1L interacting protein (HOIP) orthologue linear ubiquitin E3 ligase (LUBEL) to catalyse formation of M1-linked linear ubiquitin (M1-Ub) chains in flies in a signal-dependent manner upon bacterial infection. Upon activation of the Imd pathway, LUBEL modifies Kenny with M1-Ub chains. Interestingly, the LUBEL-mediated M1-Ub chains seem to be targeted both directly to Kenny and to K63-linked ubiquitin chains conjugated to Kenny by DIAP2. This suggests that DIAP2 and LUBEL work together to promote Kenny-mediated activation of Relish. We found LUBEL-mediated M1-Ub chain formation to be required for flies to survive oral infection with Gram-negative bacteria, for activation of Relish-mediated expression of antimicrobial peptide genes and for pathogen clearance during oral infection. Interestingly, LUBEL is not required for mounting an immune response against systemic infection, as Relish-mediated antimicrobial peptide genes can be expressed in the absence of LUBEL during septic injury. Finally, transgenic induction of LUBEL-mediated M1-Ub drives expression of antimicrobial peptide genes and hyperplasia in the midgut in the absence of infection. This suggests that M1-Ub chains are important for Imd signalling and immune responses in the intestinal epithelia, and that enhanced M1-Ub chain formation is able to drive chronic intestinal inflammation in flies.
Collapse
Affiliation(s)
- Anna L Aalto
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Aravind K Mohan
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Lukas Schwintzer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Christa Kietz
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Annika Meinander
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
33
|
Kietz C, Pollari V, Meinander A. Generating Germ‐Free
Drosophila
to Study Gut‐Microbe Interactions: Protocol to Rear
Drosophila
Under Axenic Conditions. ACTA ACUST UNITED AC 2018; 77:e52. [DOI: 10.1002/cptx.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Åbo Akademi University Turku Finland
| | - Vilma Pollari
- Faculty of Science and Engineering, Åbo Akademi University Turku Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Åbo Akademi University Turku Finland
| |
Collapse
|
34
|
Hua X, Li B, Song L, Hu C, Li X, Wang D, Xiong Y, Zhao P, He H, Xia Q, Wang F. Stimulator of interferon genes (STING) provides insect antiviral immunity by promoting Dredd caspase-mediated NF-κB activation. J Biol Chem 2018; 293:11878-11890. [PMID: 29875158 DOI: 10.1074/jbc.ra117.000194] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
The antiviral cGMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway is well characterized in mammalian cells. However, whether this pathway also plays a role in insect antiviral immunity is unknown. In this study, we found that cGAMP is produced in silkworm (Bombyx mori) cells infected with nucleopolyhedrovirus (NPV). In searches for STING-related sequences, we identified BmSTING, a potential cGAMP sensor in B. mori We observed that BmSTING overexpression effectively inhibits NPV replication in silkworm larvae, whereas dsRNA-mediated BmSTING knockdown resulted in higher viral load. Cleavage and nuclear translocation of BmRelish, a NF-κB-related transcription factor, was also observed when BmSTING was overexpressed and was enhanced by cGAMP stimulation or viral infection of B. mori larvae. Moreover, we identified a caspase-8-like protein (BmCasp8L) as a BmSTING-interacting molecule and as a suppressor of BmSTING-mediated BmRelish activation. Interestingly, cGAMP stimulation decreased BmCasp8L binding to BmSTING and increased BmRelish activity. Of note, an interaction between death-related ced-3/Nedd2-like caspase (BmDredd) and BmSTING promoted BmRelish cleavage for efficient antiviral signaling and protection of insect cells from viral infection. Our findings have uncovered BmSTING as a critical mediator of antiviral immunity in the model insect B. mori and have identified several BmSTING-interacting proteins that control antiviral defenses.
Collapse
Affiliation(s)
- Xiaoting Hua
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Binbin Li
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Liang Song
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Cuimei Hu
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Xianyang Li
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Dandan Wang
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Ying Xiong
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Ping Zhao
- From the State Key Laboratory of Silkworm Genome Biology and.,the Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Huawei He
- From the State Key Laboratory of Silkworm Genome Biology and .,the Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- From the State Key Laboratory of Silkworm Genome Biology and .,the Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Fei Wang
- From the State Key Laboratory of Silkworm Genome Biology and
| |
Collapse
|
35
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
36
|
NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Rep 2018; 19:836-848. [PMID: 28445733 PMCID: PMC5413584 DOI: 10.1016/j.celrep.2017.04.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/22/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that “age well” from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Constitutive immunity predisposes to short lifespan with severe neurodegeneration Blocking constitutive immunity in glia rescues predisposed flies Suppression of immunity in glia of healthy flies triggers adipokinetic signaling This immune-endocrine axis mobilizes nutrients and extends active lifespan
Collapse
|
37
|
Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H, Huang J, Napetschnig J, Gangloff M, Chan FKM, Wu H, Li J, Silverman N. Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-κB Signaling. Immunity 2017; 47:635-647.e6. [PMID: 29045898 DOI: 10.1016/j.immuni.2017.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nancy F Ramia
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gunes Bozkurt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanfang Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Himani Nailwal
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Francis Ka-Ming Chan
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
39
|
Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, Buchon N, Meier P. Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense. Cell Host Microbe 2017; 20:283-295. [PMID: 27631699 PMCID: PMC5026699 DOI: 10.1016/j.chom.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.
