1
|
Martin-Solana E, Casado-Zueras L, Torres TE, Goya GF, Fernandez-Fernandez MR, Fernandez JJ. Disruption of the mitochondrial network in a mouse model of Huntington's disease visualized by in-tissue multiscale 3D electron microscopy. Acta Neuropathol Commun 2024; 12:88. [PMID: 38840253 PMCID: PMC11151585 DOI: 10.1186/s40478-024-01802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Teobaldo E Torres
- Advanced Microscopy Laboratory, University of Zaragoza, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50018, Zaragoza, Spain
- Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Gerardo F Goya
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50018, Zaragoza, Spain
- Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain
| | | | - Jose-Jesus Fernandez
- Spanish National Research Council (CSIC, CINN), Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
2
|
Li X, Hernandez I, Koyuncu S, Kis B, Häggblad M, Lidemalm L, Abbas AA, Bendegúz S, Göblös A, Brautigam L, Lucas JJ, Carreras-Puigvert J, Hühn D, Pircs K, Vilchez D, Fernandez-Capetillo O. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ. EBioMedicine 2024; 103:105124. [PMID: 38701619 PMCID: PMC11088276 DOI: 10.1016/j.ebiom.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING A full list of funding sources can be found in the acknowledgments section.
Collapse
Affiliation(s)
- Xuexin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Ivó Hernandez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Balázs Kis
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Anna A Abbas
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Sramkó Bendegúz
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Göblös
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720, Szeged, Hungary
| | - Lars Brautigam
- Zebrafish Core Facility, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Jose J Lucas
- Center for Molecular Biology, "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Karolina Pircs
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Lund, Sweden
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
3
|
Teramayi F, Bons J, Scott M, Scott GK, Loureiro A, Lopez-Ramirez A, Schilling B, Ellerby LM, Benz CC. Brain transcriptomic, metabolic and mitohormesis properties associated with N-propargylglycine treatment: A prevention strategy against neurodegeneration. Brain Res 2024; 1826:148733. [PMID: 38128812 PMCID: PMC11283822 DOI: 10.1016/j.brainres.2023.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION There is an urgent need for new or repurposed therapeutics that protect against or significantly delay the clinical progression of neurodegenerative diseases, such as Huntington's disease (HD), Parkinson's disease and Alzheimer's disease. In particular, preclinical studies are needed for well tolerated and brain-penetrating small molecules capable of mitigating the proteotoxic mitochondrial processes that are hallmarks of these diseases. We identified a unique suicide inhibitor of mitochondrial proline dehydrogenase (Prodh), N-propargylglycine (N-PPG), which has anticancer and brain-enhancing mitohormesis properties, and we hypothesize that induction of mitohormesis by N-PPG protects against neurodegenerative diseases. We carried out a series of mouse studies designed to: i) compare brain and metabolic responses while on oral N-PPG treatment (50 mg/kg, 9-14 days) of B6CBA wildtype (WT) and short-lived transgenic R6/2 (HD) mice; and ii) evaluate potential brain and systemwide stress rebound responses in WT mice 2 months after cessation of extended mitohormesis induction by well-tolerated higher doses of N-PPG (100-200 mg/kg x 60 days). WT and HD mice showed comparable global evidence of N-PPG induced brain mitohormesis characterized by Prodh protein decay and increased mitochondrial expression of chaperone and Yme1l1 protease proteins. Interestingly, transcriptional analysis (RNAseq) showed partial normalization of HD whole brain transcriptomes toward those of WT mice. Comprehensive metabolomic profiles performed on control and N-PPG treated blood, brain, and kidney samples revealed expected N-PPG-induced tissue increases in proline levels in both WT and HD mice, accompanied by surprising parallel increases in hydroxyproline and sarcosine. Two months after cessation of the higher dose N-PPG stress treatments, WT mouse brains showed robust rebound increases in Prodh protein levels and mitochondrial transcriptome responses, as well as altered profiles of blood amino acid-related metabolites. Our HD and WT mouse preclinical findings point to the brain penetrating and mitohormesis-inducing potential of the drug candidate, N-PPG, and provide new rationale and application insights supporting its further preclinical testing in various models of neurodegenerative diseases characterized by loss of mitochondrial proteostasis.
Collapse
Affiliation(s)
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Madeleine Scott
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Scott
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
5
|
Ng EL, Reed AL, O'Connell CB, Alder NN. Using Live Cell STED Imaging to Visualize Mitochondrial Inner Membrane Ultrastructure in Neuronal Cell Models. J Vis Exp 2023:10.3791/65561. [PMID: 37458423 PMCID: PMC11067429 DOI: 10.3791/65561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mitochondria play many essential roles in the cell, including energy production, regulation of Ca2+ homeostasis, lipid biosynthesis, and production of reactive oxygen species (ROS). These mitochondria-mediated processes take on specialized roles in neurons, coordinating aerobic metabolism to meet the high energy demands of these cells, modulating Ca2+ signaling, providing lipids for axon growth and regeneration, and tuning ROS production for neuronal development and function. Mitochondrial dysfunction is therefore a central driver in neurodegenerative diseases. Mitochondrial structure and function are inextricably linked. The morphologically complex inner membrane with structural infolds called cristae harbors many molecular systems that perform the signature processes of the mitochondrion. The architectural features of the inner membrane are ultrastructural and therefore, too small to be visualized by traditional diffraction-limited resolved microscopy. Thus, most insights on mitochondrial ultrastructure have come from electron microscopy on fixed samples. However, emerging technologies in super-resolution fluorescence microscopy now provide resolution down to tens of nanometers, allowing visualization of ultrastructural features in live cells. Super-resolution imaging therefore offers an unprecedented ability to directly image fine details of mitochondrial structure, nanoscale protein distributions, and cristae dynamics, providing fundamental new insights that link mitochondria to human health and disease. This protocol presents the use of stimulated emission depletion (STED) super-resolution microscopy to visualize the mitochondrial ultrastructure of live human neuroblastoma cells and primary rat neurons. This procedure is organized into five sections: (1) growth and differentiation of the SH-SY5Y cell line, (2) isolation, plating, and growth of primary rat hippocampal neurons, (3) procedures for staining cells for live STED imaging, (4) procedures for live cell STED experiments using a STED microscope for reference, and (5) guidance for segmentation and image processing using examples to measure and quantify morphological features of the inner membrane.
