1
|
Sugiyama T. Finding new roles of classic biomolecular condensates in the nucleus: Lessons from fission yeast. CELL INSIGHT 2024; 3:100194. [PMID: 39228923 PMCID: PMC11369484 DOI: 10.1016/j.cellin.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Decades have passed since the initial discovery of membrane-less nuclear compartments, commonly called nuclear bodies or nuclear condensates. These compartments have drawn attention to their unique characteristics and functions, especially after introducing "liquid-liquid phase separation" to this research field. While the majority of the studies on nuclear condensates have been conducted in multicellular organisms, recent genetic, biochemical, and cell biological analyses using the fission yeast Schizosaccharomyces pombe have yielded valuable insights into biomolecular condensates. This review article focuses on two 'classic' nuclear condensates and discusses how research using fission yeast has unveiled previously unknown functions of these known nuclear bodies.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
3
|
Khanduja JS, Joh RI, Perez MM, Paulo JA, Palmieri CM, Zhang J, Gulka AOD, Haas W, Gygi SP, Motamedi M. RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly. Cell 2024; 187:3262-3283.e23. [PMID: 38815580 PMCID: PMC11227895 DOI: 10.1016/j.cell.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.
Collapse
Affiliation(s)
- Jasbeer S Khanduja
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Richard I Joh
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Monica M Perez
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alex O D Gulka
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Willhelm Haas
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
4
|
Mori M, Sato M, Takahata S, Kajitani T, Murakami Y. A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast. Genes Cells 2024; 29:471-485. [PMID: 38629626 DOI: 10.1111/gtc.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 06/11/2024]
Abstract
In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.
Collapse
Affiliation(s)
- Miyuki Mori
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Michiaki Sato
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takuya Kajitani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|
6
|
Ghimire P, Motamedi M, Joh R. Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly. PLoS Comput Biol 2024; 20:e1012027. [PMID: 38598558 PMCID: PMC11034663 DOI: 10.1371/journal.pcbi.1012027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, Boston, Massachusetts, United States of America
| | - Richard Joh
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond Virginia, United States of America
| |
Collapse
|
7
|
Gao J, Sun W, Li J, Ban H, Zhang T, Liao J, Kim N, Lee SH, Dong Q, Madramootoo R, Chen Y, Li F. Rex1BD and the 14-3-3 protein control heterochromatin organization at tandem repeats by linking RNAi and HDAC. Proc Natl Acad Sci U S A 2023; 120:e2309359120. [PMID: 38048463 PMCID: PMC10723143 DOI: 10.1073/pnas.2309359120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Tandem DNA repeats are often organized into heterochromatin that is crucial for genome organization and stability. Recent studies revealed that individual repeats within tandem DNA repeats can behave very differently. How DNA repeats are assembled into distinct heterochromatin structures remains poorly understood. Here, we developed a genome-wide genetic screen using a reporter gene at different units in a repeat array. This screen led to identification of a conserved protein Rex1BD required for heterochromatin silencing. Our structural analysis revealed that Rex1BD forms a four-helix bundle structure with a distinct charged electrostatic surface. Mechanistically, Rex1BD facilitates the recruitment of Clr6 histone deacetylase (HDAC) by interacting with histones. Interestingly, Rex1BD also interacts with the 14-3-3 protein Rad25, which is responsible for recruiting the RITS (RNA-induced transcriptional silencing) complex to DNA repeats. Our results suggest that coordinated action of Rex1BD and Rad25 mediates formation of distinct heterochromatin structure at DNA repeats via linking RNAi and HDAC pathways.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, NY10003
| | - Wenqi Sun
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jie Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai201210, China
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY10003
| | - Tuokai Zhang
- Department of Biology, New York University, New York, NY10003
| | - Junwei Liao
- Department of Biology, New York University, New York, NY10003
| | - Namho Kim
- Department of Biology, New York University, New York, NY10003
| | - Soon Hoo Lee