Collapse
Affiliation(s)
- Otto Morris
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Xi Liu
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Celia Domingues
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher Runchel
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Andrea Chai
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Haiyang Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nicolas Buchon
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
40
|
Zakovic S, Levashina EA. NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae. Front Cell Infect Microbiol 2017; 7:258. [PMID: 28680852 PMCID: PMC5478692 DOI: 10.3389/fcimb.2017.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 12/04/2022] Open
Abstract
The blood feeding requirements of insects are often exploited by pathogens for their transmission. This is also the case of the protozoan parasites of genus Plasmodium, the causative agents of malaria. Every year malaria claims the lives of a half million people, making its vector, the Anopheles mosquito, the deadliest animal in the world. However, mosquitoes mount powerful immune responses that efficiently limit parasite proliferation. Among the immune signaling pathways identified in the main malaria vector Anopheles gambiae, the NF-κB-like signaling cascades REL2 and REL1 are essential for eliciting proper immune reactions, but only REL2 has been implicated in the responses against the human malaria parasite Plasmodium falciparum. Instead, constitutive activation of REL1 causes massive killing of rodent malaria parasites. In this review, we summarize our present knowledge on the REL2 pathway in Anopheles mosquitoes and its role in mosquito immune responses to diverse pathogens, with a focus on Plasmodium. Mosquito-parasite interactions are crucial for malaria transmission and, therefore, represent a potential target for malaria control strategies.
Collapse
Affiliation(s)
- Suzana Zakovic
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| | - Elena A Levashina
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| |
Collapse
|
41
|
Chen L, Paquette N, Mamoor S, Rus F, Nandy A, Leszyk J, Shaffer SA, Silverman N. Innate immune signaling in Drosophila is regulated by transforming growth factor β (TGFβ)-activated kinase (Tak1)-triggered ubiquitin editing. J Biol Chem 2017; 292:8738-8749. [PMID: 28377500 DOI: 10.1074/jbc.m117.788158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
Coordinated regulation of innate immune responses is necessary in all metazoans. In Drosophila the Imd pathway detects Gram-negative bacterial infections through recognition of diaminopimelic acid (DAP)-type peptidoglycan and activation of the NF-κB precursor Relish, which drives robust antimicrobial peptide gene expression. Imd is a receptor-proximal adaptor protein homologous to mammalian RIP1 that is regulated by proteolytic cleavage and Lys-63-polyubiquitination. However, the precise events and molecular mechanisms that control the post-translational modification of Imd remain unclear. Here, we demonstrate that Imd is rapidly Lys-63-polyubiquitinated at lysine residues 137 and 153 by the sequential action of two E2 enzymes, Ubc5 and Ubc13-Uev1a, in conjunction with the E3 ligase Diap2. Lys-63-ubiquitination activates the TGFβ-activated kinase (Tak1), which feeds back to phosphorylate Imd, triggering the removal of Lys-63 chains and the addition of Lys-48 polyubiquitin. This ubiquitin-editing process results in the proteasomal degradation of Imd, which we propose functions to restore homeostasis to the Drosophila immune response.
Collapse
Affiliation(s)
- Li Chen
- From the Division of Infectious Disease, Department of Medicine and
| | | | - Shahan Mamoor
- From the Division of Infectious Disease, Department of Medicine and
| | - Florentina Rus
- From the Division of Infectious Disease, Department of Medicine and
| | - Anubhab Nandy
- From the Division of Infectious Disease, Department of Medicine and
| | - John Leszyk
- the Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Scott A Shaffer
- the Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Neal Silverman
- From the Division of Infectious Disease, Department of Medicine and
| |
Collapse
|
42
|
Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat Commun 2017; 8:14401. [PMID: 28195158 PMCID: PMC5316886 DOI: 10.1038/ncomms14401] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The insect immune deficiency (IMD) pathway resembles the tumour necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties activate the IMD signalling cascade remains unknown. Here, we show that infection-derived lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 1-palmitoyl-2-oleoyl diacylglycerol (PODAG) stimulate the IMD pathway of ticks. The tick IMD network protects against colonization by three distinct bacteria, that is the Lyme disease spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale. Cell signalling ensues in the absence of transmembrane peptidoglycan recognition proteins and the adaptor molecules Fas-associated protein with a death domain (FADD) and IMD. Conversely, biochemical interactions occur between x-linked inhibitor of apoptosis protein (XIAP), an E3 ubiquitin ligase, and the E2 conjugating enzyme Bendless. We propose the existence of two functionally distinct IMD networks, one in insects and another in ticks. The insect IMD signalling pathway detects invading pathogens. Here the authors show that ticks have an alternative IMD system that lacks peptidoglycan receptors, IMD and FADD, and is instead reliant on interaction of the E3 ligase XIAP with the E2 conjugating enzyme Bendless.