Collapse
Affiliation(s)
- Emery L Ng
- Center for Open Research Resources and Equipment, University of Connecticut
| | - Ashley L Reed
- Department of Molecular and Cell Biology, University of Connecticut
| | | | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut;
| |
Collapse
|
6
|
Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A, Dhawal Bhandari D, Gaikwad N, Azad AK, Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023:S1567-7249(23)00051-X. [PMID: 37269968 DOI: 10.1016/j.mito.2023.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarises the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | | | | | | | - Ritika Sharma
- University institute of pharma sciences, Chandigarh University, Mohali, Punjab.
| | - Rita Dadarao Chakole
- Government College of Pharmacy Vidyanagar Karad Dist Satara Maharashtra Pin 415124.
| | - Lalita S Nemade
- Govindrao Nikam College of Pharmacy Sawarde Maharashtra 415606.
| | | | - Sudarshana Borah
- Department of Pharmacognosy, University of Science and Technology Meghalaya Technocity, Ri-Bhoi District Meghalaya.
| | | | - Ashok Behera
- Faculty of Pharmacy, DIT University, Dehradun,Uttarakhand.
| | - Divya Dhawal Bhandari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014. India.
| | - Nikita Gaikwad
- Department of Pharmaceutics, P.E.S. Modern College of Pharmacy, Nigdi, Pune-411044.
| | - Abul Kalam Azad
- Faculty of Pharmacy MAHSA University Bandar Saujana putra, 42610, Selangor, Malaysia
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| |
Collapse
|
7
|
Banarase TA, Sammeta SS, Wankhede NL, Mangrulkar SV, Rahangdale SR, Aglawe MM, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15:239-255. [PMID: 37124925 PMCID: PMC10133433 DOI: 10.1007/s12551-023-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Trupti A. Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shivkumar S. Sammeta
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Nitu L. Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shubhada V. Mangrulkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Sandip R. Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Manish M. Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Brijesh G. Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra India 423101
| | - Milind J. Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Mayur B. Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| |
Collapse
|
8
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain. Molecules 2023; 28:1402. [PMID: 36771072 PMCID: PMC9921215 DOI: 10.3390/molecules28031402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD). METHODS To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. RESULTS The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. CONCLUSION The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Gharaba S, Paz O, Feld L, Abashidze A, Weinrab M, Muchtar N, Baransi A, Shalem A, Sprecher U, Wolf L, Wolfenson H, Weil M. Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Front Cell Dev Biol 2023; 11:1013721. [PMID: 36743412 PMCID: PMC9889876 DOI: 10.3389/fcell.2023.1013721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.
Collapse
Affiliation(s)
- Saja Gharaba
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Omri Paz
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Anastasia Abashidze
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Maydan Weinrab
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Muchtar
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Adam Baransi
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Shalem
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Sprecher
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Miguel Weil
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
11
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
He B, Yu H, Liu S, Wan H, Fu S, Liu S, Yang J, Zhang Z, Huang H, Li Q, Wang F, Jiang Z, Liu Q, Jiang H. Mitochondrial cristae architecture protects against mtDNA release and inflammation. Cell Rep 2022; 41:111774. [PMID: 36476853 DOI: 10.1016/j.celrep.2022.111774] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the F1Fo-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.
Collapse
Affiliation(s)
- Baiyu He
- College of Biological Sciences, China Agriculture University, Beijing 100094, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Huatong Yu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Shanshan Liu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Huayun Wan
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Song Fu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Jun Yang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zihan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Hui Jiang
- College of Biological Sciences, China Agriculture University, Beijing 100094, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
13
|
An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022; 13:235-242. [PMID: 36590097 PMCID: PMC9795316 DOI: 10.1016/j.ibneur.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years scientific research has established that the nervous and immune systems have shared molecular signaling components. Proteins native to immune cells, which are also found in the brain, have neuronal functions in the nervous system where they affect synaptic plasticity, axonal regeneration, neurogenesis, and neurotransmission. Certain native immune molecules like major histocompatibility complex I (MHC-I), paired immunoglobulin receptor B (PirB), toll-like receptor (TLR), cluster of differentiation-3 zeta (CD3ζ), CD4 co-receptor, and T-cell receptor beta (TCR-β) expression in neurons have been extensively documented. In this review, we provide our opinion and discussed the possible roles of T-cell receptor beta subunits in modulating the function of neurons in the central nervous system. Based on the previous findings of Syken and Shatz., 2003; Nishiyori et al., 2004; Rodriguez et., 1993 and Komal et., 2014; we discuss whether restrictive expression of TCR-β subunits in selected brain regions could be involved in the pathology of neurological disorders and whether their aberrant enhancement in expression may be considered as a suitable biomarker for aging or neurodegenerative diseases like Huntington's disease (HD).
Collapse
|
14
|
Lopes C, Ferreira IL, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Castelo Branco M, Rego AC. Mitochondrial and redox modifications in early stages of Huntington's disease. Redox Biol 2022; 56:102424. [PMID: 35988447 PMCID: PMC9420526 DOI: 10.1016/j.redox.2022.102424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/30/2023] Open
Abstract
Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [64Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [64Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6–12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [64Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (H2O2) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [64Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial H2O2 levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca2+ handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease. Pre-manifest HD carriers and presymptomatic YAC128 mice show increased brain [64Cu]-ATSM labelling. Increased [64Cu]-ATSM brain retention correlates with raised ROS levels in human and mouse samples. Increased [64Cu]-ATSM correlates with enhanced mitochondrial activity and mtDNA copy number. Presymptomatic YAC128 mouse striatal mitochondria show altered morphology and Ca2+ handling.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - José Sereno
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - João Castelhano
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Antero Abrunhosa
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Francisco Oliveira
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Maura De Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Michael Hayden
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Mário N Laço
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Medical Genetics Unit, Pediatric Hospital of Coimbra, Coimbra University Hospital (CHUC), Coimbra, Portugal.
| | | | - Miguel Castelo Branco
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
16
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
18
|
Qubty D, Frid K, Har-Even M, Rubovitch V, Gabizon R, Pick CG. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022; 27:molecules27092725. [PMID: 35566074 PMCID: PMC9105273 DOI: 10.3390/molecules27092725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kati Frid
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
| | - Ruth Gabizon
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
19
|
Martínez-Camarena Á, Merino M, Sánchez-Sánchez AV, Blasco S, Llinares JM, Mullor JL, García-España E. An antioxidant boehmite amino-nanozyme able to disaggregate Huntington's inclusion bodies. Chem Commun (Camb) 2022; 58:5021-5024. [PMID: 35373809 DOI: 10.1039/d2cc01257j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel amino-nanozyme, based on boehmite nanoparticles (BNPs) functionalised with a tetra-azapyridinophane (L1), has been designed to undermine some of the key issues underlying Huntington disease. L1 forms Cu2+ complexes with a striking SOD activity, while when grafted to the BNPs displays mitoROS scavenging properties and ability to disaggregate mutant huntingtin deposits in cells.