- Department of Biology, New York University, New York, NY10003
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY10003
| | | | - Yong Chen
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Fei Li
- Department of Biology, New York University, New York, NY10003
| |
Collapse
|
8
|
Mori T, Nakashima M. Sequence-dependent heterochromatin formation in the human malaria parasite Plasmodium falciparum. Heliyon 2023; 9:e19164. [PMID: 37681121 PMCID: PMC10480601 DOI: 10.1016/j.heliyon.2023.e19164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum represses transcription of the gene encoding AP2-G, which is the master regulator of germ cell differentiation, via heterochromatin condensation following histone H3 lysine 9 trimethylation (H3K9me3). Although H3K9me3-marked heterochromatin is typically constitutive and its establishment depends on the RNA interference (RNAi) pathway in fission yeast centromeres, malaria parasites lack molecular members essential for RNAi. We developed a strategy to assess heterochromatin establishment on artificial chromosomes introduced into P. falciparum. We show that a particular DNA sequence in the AP2-G promoter is able to induce de novo H3K9me3 nucleosome deposition. In addition, we also found that the AP2-G promoter contains a distinct element required in maintenance of the repression memory. Thus, we speculate that malaria parasites have evolutionarily acquired a sequence-dependent establishment system of non-constitutive, i.e. facultative, H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Corresponding author. Department of Molecular Protozoology, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
9
|
Kadam S, Bameta T, Padinhateeri R. Nucleosome sliding can influence the spreading of histone modifications. Phys Rev E 2022; 106:024408. [PMID: 36110002 DOI: 10.1103/physreve.106.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Nucleosomes are the fundamental building blocks of chromatin that not only help in the folding of chromatin, but also in carrying epigenetic information. It is known that nucleosome sliding is responsible for dynamically organizing chromatin structure and the resulting gene regulation. Since sliding can move two neighboring nucleosomes physically close or away, can it play a role in the spreading of histone modifications? We investigate this by simulating a stochastic model that couples nucleosome dynamics with the kinetics of histone modifications. We show that the sliding of nucleosomes can affect the modification pattern as well as the time it takes to modify a given region of chromatin. Exploring different nucleosome densities and modification kinetic parameters, we show that nucleosome sliding can be important for creating histone modification domains. Our model predicts that nucleosome density coupled with sliding dynamics can create an asymmetric histone modification profile around regulatory regions. We also compute the probability distribution of modified nucleosomes and relaxation kinetics of modifications. Our predictions are comparable with known experimental results.
Collapse
Affiliation(s)
- Shantanu Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tripti Bameta
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 410210, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
11
|
Asanuma T, Inagaki S, Kakutani T, Aburatani H, Murakami Y. Tandemly repeated genes promote RNAi-mediated heterochromatin formation via an antisilencing factor, Epe1, in fission yeast. Genes Dev 2022; 36:1145-1159. [PMID: 36617881 PMCID: PMC9851402 DOI: 10.1101/gad.350129.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear. Here, using fission yeast, we show that tandemly repeated mRNA genes promote RNA interference (RNAi)-mediated heterochromatin formation in cooperation with an antisilencing factor, Epe1. Although the presence of tandemly repeated genes itself does not cause heterochromatin formation, once complementary small RNAs are artificially supplied in trans, the RNAi machinery assembled on the repeated genes starts producing cognate small RNAs in cis to autonomously maintain heterochromatin at these sites. This "repeat-induced RNAi" depends on the copy number of repeated genes and Epe1, which is known to remove H3K9me and derepress the transcription of genes underlying heterochromatin. Analogous to repeated genes, the DNA sequence underlying constitutive heterochromatin encodes widespread transcription start sites (TSSs), from which Epe1 activates ncRNA transcription to promote RNAi-mediated heterochromatin formation. Our results suggest that when repetitive transcription units underlie heterochromatin, Epe1 generates sufficient transcripts for the activation of RNAi without disruption of heterochromatin.