Collapse
|
43
|
Oliva Chávez AS, Shaw DK, Munderloh UG, Pedra JHF. Tick Humoral Responses: Marching to the Beat of a Different Drummer. Front Microbiol 2017; 8:223. [PMID: 28261180 PMCID: PMC5306392 DOI: 10.3389/fmicb.2017.00223] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Ticks transmit a variety of human pathogens, including Borrelia burgdorferi, the etiological agent of Lyme disease. Multiple pathogens that are transmitted simultaneously, termed “coinfections,” are of increasing importance and can affect disease outcome in a host. Arthropod immunity is central to pathogen acquisition and transmission by the tick. Pattern recognition receptors recognize pathogen-associated molecular patterns and induce humoral responses through the Toll and Immune Deficiency (IMD) pathways. Comparative analyses between insects and ticks reveal that while the Toll pathway is conserved, the IMD network exhibits a high degree of variability. This indicates that major differences in humoral immunity exist between insects and ticks. While many variables can affect immunity, one of the major forces that shape immune outcomes is the microbiota. In light of this, we discuss how the presence of commensal bacteria, symbionts and/or coinfections can lead to altered immune responses in the tick that impact pathogen persistence and subsequent transmission. By investigating non-insect arthropod immunity, we will not only better comprehend tick biology, but also unravel the intricate effects that pathogen coinfections have on vector competence and tick-borne disease transmission.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| | | | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
44
|
Andere AA, Platt RN, Ray DA, Picard CJ. Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research. BMC Genomics 2016; 17:842. [PMID: 27793085 PMCID: PMC5084420 DOI: 10.1186/s12864-016-3187-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group. RESULTS We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including > 93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides. CONCLUSIONS This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies.
Collapse
Affiliation(s)
- Anne A. Andere
- Department of Biology, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202 USA
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79403-3131 USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79403-3131 USA
| | - Christine J. Picard
- Department of Biology, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202 USA
| |
Collapse
|
45
|
Wang L, Song J, Bao XY, Chen P, Yi HS, Pan MH, Lu C. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori. Gene 2016; 591:362-8. [DOI: 10.1016/j.gene.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
|
46
|
Neyen C, Runchel C, Schüpfer F, Meier P, Lemaitre B. The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nat Immunol 2016; 17:1150-8. [PMID: 27548432 DOI: 10.1038/ni.3536] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
The innate immune system needs to distinguish between harmful and innocuous stimuli to adapt its activation to the level of threat. How Drosophila mounts differential immune responses to dead and live Gram-negative bacteria using the single peptidoglycan receptor PGRP-LC is unknown. Here we describe rPGRP-LC, an alternative splice variant of PGRP-LC that selectively dampens immune response activation in response to dead bacteria. rPGRP-LC-deficient flies cannot resolve immune activation after Gram-negative infection and die prematurely. The alternative exon in the encoding gene, here called rPGRP-LC, encodes an adaptor module that targets rPGRP-LC to membrane microdomains and interacts with the negative regulator Pirk and the ubiquitin ligase DIAP2. We find that rPGRP-LC-mediated resolution of an efficient immune response requires degradation of activating and regulatory receptors via endosomal ESCRT sorting. We propose that rPGRP-LC selectively responds to peptidoglycans from dead bacteria to tailor the immune response to the level of threat.