Collapse
Affiliation(s)
- Álvaro Martínez-Camarena
- ICMol, Departamento de Química Inorgánica, University of Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Marian Merino
- Bionos Biotech SL, Biopolo La Fe, IIS La Fe, Av. Fernando Abril Martorell, Torre 106 A 7 planta, 46026 València, Spain
| | - Ana Virginia Sánchez-Sánchez
- Bionos Biotech SL, Biopolo La Fe, IIS La Fe, Av. Fernando Abril Martorell, Torre 106 A 7 planta, 46026 València, Spain
| | - Salvador Blasco
- ICMol, Departamento de Química Inorgánica, University of Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - José M Llinares
- Departamento de Química Orgánica, University of Valencia, C/Dr Moliner s/n, 46100, Burjassot, Spain
| | - José L Mullor
- Bionos Biotech SL, Biopolo La Fe, IIS La Fe, Av. Fernando Abril Martorell, Torre 106 A 7 planta, 46026 València, Spain
| | - Enrique García-España
- ICMol, Departamento de Química Inorgánica, University of Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
20
|
Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 2022; 119:2112852119. [PMID: 35165191 PMCID: PMC8872729 DOI: 10.1073/pnas.2112852119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
FOXP1 haploinsufficiency underlies cognitive and motor impairments in individuals with FOXP1 syndrome. Here, we show that mice lacking one Foxp1 copy exhibit similar behavioral deficits, which may be caused by striatal dysfunction. Indeed, Foxp1+/− striatal medium spiny neurons display reduced neurite branching, and we show altered mitochondrial biogenesis and dynamics; increased mitophagy; reduced mitochondrial membrane potential, structure, and motility; and elevated oxygen species in the striatum of these animals. As FOXP1 is highly conserved, our data strongly suggest that mitochondrial dysfunction and excessive oxidative stress contribute to the motor and cognitive impairments seen in individuals with FOXP1 syndrome. Thus, mitochondrial homeostasis is critical for normal development and can explain deficits in neurodevelopmental disorders. FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/− mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/− mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/− mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.
Collapse
|
21
|
Wang G, Fan Y, Cao P, Tan K. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci 2022; 12:18. [PMID: 35180892 PMCID: PMC8857832 DOI: 10.1186/s13578-022-00747-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved protective transcriptional response that maintains mitochondrial proteostasis by inducing the expression of mitochondrial chaperones and proteases in response to various stresses. The UPRmt-mediated transcriptional program requires the participation of various upstream signaling pathways and molecules. The factors regulating the UPRmt in Caenorhabditis elegans (C. elegans) and mammals are both similar and different. Cancer cells, as malignant cells with uncontrolled proliferation, are exposed to various challenges from endogenous and exogenous stresses. Therefore, in cancer cells, the UPRmt is hijacked and exploited for the repair of mitochondria and the promotion of tumor growth, invasion and metastasis. In this review, we systematically introduce the inducers of UPRmt, the biological processes in which UPRmt participates, the mechanisms regulating the UPRmt in C. elegans and mammals, cross-tissue signal transduction of the UPRmt and the roles of the UPRmt in promoting cancer initiation and progression. Disrupting proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.,Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Pengxiu Cao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
22
|
Traa A, Machiela E, Rudich PD, Soo SK, Senchuk MM, Van Raamsdonk JM. Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation. Int J Mol Sci 2021; 22:ijms222413447. [PMID: 34948242 PMCID: PMC8703635 DOI: 10.3390/ijms222413447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models. In this work, we examine the effect of decreasing mitochondrial fragmentation in a neuronal C. elegans model of polyglutamine toxicity called Neur-67Q. We find that Neur-67Q worms exhibit mitochondrial fragmentation in GABAergic neurons and decreased mitochondrial function. Disruption of drp-1 eliminates differences in mitochondrial morphology and rescues deficits in both movement and longevity in Neur-67Q worms. In testing twenty-four RNA interference (RNAi) clones that decrease mitochondrial fragmentation, we identified eleven clones—each targeting a different gene—that increase movement and extend lifespan in Neur-67Q worms. Overall, we show that decreasing mitochondrial fragmentation may be an effective approach to treating polyglutamine diseases and we identify multiple novel genetic targets that circumvent the potential negative side effects of disrupting the primary mitochondrial fission gene drp-1.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Paige D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sonja K. Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; (A.T.); (P.D.R.); (S.K.S.)
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.M.); (M.M.S.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
23
|
Machiela E, Rudich PD, Traa A, Anglas U, Soo SK, Senchuk MM, Van Raamsdonk JM. Targeting Mitochondrial Network Disorganization is Protective in C. elegans Models of Huntington's Disease. Aging Dis 2021; 12:1753-1772. [PMID: 34631219 PMCID: PMC8460302 DOI: 10.14336/ad.2021.0404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the HTT gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used C. elegans models to elucidate the role of mitochondrial dynamics in HD. We found that expression of a disease-length polyglutamine tract in body wall muscle, either with or without exon 1 of huntingtin, results in mitochondrial fragmentation and mitochondrial network disorganization. While mitochondria in young HD worms form elongated tubular networks as in wild-type worms, mitochondrial fragmentation occurs with age as expanded polyglutamine protein forms aggregates. To correct the deficit in mitochondrial morphology, we reduced levels of DRP-1, the GTPase responsible for mitochondrial fission. Surprisingly, we found that disrupting drp-1 can have detrimental effects, which are dependent on how much expression is decreased. To avoid potential negative side effects of disrupting drp-1, we examined whether decreasing mitochondrial fragmentation by targeting other genes could be beneficial. Through this approach, we identified multiple genetic targets that rescue movement deficits in worm models of HD. Three of these genetic targets, pgp-3, F25B5.6 and alh-12, increased movement in the HD worm model and restored mitochondrial morphology to wild-type morphology. This work demonstrates that disrupting the mitochondrial fission gene drp-1 can be detrimental in animal models of HD, but that decreasing mitochondrial fragmentation by targeting other genes can be protective. Overall, this study identifies novel therapeutic targets for HD aimed at improving mitochondrial health.