Collapse
Affiliation(s)
- Takahiro Asanuma
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Tsukii K, Takahata S, Murakami Y. Histone variant H2A.Z plays multiple roles in the maintenance of heterochromatin integrity. Genes Cells 2021; 27:93-112. [PMID: 34910346 DOI: 10.1111/gtc.12911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
H2A.Z, an evolutionally well-conserved histone H2A variant, is involved in many biological processes. Although the function of H2A.Z in euchromatic gene regulation is well known, its function and deposition mechanism in heterochromatin are still unclear. Here, we report that H2A.Z plays multiple roles in fission yeast heterochromatin. While a small amount of H2A.Z localizes at pericentromeric heterochromatin, loss of methylation of histone H3 at Lys9 (H3K9me) induces the accumulation of H2A.Z, which is dependent on the H2A.Z loader, SWR complex. The accumulated H2A.Z suppresses heterochromatic non-coding RNA transcription. This transcriptional repression activity requires the N-terminal tail of H2A.Z, which is involved in the regulation of euchromatic gene transcription. RNAi-defective cells, in which a substantial amount of H3K9me is retained by RNAi-independent heterochromatin assembly, also accumulate H2A.Z at heterochromatin, and the additional loss of H2A.Z in these cells triggers a further decrease in H3K9me. Our results suggest that H2A.Z facilitates RNAi-independent heterochromatin assembly by antagonizing the demethylation activity of Epe1, an eraser of H3K9me. Furthermore, H2A.Z suppresses Epe1-mediated transcriptional activation, which is required for subtelomeric gene repression. Our results provide novel evidence that H2A.Z plays diverse roles in chromatin silencing.
Collapse
Affiliation(s)
- Kazuki Tsukii
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Stirpe A, Guidotti N, Northall SJ, Kilic S, Hainard A, Vadas O, Fierz B, Schalch T. SUV39 SET domains mediate crosstalk of heterochromatic histone marks. eLife 2021; 10:62682. [PMID: 34524082 PMCID: PMC8443253 DOI: 10.7554/elife.62682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.
Collapse
Affiliation(s)
- Alessandro Stirpe
- Department of Molecular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nora Guidotti
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah J Northall
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Sinan Kilic
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Hainard
- University Medical Center, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.,Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Joshi A, Musicante MJ, Wheeler BS. Defining the consequences of endogenous genetic variation within a novel family of Schizosaccharomyces pombe heterochromatin nucleating sequences. G3 GENES|GENOMES|GENETICS 2021; 11:6291246. [PMID: 34849813 PMCID: PMC8496282 DOI: 10.1093/g3journal/jkab185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022]
Abstract
Centromeres are essential for genetic inheritance—they prevent aneuploidy by providing a physical link between DNA and chromosome segregation machinery. In many organisms, centromeres form at sites of repetitive DNAs that help establish the chromatin architecture required for centromere function. These repeats are often rapidly evolving and subject to homogenization, which causes the expansion of novel repeats and sequence turnover. Thus, centromere sequence varies between individuals and across species. This variation can affect centromere function. We utilized Schizosaccharomyces pombe to assess the relationship between centromere sequence and chromatin structure and determine how sensitive this relationship is to genetic variation. In S. pombe, nucleating sequences within centromere repeats recruit heterochromatin via multiple mechanisms, which include RNA-interference (RNAi) . Heterochromatin, in turn, contributes to centromere function through its participation in three essential processes; establishment of a kinetochore, cohesion of sister chromatids, and suppression of recombination. Here, we show that a centromere element containing RevCen, a target of the RNAi pathway, establishes heterochromatin and gene silencing when relocated to a chromosome arm. Within this RevCen-containing element (RCE), a highly conserved domain is necessary for full heterochromatin nucleation but cannot establish heterochromatin independently. We characterize the 10 unique RCEs in the S. pombe centromere assembly, which range from 60% to 99.6% identical, and show that all are sufficient to establish heterochromatin. These data affirm the importance of centromere repeats in establishing heterochromatin and suggest there is flexibility within the sequences that mediate this process. Such flexibility may preserve centromere function despite the rapid evolution of centromere repeats.