Collapse
Affiliation(s)
- Claudine Neyen
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Christopher Runchel
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - Fanny Schüpfer
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - Bruno Lemaitre
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
47
|
Meng K, Li X, Wang S, Zhong C, Yang Z, Feng L, Liu Q. The Strica Homolog AaCASPS16 Is Involved in Apoptosis in the Yellow Fever Vector, Aedes albopictus. PLoS One 2016; 11:e0157846. [PMID: 27351972 PMCID: PMC4924790 DOI: 10.1371/journal.pone.0157846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
Caspases are a family of cysteine proteases playing essential roles during apoptosis. Seven caspases identified in Drosophila were Dronc, Dredd, Strica, Dcp-1, Decay, Drice and Damm. Among them, Strica is an insect-specific caspase containing a long serine- and threonine- rich prodomain, of which function is not yet well studied. Here we identified a homolog of strica from Aedes albopictus, named as Aacasps16. Aacasps16 encoded a protein containing a putative serine- and threonine-rich prodomain and a well conserved caspase catalytic domain. AaCASPS16 shared high identity with dipteran insects Strica homologs. Alignment showed that the closest relative of AaCASPS16 was Aedes aegypti AeCASPS16. The expression profiles of Aacasps16 during developmental and adult stages were analyzed. Purified recombinant AaCASPS16 exhibited the highest caspase activity to WEHD, which is the substrate preferred by human caspase-9. AaCASPS16 induced apoptosis when over-expressed in C6/36 cells. AaCASPS16 was processed during apoptosis induced by actinomycin D and ultraviolet irradiation treatment, whereas partial silencing of Aacasps16 reduced actinomycin D- and ultraviolet irradiation-triggered apoptosis in C6/36 cells. Taken together, our study identified AaCASPS16 as a novel apoptotic caspase in Aedes albopictus.
Collapse
Affiliation(s)
- Kun Meng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xiaomei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shengya Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chunyan Zhong
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Zhouning Yang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Lingyan Feng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
48
|
Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta Gen Subj 2016; 1860:1898-909. [PMID: 27241849 PMCID: PMC4949077 DOI: 10.1016/j.bbagen.2016.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Background Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. Methods We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. Results The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. Conclusions We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. General significance Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. A novel mosquito ubiquitin, Ub3881, is identified in Aedes aegypti. Ub3881 is shown to have antiviral functions during dengue virus infection of the mosquito. Ub3881 targets a dengue viral protein for degradation during infection. Future dengue virus prevention strategies could incorporate Ub3881 as a target to prevent mosquito infection.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, United States
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Tonya M Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
49
|
Ding AX, Sun G, Argaw YG, Wong JO, Easwaran S, Montell DJ. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. eLife 2016; 5. [PMID: 27058168 PMCID: PMC4865370 DOI: 10.7554/elife.10936] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed. DOI:http://dx.doi.org/10.7554/eLife.10936.001 Every day, individual cells in our body actively decide whether to live or die. There are enzymes called executioner caspases that help cells to die in a carefully controlled process called apoptosis. Although the activation of executioner caspases generally leads to apoptosis, there are some circumstances in which cells are able to survive. Fruit flies are often used in research as models of how animals grow and develop. Ding, Sun et al. set out to find out more about the circumstances in which cells manage to survive caspase activation in fruit flies. The experiments used a new method that results in cells that survive caspase activity producing a fluorescent marker protein. This allowed Ding, Sun et al. to track when and where these events occurred in the flies. Few cells in fruit fly embryos survive the activation of executioner caspase. However, in later stages of development, more and more cells survive this process. Cells in different parts of the body responded differently. For some types of cells, every cell seemed to survive caspase activity with no evidence of apoptosis. In other tissues like the central brain, in which a few cells normally choose to die, some cells occasionally managed to survive the activation of caspases. This rescue from the brink of death was more common than Ding, Sun et al. had anticipated. The next step will be to uncover the molecular mechanisms that enable the cells to survive caspase activity. This knowledge may help us to develop treatments that can promote the survival of useful cells like heart muscle cells and brain cells, or trigger the death of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.10936.002
Collapse
Affiliation(s)
- Austin Xun Ding
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States.,Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Gongping Sun
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Yewubdar G Argaw
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Jessica O Wong
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Sreesankar Easwaran
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States.,Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
50
|
Park ES, Elangovan M, Kim YJ, Yoo YJ. UbcD4, an ortholog of E2-25K/Ube2K, is essential for activation of the immune deficiency pathway in Drosophila. Biochem Biophys Res Commun 2015; 469:891-6. [PMID: 26707646 DOI: 10.1016/j.bbrc.2015.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
Ubiquitination is a key regulatory mechanism in the immune deficiency (IMD) pathway in Drosophila. In this study, we first developed a simple immunoblot method to identify components involved in this pathway. Considering the emerging roles of ubiquitin-conjugating enzymes (E2s) in determining ubiquitin chain types and ubiquitination speed, we screened for E2s required for IMD activation. We found that UbcD4, in addition to the previously reported E2s Effete and Bendless, was required for activation of the IMD pathway. RNAi-mediated knockdown of the UbcD4 ortholog, E2-25K/Ube2K, inhibited TNFα- and LPS-mediated activation of the NF-κB pathway, implying that UbcD4 and E2-25K/Ube2K play a conserved role as positive regulators in both pathways.
Collapse
Affiliation(s)
- Eun Sil Park
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Muthukumar Elangovan
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea.
| |
Collapse
|