Collapse
Affiliation(s)
- Emily Machiela
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Paige D Rudich
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Annika Traa
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Ulrich Anglas
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Sonja K Soo
- 2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Megan M Senchuk
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Jeremy M Van Raamsdonk
- 1Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids MI 49503, USA.,2Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H4A 3J1, Canada.,3Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada.,4Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.,5Department of Genetics, Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|
24
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
25
|
Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun 2021; 12:5305. [PMID: 34489447 PMCID: PMC8421361 DOI: 10.1038/s41467-021-25651-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial dysfunction is a common hallmark of neurological disorders, and reducing mitochondrial damage is considered a promising neuroprotective therapeutic strategy. Here, we used high-throughput small molecule screening to identify CHIR99021 as a potent enhancer of mitochondrial function. CHIR99021 improved mitochondrial phenotypes and enhanced cell viability in several models of Huntington’s disease (HD), a fatal inherited neurodegenerative disorder. Notably, CHIR99201 treatment reduced HD-associated neuropathology and behavioral defects in HD mice and improved mitochondrial function and cell survival in HD patient-derived neurons. Independent of its known inhibitory activity against glycogen synthase kinase 3 (GSK3), CHIR99021 treatment in HD models suppressed the proteasomal degradation of calpastatin (CAST), and subsequently inhibited calpain activation, a well-established effector of neural death, and Drp1, a driver of mitochondrial fragmentation. Our results established CAST-Drp1 as a druggable signaling axis in HD pathogenesis and highlighted CHIR99021 as a mitochondrial function enhancer and a potential lead for developing HD therapies. Mitochondrial dysfunction is a common hallmark of neurological disorders. Here, the authors identify CHIR99021 as a potent enhancer of mitochondrial function, which improved mitochondrial phenotypes in Huntington’s disease models. CHIR99021 was shown to stabilize calpastatin, which suppressed calpain activation and Drp1-induced mitochondrial fragmentation.
Collapse
|
26
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
27
|
Modesti L, Danese A, Angela Maria Vitto V, Ramaccini D, Aguiari G, Gafà R, Lanza G, Giorgi C, Pinton P. Mitochondrial Ca 2+ Signaling in Health, Disease and Therapy. Cells 2021; 10:cells10061317. [PMID: 34070562 PMCID: PMC8230075 DOI: 10.3390/cells10061317] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The divalent cation calcium (Ca2+) is considered one of the main second messengers inside cells and acts as the most prominent signal in a plethora of biological processes. Its homeostasis is guaranteed by an intricate and complex system of channels, pumps, and exchangers. In this context, by regulating cellular Ca2+ levels, mitochondria control both the uptake and release of Ca2+. Therefore, at the mitochondrial level, Ca2+ plays a dual role, participating in both vital physiological processes (ATP production and regulation of mitochondrial metabolism) and pathophysiological processes (cell death, cancer progression and metastasis). Hence, it is not surprising that alterations in mitochondrial Ca2+ (mCa2+) pathways or mutations in Ca2+ transporters affect the activities and functions of the entire cell. Indeed, it is widely recognized that dysregulation of mCa2+ signaling leads to various pathological scenarios, including cancer, neurological defects and cardiovascular diseases (CVDs). This review summarizes the current knowledge on the regulation of mCa2+ homeostasis, the related mechanisms and the significance of this regulation in physiology and human diseases. We also highlight strategies aimed at remedying mCa2+ dysregulation as promising therapeutical approaches.
Collapse
Affiliation(s)
- Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Daniela Ramaccini
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
- Correspondence: ; Tel.: +39-0532-455802
| |
Collapse
|
28
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
29
|
Wälti MA, Kotler SA, Clore GM. Probing the Interaction of Huntingtin Exon-1 Polypeptides with the Chaperonin Nanomachine GroEL. Chembiochem 2021; 22:1985-1991. [PMID: 33644966 DOI: 10.1002/cbic.202100055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Indexed: 12/14/2022]
Abstract
Huntington's disease arises from polyQ expansion within the exon-1 region of huntingtin (httex1 ), resulting in an aggregation-prone protein that accumulates in neuronal inclusion bodies. We investigate the interaction of various httex1 constructs with the bacterial analog (GroEL) of the human chaperonin Hsp60. Using fluorescence spectroscopy and electron and atomic force microscopy, we show that GroEL inhibits fibril formation. The binding kinetics of httex1 constructs with intact GroEL and a mini-chaperone comprising the apical domain is characterized by relaxation-based NMR measurements. The lifetimes of the complexes range from 100 to 400 μs with equilibrium dissociation constants (KD ) of ∼1-2 mM. The binding interface is formed by the N-terminal amphiphilic region of httex1 (which adopts a partially helical conformation) and the H and I helices of the GroEL apical domain. Sequestration of monomeric httex1 by GroEL likely increases the critical concentration required for fibrillization.
Collapse
Affiliation(s)
- Marielle A Wälti
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, 5 Memorial Drive, Bethesda, MD 20892-0520, USA
| | - Samuel A Kotler
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, 5 Memorial Drive, Bethesda, MD 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, 5 Memorial Drive, Bethesda, MD 20892-0520, USA
| |
Collapse
|
30
|
Wang T, Liu H, Itoh K, Oh S, Zhao L, Murata D, Sesaki H, Hartung T, Na CH, Wang J. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab 2021; 33:531-546.e9. [PMID: 33545050 PMCID: PMC8579819 DOI: 10.1016/j.cmet.2021.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/06/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
The haploinsufficiency of C9orf72 is implicated in the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the full spectrum of C9orf72 functions remains to be established. Here, we report that C9orf72 is a mitochondrial inner-membrane-associated protein regulating cellular energy homeostasis via its critical role in the control of oxidative phosphorylation (OXPHOS). The translocation of C9orf72 from the cytosol to the inter-membrane space is mediated by the redox-sensitive AIFM1/CHCHD4 pathway. In mitochondria, C9orf72 specifically stabilizes translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1), a crucial factor for the assembly of OXPHOS complex I. C9orf72 directly recruits the prohibitin complex to inhibit the m-AAA protease-dependent degradation of TIMMDC1. The mitochondrial complex I function is impaired in C9orf72-linked ALS/FTD patient-derived neurons. These results reveal a previously unknown function of C9orf72 in mitochondria and suggest that defective energy metabolism may underlie the pathogenesis of relevant diseases.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sungtaek Oh
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Liang Zhao