Collapse
Affiliation(s)
- Arati Joshi
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | | | - Bayly S Wheeler
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
15
|
Breakers and amplifiers in chromatin circuitry: acetylation and ubiquitination control the heterochromatin machinery. Curr Opin Struct Biol 2021; 71:156-163. [PMID: 34303934 PMCID: PMC8667873 DOI: 10.1016/j.sbi.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes are segregated into active euchromatic and repressed heterochromatic compartments. Gene regulatory networks, chromosomal structures, and genome integrity rely on the timely and locus-specific establishment of active and silent states to protect the genome and provide the basis for cell division and specification of cellular identity. Here, we focus on the mechanisms and molecular machinery that establish heterochromatin in Schizosaccharomyces pombe and compare it with Saccharomyces cerevisiae and the mammalian polycomb system. We present recent structural and mechanistic evidence, which suggests that histone acetylation protects active transcription by disrupting the positive feedback loops used by the heterochromatin machinery and that H2A and H3 monoubiquitination actively drives heterochromatin, whereas H2B monoubiquitination mobilizes the defenses to quench heterochromatin. Heterochromatin-associated complexes are attracted and repelled by histone marks. Acetylation of specific lysine residues protects euchromatin from silencing. Methylation of histone H3 lysine 9 and 27 amplifies heterochromatin. Nucleosome ubiquitination licences and enforces feedback loops.
Collapse
|
16
|
Ban H, Sun W, Chen YH, Chen Y, Li F. Dri1 mediates heterochromatin assembly via RNAi and histone deacetylation. Genetics 2021; 218:6162161. [PMID: 33693625 DOI: 10.1093/genetics/iyab032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC.
Collapse
Affiliation(s)
- Hyoju Ban
- Department of Biology, New York University, New York, NY 10003, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Hang Chen
- Institute of Genetics and Developmental Biology, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
17
|
Yu H, Tsuchida M, Ando M, Hashizaki T, Shimada A, Takahata S, Murakami Y. Trimethylguanosine synthase 1 (Tgs1) is involved in Swi6/HP1-independent siRNA production and establishment of heterochromatin in fission yeast. Genes Cells 2021; 26:203-218. [PMID: 33527595 DOI: 10.1111/gtc.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
In fission yeast, siRNA generated by RNA interference (RNAi) factors plays critical roles in establishment and maintenance of heterochromatin. To achieve efficient siRNA synthesis, RNAi factors assemble on heterochromatin via association with Swi6, a homologue of heterochromatin protein 1 (HP1), and heterochromatic noncoding RNA (hncRNA) retained on chromatin. In addition, spliceosomes formed on hncRNA introns recruit RNAi factors to hncRNA and heterochromatin. Small nuclear RNAs, components of the spliceosome, have a trimethylguanosine (TMG) cap that is generated by Tgs1-dependent hypermethylation of the normal m7G cap; this cap is required for efficient splicing of some mRNAs in budding yeast and Drosophila. In this study, we found that loss of Tgs1 in fission yeast destabilizes centromeric heterochromatin. Tgs1 was required for Swi6-independent siRNA synthesis, as well as for the establishment of centromeric heterochromatin. Loss of Tgs1 affected the splicing efficiency of hncRNA introns in the absence of Swi6. Furthermore, some hncRNAs have a TMG cap, and we found that loss of Tgs1 diminished the chromatin binding of these hncRNAs. Together, these results suggest that the Tgs1-dependent TMG cap plays critical roles in establishment of heterochromatin by ensuring spliceosome-dependent recruitment of RNAi factors and regulating the binding between chromatin and hncRNA.
Collapse
Affiliation(s)
- Hiroki Yu
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Ambitious Leader's Program Fostering Future Leaders to Open New Frontiers in Materials Science (ALP), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai Tsuchida
- Laboratory for Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Motoyoshi Ando
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Tomoka Hashizaki
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Atsushi Shimada
- Laboratory for Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Weigt M, Gao Q, Ban H, He H, Mastrobuoni G, Kempa S, Chen W, Li F. Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex. Epigenetics Chromatin 2021; 14:8. [PMID: 33468217 PMCID: PMC7816512 DOI: 10.1186/s13072-021-00382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in controlling heterochromatin structure and function remains poorly understood. In this study, we identified a fission yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fission yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor effect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the heterochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in significant reduction of Clr6 in heterochromatin. Our work together with previous findings further suggests that different splicing subunits may play distinct roles in heterochromatin regulation.