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy 2021; 17:672-689. [PMID: 32093570 PMCID: PMC8032238 DOI: 10.1080/15548627.2020.1728096] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyzed the impact of the expansion of its polyglutamine (polyQ) tract. HTT is involved in different mitophagy steps, promoting the physical proximity of different protein complexes during the initiation of mitophagy and recruiting mitophagy receptors essential for promoting the interaction between damaged mitochondria and the nascent autophagosome. The presence of the polyQ tract in mutant HTT affects the formation of these protein complexes and determines the negative consequences of mutant HTT on mitophagy, leading to the accumulation of damaged mitochondria and an increase in oxidative stress. These outcomes contribute to general mitochondrial dysfunction and neurodegeneration in Huntington disease.Abbreviations: AMPK: AMP-activated protein kinase; ATG13: autophagy related 13; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; DMEM: Dulbecco's modified eagle medium; EDTA: ethylene-diamine-tetra-acetic acid; EGFP: enhanced green fluorescent protein; EGTA: ethylene glycol bis(2-aminoethyl ether)tetraacetic acid; FUNDC1: FUN14 domain containing 1; HD: Huntington disease; HRP: horseradish peroxidase; HTT: huntingtin; LC3-II: lipidated form of MAP1LC3/LC3; mtDNA: mitochondrial deoxyribonucleic acid; MTDR: MitoTracker Deep Red; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1, autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; OCR: oxygen consumption rate; OPTN: optineurin; OXPHOS: oxidative phosphorylation; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PINK1: PTEN induced putative kinase 1; PLA: proximity ligation assay; PMSF: phenylmethylsulfonyl fluoride; polyQ: polyglutamine; PtdIns3K: phosphatidylinositol 3-kinase; ROS: reactive oxygen species; Rot: rotenone; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TMRM: tetramethylrhodamine methyl ester; UB: ubiquitin; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Autonomous University of Barcelona, Barcelona, Spain
| | - Ainhoa Plaza-Zabala
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Montpeyo
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Autonomous University of Barcelona, Barcelona, Spain
| | - David Sebastian
- Institute for Research in Biomedicine (IRB) - Diabetes and Associated Metabolic Diseases Networking Biomedical Research (CIBERDEM), Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Autonomous University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Aldine AS, Ogilvie A, Wemmie J, Kent J, Schultz J, Long JD, Kamholz J, Sajjad H, Kline J, Shaw E, Voss M, Paulsen JS, Magnotta VA. Moderate Intensity Exercise in Pre-manifest Huntington's Disease: Results of a 6 months Trial. SVOA NEUROLOGY 2021; 2:6-36. [PMID: 35128541 PMCID: PMC8815110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND While it has been shown that aerobic exercise interventions are well tolerated in participants with the Huntington disease (HD) gene mutation, no study to date has tested whether an aerobic exercise intervention benefits brain structure and function in pre-manifest HD. OBJECTIVE In this study we utilized magnetic resonance (MR) imaging techniques to assess the efficacy of moderate-to-vigorous exercise treatment relative to active stretching and toning control. METHODS Forty pre-manifest participants with confirmed HD gene expansion were recruited into a two-arm intervention study that included a moderate-to-vigorous intensity home-based walking exercise intervention (N=34) and an active stretching and toning control intervention (N=6). Participants were assessed at baseline and after 26 weeks in one of the two study arms. RESULTS 25 of the 34 (74%) participants assigned to the moderate-to-vigorous intensity group completed the intervention while 4 of the 6 (67%) participants in the stretching and toning intervention completed the study. The primary analyses compared the two arms of the study and found no statistical differences between the groups. Both groups were found to have improved their cardiorespiratory fitness as assessed by maximal oxygen uptake (VO2max). A secondary analysis combined the two arms of the study and there was a significant relationship (p<0.05) between change in VO2max and change in brain structure. CONCLUSIONS Though this study did not show efficacy for the exercise intervention, secondary results suggest that aerobic exercise interventions increasing cardiorespiratory fitness may be a potential way to slow progression in pre-manifest HD.
Collapse
Affiliation(s)
- Amro Saad Aldine
- Department of Radiology, Ochsner LSU Health Shreveport Academic Medical Center, Shreveport, LA, 71103, USA
| | - Amy Ogilvie
- Department of Biostatistics, The University of Iowa, Iowa City, IA, 52240, USA,Department of Psychiatry, The University of Iowa, Iowa City, IA, 52240, USA
| | - John Wemmie
- Department of Psychiatry, The University of Iowa, Iowa City, IA, 52240, USA
| | - James Kent
- Department of Psychology, The University of Texas, Austin, Texas, 78712, USA
| | - Jordan Schultz
- Department of Psychiatry, The University of Iowa, Iowa City, IA, 52240, USA,Department of Pharmacy Practice and Science, The University of Iowa, Iowa City, IA, 52240, USA
| | - Jeffrey D. Long
- Department of Biostatistics, The University of Iowa, Iowa City, IA, 52240, USA,Department of Psychiatry, The University of Iowa, Iowa City, IA, 52240, USA
| | - John Kamholz
- Department of Neurology, The University of Iowa, Iowa City, IA, 52240, USA
| | - Hassan Sajjad
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, 52240, USA
| | - Joel Kline
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, 52240, USA
| | - Emily Shaw
- Department of Community and Behavioral Health, The University of Iowa, Iowa City, IA, 52240, USA
| | - Michelle Voss
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, 52240, USA
| | - Jane S. Paulsen
- Department of Neurology, The University of Wisconsin, Madison, WI, 53705, USA
| | - Vincent A. Magnotta
- Department of Psychiatry, The University of Iowa, Iowa City, IA, 52240, USA,Department Radiology, The University of Iowa, Iowa City, IA, 52240, USA,Department Biomedical Engineering, The University of Iowa, Iowa City, IA, 52240, USA
| |
Collapse
|
33
|
Galpayage Dona KNU, Du E, Wei J. An impedimetric assay for the identification of abnormal mitochondrial dynamics in living cells. Electrophoresis 2020; 42:163-170. [PMID: 33169407 DOI: 10.1002/elps.202000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial dynamics (fission and fusion) plays an important role in cell functions. Disruption in mitochondrial dynamics has been associated with diseases such as neurobiological disorders and cardiovascular diseases. Analysis of mitochondrial fission/fusion has been mostly achieved through direct visualization of the fission/fusion events in live-cell imaging of fluorescently labeled mitochondria. In this study, we demonstrated a label-free, non-invasive Electrical Impedance Spectroscopy (EIS) approach to analyze mitochondrial dynamics in a genetically modified human neuroblastoma SH-SY5Y cell line with no huntingtin protein expression. Huntingtin protein has been shown to regulate mitochondria dynamics. We performed EIS studies on normal SH-SY5Y cells and two independent clones of huntingtin-null cells. The impedance data was used to determine the suspension conductivity and further cytoplasmic conductivity and relate to the abnormal mitochondrial dynamics. For instance, the cytoplasm conductivity value was increased by 11% from huntingtin-null cells to normal cells. Results of this study demonstrated that EIS is sensitive to characterize the abnormal mitochondrial dynamics that can be difficult to quantify by the conventional microscopic method.
Collapse
Affiliation(s)
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
34
|
Malankhanova T, Suldina L, Grigor’eva E, Medvedev S, Minina J, Morozova K, Kiseleva E, Zakian S, Malakhova A. A Human Induced Pluripotent Stem Cell-Derived Isogenic Model of Huntington's Disease Based on Neuronal Cells Has Several Relevant Phenotypic Abnormalities. J Pers Med 2020; 10:jpm10040215. [PMID: 33182269 PMCID: PMC7712151 DOI: 10.3390/jpm10040215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder caused by a CAG triplet expansion in the first exon of the HTT gene. Here we report the introduction of an HD mutation into the genome of healthy human embryonic fibroblasts through CRISPR/Cas9-mediated homologous recombination. We verified the specificity of the created HTT-editing system and confirmed the absence of undesirable genomic modifications at off-target sites. We showed that both mutant and control isogenic induced pluripotent stem cells (iPSCs) derived by reprogramming of the fibroblast clones can be differentiated into striatal medium spiny neurons. We next demonstrated phenotypic abnormalities in the mutant iPSC-derived neural cells, including impaired neural rosette formation and increased sensitivity to growth factor withdrawal. Moreover, using electron microscopic analysis, we detected a series of ultrastructural defects in the mutant neurons, which did not contain huntingtin aggregates, suggesting that these defects appear early in HD development. Thus, our study describes creation of a new isogenic iPSC-based cell system that models HD and recapitulates HD-specific disturbances in the mutant cells, including some ultrastructural features implemented for the first time.
Collapse
|
35
|
De R, Mazumder S, Bandyopadhyay U. Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biol Toxicol 2020; 37:333-366. [PMID: 33067701 DOI: 10.1007/s10565-020-09561-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are double membrane-bound cellular work-horses constantly functioning to regulate vital aspects of cellular metabolism, bioenergetics, proliferation and death. Biogenesis, homeostasis and regulated turnover of mitochondria are stringently regulated to meet the bioenergetic requirements. Diverse external and internal stimuli including oxidative stress, diseases, xenobiotics and even age profoundly affect mitochondrial integrity. Damaged mitochondria need immediate segregation and selective culling to maintain physiological homeostasis. Mitophagy is a specialised form of macroautophagy that constantly checks mitochondrial quality followed by elimination of rogue mitochondria by lysosomal targeting through multiple pathways tightly regulated and activated in context-specific manners. Mitophagy is implicated in diverse oxidative stress-associated metabolic, proliferating and degenerative disorders owing to the centrality of mitopathology in diseases as well as the common mandate to eliminate damaged mitochondria for restoring physiological homeostasis. With improved health care and growing demand for precision medicine, specifically targeting the keystone factors in pathogenesis, more exploratory studies are focused on mitochondrial quality control as underlying guardian of cellular pathophysiology. In this context, mitophagy emerged as a promising area to focus biomedical research for identifying novel therapeutic targets against diseases linked with physiological redox perturbation. The present review provides a comprehensive account of the recent developments on mitophagy along with precise discussion on its impact on major diseases and possibilities of therapeutic modulation.
Collapse
Affiliation(s)
- Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal, 700135, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal, 712258, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India.
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
36
|
Ripon MKH, Lee H, Dash R, Choi HJ, Oktaviani DF, Moon IS, Haque MN. N-acetyl-D-glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance. Cell Death Dis 2020; 11:619. [PMID: 32796833 PMCID: PMC7427805 DOI: 10.1038/s41419-020-02862-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that neurodegenerative diseases (NDs) result from a failure to clear toxic protein aggregates rather than from their generation. We previously showed N-acetylglucosamine kinase (NAGK) promotes dynein functionality and suggested this might promote aggregate removal and effectively address proteinopathies. Here, we report NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and efficiently suppresses mutant huntingtin (mHtt) (Q74) and α-synuclein (α-syn) A53T aggregation in mouse brain cells. A kinase-inactive NAGKD107A also efficiently cleared Q74 aggregates. Yeast two-hybrid selection and in silico protein-protein docking analysis showed the small domain of NAGK (NAGK-DS) binds to the C-terminal of DYNLRB1. Furthermore, a small peptide derived from NAGK-DS interfered with Q74 clearance. We propose binding of NAGK-DS to DYNLRB1 'pushes up' the tail of dynein light chain and confers momentum for inactive phi- to active open-dynein transition.
Collapse
Affiliation(s)
- Md Kamal Hossain Ripon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - HyunSook Lee
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| | - Md Nazmul Haque
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| |
Collapse
|
37
|
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020; 10:243-255. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apart from finding novel compounds for treating Huntington's disease (HD) an important challenge at present consists in finding reliable read-outs or biomarkers that reflect key biological processes involved in HD pathogenesis. The core elements of HD biology, for example, HTT RNA levels or protein species can serve as biomarker, as could measures from biological systems or pathways in which Huntingtin plays an important role. Here we review the evidence for the involvement of mitochondrial biology in HD. The most consistent findings pertain to mitochondrial quality control, for example, fission/fusion. However, a convincing mitochondrial signature with biomarker potential is yet to emerge. This requires more research including in peripheral sources of human material, such as blood, or skeletal muscle.
Collapse
Affiliation(s)
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany.,SwissHuntington's Disease Centre, Neurozentrum Siloah, Worbstr. 312, 3073 Gümligenbei Bern, Switzerland
| |
Collapse
|
38
|
Role of RNA Oxidation in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21145022. [PMID: 32708667 PMCID: PMC7403986 DOI: 10.3390/ijms21145022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the history of nucleic acid research, DNA has always been the main research focus. After the sketch of the human genome was completed in 2000, RNA has been started to gain more attention due to its abundancies in the cell and its essential role in cellular physiology and pathologies. Recent studies have shown that RNAs are susceptible to oxidative damage and oxidized RNA is able to break the RNA strand, and affect the protein synthesis, which can lead to cell degradation and cell death. Studies have shown that RNA oxidation is one of the early events in the formation and development of neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, its molecular mechanism, as well as its impact on these diseases, are still unclear. In this article, we review the different types of RNA oxidative damage and the neurodegenerative diseases that are reported to be associated with RNA oxidative damage. In addition, we discuss recent findings on the association between RNA oxidative damage and the development of neurodegenerative diseases, which will have great significance for the development of novel strategies for the prevention and treatment of these diseases.