Collapse
Affiliation(s)
- Martina Weigt
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Haijin He
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Guido Mastrobuoni
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China. .,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003-6688, USA.
| |
Collapse
|
19
|
Marayati BF, Tucker JF, De La Cerda DA, Hou TC, Chen R, Sugiyama T, Pease JB, Zhang K. The Catalytic-Dependent and -Independent Roles of Lsd1 and Lsd2 Lysine Demethylases in Heterochromatin Formation in Schizosaccharomyces pombe. Cells 2020; 9:E955. [PMID: 32295063 PMCID: PMC7226997 DOI: 10.3390/cells9040955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.
Collapse
Affiliation(s)
- Bahjat F. Marayati
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - James F. Tucker
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - David A. De La Cerda
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Tien-Chi Hou
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Rong Chen
- Physiology and pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - James B. Pease
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Ke Zhang
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| |
Collapse
|
20
|
Taglini F, Chapman E, van Nues R, Theron E, Bayne EH. Mkt1 is required for RNAi-mediated silencing and establishment of heterochromatin in fission yeast. Nucleic Acids Res 2020; 48:1239-1253. [PMID: 31822915 PMCID: PMC7026591 DOI: 10.1093/nar/gkz1157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 01/04/2023] Open
Abstract
Constitutive domains of repressive heterochromatin are maintained within the fission yeast genome through self-reinforcing mechanisms involving histone methylation and small RNAs. Non-coding RNAs generated from heterochromatic regions are processed into small RNAs by the RNA interference pathway, and are subject to silencing through both transcriptional and post-transcriptional mechanisms. While the pathways involved in maintenance of the repressive heterochromatin state are reasonably well understood, less is known about the requirements for its establishment. Here, we describe a novel role for the post-transcriptional regulatory factor Mkt1 in establishment of heterochromatin at pericentromeres in fission yeast. Loss of Mkt1 does not affect maintenance of existing heterochromatin, but does affect its recovery following depletion, as well as de novo establishment of heterochromatin on a mini-chromosome. Pathway dissection revealed that Mkt1 is required for RNAi-mediated post-transcriptional silencing, downstream of small RNA production. Mkt1 physically associates with pericentromeric transcripts, and is additionally required for maintenance of silencing and heterochromatin at centromeres when transcriptional silencing is impaired. Our findings provide new insight into the mechanism of RNAi-mediated post-transcriptional silencing in fission yeast, and unveil an important role for post-transcriptional silencing in establishment of heterochromatin that is dispensable when full transcriptional silencing is imposed.
Collapse
Affiliation(s)
- Francesca Taglini
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rob van Nues
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Emmanuelle Theron
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth H Bayne
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Buscaino A. Chromatin-Mediated Regulation of Genome Plasticity in Human Fungal Pathogens. Genes (Basel) 2019; 10:E855. [PMID: 31661931 PMCID: PMC6896017 DOI: 10.3390/genes10110855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Human fungal pathogens, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, are a public health problem, causing millions of infections and killing almost half a million people annually. The ability of these pathogens to colonise almost every organ in the human body and cause life-threating infections relies on their capacity to adapt and thrive in diverse hostile host-niche environments. Stress-induced genome instability is a key adaptive strategy used by human fungal pathogens as it increases genetic diversity, thereby allowing selection of genotype(s) better adapted to a new environment. Heterochromatin represses gene expression and deleterious recombination and could play a key role in modulating genome stability in response to environmental changes. However, very little is known about heterochromatin structure and function in human fungal pathogens. In this review, I use our knowledge of heterochromatin structure and function in fungal model systems as a road map to review the role of heterochromatin in regulating genome plasticity in the most common human fungal pathogens: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent CT2 7NJ, UK.