Collapse
|
39
|
Shen G, Liu W, Xu L, Wang LL. Mitochondrial Unfolded Protein Response and Its Roles in Stem Cells. Stem Cells Dev 2020; 29:627-637. [PMID: 32070227 DOI: 10.1089/scd.2019.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gerong Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Prosthetics, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lvwan Xu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Gatto EM, Rojas NG, Persi G, Etcheverry JL, Cesarini ME, Perandones C. Huntington disease: Advances in the understanding of its mechanisms. Clin Park Relat Disord 2020; 3:100056. [PMID: 34316639 PMCID: PMC8298812 DOI: 10.1016/j.prdoa.2020.100056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/01/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
Huntington disease (HD) is a devastating monogenic autosomal dominant disorder. HD is caused by a CAG expansion in exon 1 of the gene coding for huntingtin, placed in the short arm of chromosome 4. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Also, we present a modern view on the molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons. The main pathogenetic mechanisms of neurodegeneration in HD are discussed in detail, such as autophagy, impaired mitochondrial biogenesis, lysosomal dysfunction, organelle and protein transport, inflammation, oxidative stress, and transcription factor modulation. However, other unraveling mechanisms are still unknown. This practical and brief review summarizes some of the currently known functions of the wild-type huntingtin protein and the recent findings related to the mechanisms involved in HD pathogenesis.
Collapse
Affiliation(s)
- Emilia M Gatto
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | - Gabriel Persi
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | | | - Claudia Perandones
- National Administration of Laboratories and Institutes of Health, ANLIS, Dr. Carlos G. Malbrán, Argentina
| |
Collapse
|
41
|
Evans CS, Holzbaur ELF. Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. J Mol Biol 2019; 432:240-260. [PMID: 31295455 DOI: 10.1016/j.jmb.2019.06.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
The cargo-specific removal of organelles via selective autophagy is important to maintain neuronal homeostasis. Genetic studies indicate that deficits in these pathways are implicated in neurodegenerative diseases, including Parkinson's and amyotrophic lateral sclerosis. Here, we review our current understanding of the pathways that regulate mitochondrial quality control, and compare these mechanisms to those regulating turnover of the endoplasmic reticulum and the clearance of protein aggregates. Research suggests that there are multiple mechanisms regulating the degradation of specific cargos, such as dysfunctional organelles and protein aggregates. These mechanisms are critical for neuronal health, as neurons are uniquely vulnerable to impairment in organelle quality control pathways due to their morphology, size, polarity, and postmitotic nature. We highlight the consequences of dysregulation of selective autophagy in neurons and discuss current challenges in correlating noncongruent findings from in vitro and in vivo systems.
Collapse
Affiliation(s)
- Chantell S Evans
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
42
|
Huang NK, Lin CC, Lin YL, Huang CL, Chiou CT, Lee YC, Lee SY, Huang HT, Yang YC. Morphological control of mitochondria as the novel mechanism of Gastrodia elata in attenuating mutant huntingtin-induced protein aggregations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152756. [PMID: 31004885 DOI: 10.1016/j.phymed.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND According to Compendium of Materia Medica, Gastrodia elata (GE) Blume as a top grade and frequently prescribed herbal medicine has been used in treating dizziness, headaches, and epilepsy, indicating a neuroprotective effect. Because GE is capable of suppressing a hyperactive liver and thus calming endogenous wind, and because Huntington's disease (HD) can be classified as a phenomenon of disturbed liver wind, it is suggested that GE might be beneficial in treating HD. However, although current studies support GE for the prevention of diverse neurodegenerations such as HD, its detailed mechanisms remain elusive. PURPOSE To investigate the molecular mechanism of GE in preventing HD by focusing on mitochondrial morphology, which is highly associated with HD etiology and thus proposed as a therapeutic target of neurodegenerations. STUDY DESIGN/METHODS The overexpression of the mutant huntingtin (mHTT) gene in rat pheochromocytoma (PC12) cells was used as an in vitro cell model of HD. A filter retardation assay was applied to measure protein aggregations during HTT expression. Cotransfection with mitochondrial fusion and fission genes was used to test their relationships with HTT aggregates by monitoring with a confocal laser scanning microscope and filter retardation assay. Western blot analysis was used to estimate protein expression under different drug treatments or cotransfections with other related genes. RESULTS The overexpression of mutant but not normal HTT genes significantly resulted in protein aggregations in PC12 cells. GE dose-dependently attenuated mHTT-induced protein aggregations and free radical formations. GE significantly reversed mHTT-induced mitochondrial fragmentation and dysregulation of mitochondrial fusion and fission molecules. The overexpression of mitochondrial fusion genes attenuated mHTT-induced protein aggregations. Further, Mdivi-1, a DRP1 fission molecule inhibitor, significantly reversed mHTT-induced protein aggregations and mitochondrial fragmentation. CONCLUSION GE attenuated mHTT aggregations through the control of mitochondrial fusion and the fission pathway.
Collapse
Affiliation(s)
- Nai-Kuei Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC; Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chung-Chih Lin
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Biophotonics Interdisciplinary Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yun-Lian Lin
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei City, Taiwan, ROC; Graduate Institute of Physiology & Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Yi-Chao Lee
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shu-Yi Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Hung-Tse Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Ying-Chen Yang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, ROC.
| |
Collapse
|
43
|
Zheng J, Croteau DL, Bohr VA, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res 2019; 47:4086-4110. [PMID: 30986824 PMCID: PMC6486572 DOI: 10.1093/nar/gkz083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/16/2023] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset progressive spinocerebellar ataxia caused by mutation in aprataxin (APTX). APTX removes 5'-AMP groups from DNA, a product of abortive ligation during DNA repair and replication. APTX deficiency has been suggested to compromise mitochondrial function; however, a detailed characterization of mitochondrial homeostasis in APTX-deficient cells is not available. Here, we show that cells lacking APTX undergo mitochondrial stress and display significant changes in the expression of the mitochondrial inner membrane fusion protein optic atrophy type 1, and components of the oxidative phosphorylation complexes. At the cellular level, APTX deficiency impairs mitochondrial morphology and network formation, and autophagic removal of damaged mitochondria by mitophagy. Thus, our results show that aberrant mitochondrial function is a key component of AOA1 pathology. This work corroborates the emerging evidence that impaired mitochondrial function is a characteristic of an increasing number of genetically diverse neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
44
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez-Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:e9561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Wasilewski
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dominik Cysewski
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jaroslaw Poznanski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Paulina Sakowska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | | | - Peter Rehling
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michal Dadlez
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
45
|
Dakik P, Medkour Y, Mohammad K, Titorenko VI. Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla. Front Physiol 2019; 10:461. [PMID: 31057428 PMCID: PMC6482166 DOI: 10.3389/fphys.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have revealed that some low-molecular weight molecules produced in mitochondria are essential contributing factors to aging and aging-associated pathologies in evolutionarily distant eukaryotes. These molecules are intermediates or products of certain metabolic reactions that are activated in mitochondria in response to specific changes in the nutrient, stress, proliferation, or age status of the cell. After being released from mitochondria, these metabolites directly or indirectly change activities of a distinct set of protein sensors that reside in various cellular locations outside of mitochondria. Because these protein sensors control the efficiencies of some pro- or anti-aging cellular processes, such changes in their activities allow to create a pro- or anti-aging cellular pattern. Thus, mitochondria can function as signaling platforms that respond to certain changes in cell stress and physiology by remodeling their metabolism and releasing a specific set of metabolites known as "mitobolites." These mitobolites then define the pace of cellular and organismal aging because they regulate some longevity-defining processes taking place outside of mitochondria. In this review, we discuss recent progress in understanding mechanisms underlying the ability of mitochondria to function as such signaling platforms in aging and aging-associated diseases.
Collapse
|
46
|
Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial Dysfunction in Huntington's Disease; Interplay Between HSF1, p53 and PGC-1α Transcription Factors. Front Cell Neurosci 2019; 13:103. [PMID: 30941017 PMCID: PMC6433789 DOI: 10.3389/fncel.2019.00103] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene, causing the protein to misfold and aggregate. HD progression is characterized by motor impairment and cognitive decline associated with the preferential loss of striatal medium spiny neurons (MSNs). The mechanisms that determine increased susceptibility of MSNs to mutant HTT (mHTT) are not fully understood, although there is abundant evidence demonstrating the importance of mHTT mediated mitochondrial dysfunction in MSNs death. Two main transcription factors, p53 and peroxisome proliferator co-activator PGC-1α, have been widely studied in HD for their roles in regulating mitochondrial function and apoptosis. The action of these two proteins seems to be interconnected. However, it is still open to discussion whether p53 and PGC-1α dependent responses directly influence each other or if they are connected via a third mechanism. Recently, the stress responsive transcription factor HSF1, known for its role in protein homeostasis, has been implicated in mitochondrial function and in the regulation of PGC-1α and p53 levels in different contexts. Based on previous reports and our own research, we discuss in this review the potential role of HSF1 in mediating mitochondrial dysfunction in HD and propose a unifying mechanism that integrates the responses mediated by p53 and PGC-1α in HD via HSF1.
Collapse
Affiliation(s)
- Taylor A Intihar
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elisa A Martinez
- Department of Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
Fu Z, Liu F, Liu C, Jin B, Jiang Y, Tang M, Qi X, Guo X. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1428-1435. [PMID: 30802639 DOI: 10.1016/j.bbadis.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction contributes to consequential phenotypes of Huntington's disease (HD), a fatal and inherited neurodegenerative disease caused by the expanded CAG repeats in the N-terminus of the huntingtin (Htt) gene. To maintain proper function, mitochondria develop a dedicated protein quality control mechanism by activating a stress response termed the mitochondrial unfolded protein response (UPRmt). Defects in the UPRmt have been linked to aging and are also associated with neurodegenerative diseases. However, little is known about the role of the UPRmt in HD. In this study, we find that ABCB10, a mitochondrial transporter involved in the UPRmt pathway, is downregulated in HD mouse striatal cells, HD patient fibroblasts, and HD R6/2 mice. Deletion of ABCB10 causes increased mitochondrial reactive oxygen species (ROS) production and cell death, whereas overexpression of ABCB10 reduces these aberrant events. Moreover, the mitochondrial chaperone HSP60 and mitochondrial protease Clpp, two well-established markers of the UPRmt, are reduced in the in vitro ABCB10-deficienct HD models. CHOP, a key transcription factor of HSP60 and Clpp, is regulated by ABCB10 in HD mouse striatal cells. Furthermore, we find that mutant huntingtin (mtHtt) inhibits the mtUPR by impairing ABCB10 mRNA stability. These findings demonstrate a suppression of the UPRmt by mtHtt, suggesting that disturbance of mitochondrial protein quality control may contribute to the pathogenesis of HD.
Collapse
Affiliation(s)
- Zixing Fu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Chunyue Liu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Beifang Jin
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
48
|
Ooi J, Langley SR, Xu X, Utami KH, Sim B, Huang Y, Harmston NP, Tay YL, Ziaei A, Zeng R, Low D, Aminkeng F, Sobota RM, Ginhoux F, Petretto E, Pouladi MA. Unbiased Profiling of Isogenic Huntington Disease hPSC-Derived CNS and Peripheral Cells Reveals Strong Cell-Type Specificity of CAG Length Effects. Cell Rep 2019; 26:2494-2508.e7. [DOI: 10.1016/j.celrep.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
|
49
|
Gao K, Li Y, Hu S, Liu Y. SUMO peptidase ULP-4 regulates mitochondrial UPR-mediated innate immunity and lifespan extension. eLife 2019; 8:41792. [PMID: 30642431 PMCID: PMC6355198 DOI: 10.7554/elife.41792] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress. Most animal cells carry compartments called mitochondria. These tiny powerhouses produce the energy that fuels many life processes, but they also store important compounds and can even cause an infected or defective cell to kill itself. For a cell, keeping its mitochondria healthy is often a matter of life and death: failure to do so is linked with aging, cancer or diseases such as Alzheimer’s. The cell uses a surveillance program called the mitochondrial unfolded protein response to assess the health of its mitochondria. If something is amiss, the cell activates specific mechanisms to fix the problem, which involves turning on specific genes in its genome. A protein named ULP-4, which is found in the worm Caenorhabditis elegans but also in humans, participates in this process. This enzyme cuts off chemical ‘tags’ known as SUMO from proteins. Adding and removing these labels changes the place and role of a protein in the cell. However, it was still unclear how ULP-4 played a role in the mitochondrial unfolded protein response. Here, Gao et al. show that when mitochondria are in distress, ULP-4 removes SUMO from DVE-1 and ATFS-1, two proteins that control separate arms of the mitochondrial unfolded protein response. Without SUMO tags, DVE-1 can relocate to the area in the cell where it can turn on genes that protect and repair mitochondria; meanwhile SUMO-free ATFS-1 becomes more stable and can start acting on the genome. Finally, the experiments show that removing SUMO on DVE-1 and ATFS-1 is essential to keep the worms healthy and with a long lifespan under mitochondrial stress. The experiments by Gao et al. show that the mitochondrial unfolded protein response relies, at least in part, on SUMO tags. This knowledge opens new avenues of research, and could help fight diseases that emerge when mitochondria fail.
Collapse
Affiliation(s)
- Kaiyu Gao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shumei Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
50
|
Galkin AP, Velizhanina ME, Sopova YV, Shenfeld AA, Zadorsky SP. Prions and Non-infectious Amyloids of Mammals - Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2018; 83:1184-1195. [PMID: 30472956 DOI: 10.1134/s0006297918100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.
Collapse
Affiliation(s)
- A P Galkin
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - M E Velizhanina
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - Yu V Sopova
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - A A Shenfeld
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - S P Zadorsky
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| |
Collapse
|