| |
Collapse
|
22
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
23
|
Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans. mBio 2019; 10:mBio.01376-19. [PMID: 31337722 PMCID: PMC6650553 DOI: 10.1128/mbio.01376-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that normally lives on the human body without causing any harm. However, C. albicans is also a dangerous pathogen responsible for millions of infections annually. C. albicans is such a successful pathogen because it can adapt to and thrive in different environments. Chemical modifications of chromatin, the structure that packages DNA into cells, can allow environmental adaptation by regulating gene expression and genome organization. Surprisingly, the contribution of chromatin modification to C. albicans biology is still largely unknown. For the first time, we analyzed C. albicans chromatin modifications on a genome-wide basis. We demonstrate that specific chromatin states are associated with distinct regions of the C. albicans genome and identify the roles of the chromatin modifiers Sir2 and Set1 in shaping C. albicans chromatin and gene expression. Eukaryotic genomes are packaged into chromatin structures that play pivotal roles in regulating all DNA-associated processes. Histone posttranslational modifications modulate chromatin structure and function, leading to rapid regulation of gene expression and genome stability, key steps in environmental adaptation. Candida albicans, a prevalent fungal pathogen in humans, can rapidly adapt and thrive in diverse host niches. The contribution of chromatin to C. albicans biology is largely unexplored. Here, we generated the first comprehensive chromatin profile of histone modifications (histone H3 trimethylated on lysine 4 [H3K4me3], histone H3 acetylated on lysine 9 [H3K9Ac], acetylated lysine 16 on histone H4 [H4K16Ac], and γH2A) across the C. albicans genome and investigated its relationship to gene expression by harnessing genome-wide sequencing approaches. We demonstrated that gene-rich nonrepetitive regions are packaged into canonical euchromatin in association with histone modifications that mirror their transcriptional activity. In contrast, repetitive regions are assembled into distinct chromatin states; subtelomeric regions and the ribosomal DNA (rDNA) locus are assembled into heterochromatin, while major repeat sequences and transposons are packaged in chromatin that bears features of euchromatin and heterochromatin. Genome-wide mapping of γH2A, a marker of genome instability, identified potential recombination-prone genomic loci. Finally, we present the first quantitative chromatin profiling in C. albicans to delineate the role of the chromatin modifiers Sir2 and Set1 in controlling chromatin structure and gene expression. This report presents the first genome-wide chromatin profiling of histone modifications associated with the C. albicans genome. These epigenomic maps provide an invaluable resource to understand the contribution of chromatin to C. albicans biology and identify aspects of C. albicans chromatin organization that differ from that of other yeasts.
Collapse
|
24
|
Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1. PLoS Genet 2019; 15:e1008129. [PMID: 31206516 PMCID: PMC6576747 DOI: 10.1371/journal.pgen.1008129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
H3K9 methylation (H3K9me) is a conserved marker of heterochromatin, a transcriptionally silent chromatin structure. Knowledge of the mechanisms for regulating heterochromatin distribution is limited. The fission yeast JmjC domain-containing protein Epe1 localizes to heterochromatin mainly through its interaction with Swi6, a homologue of heterochromatin protein 1 (HP1), and directs JmjC-mediated H3K9me demethylation in vivo. Here, we found that loss of epe1 (epe1Δ) induced a red-white variegated phenotype in a red-pigment accumulation background that generated uniform red colonies. Analysis of isolated red and white colonies revealed that silencing of genes involved in pigment accumulation by stochastic ectopic heterochromatin formation led to white colony formation. In addition, genome-wide analysis of red- and white-isolated clones revealed that epe1Δ resulted in a heterogeneous heterochromatin distribution among clones. We found that Epe1 had an N-terminal domain distinct from its JmjC domain, which activated transcription in both fission and budding yeasts. The N-terminal transcriptional activation (NTA) domain was involved in suppression of ectopic heterochromatin-mediated red-white variegation. We introduced a single copy of Epe1 into epe1Δ clones harboring ectopic heterochromatin, and found that Epe1 could reduce H3K9me from ectopic heterochromatin but some of the heterochromatin persisted. This persistence was due to a latent H3K9me source embedded in ectopic heterochromatin. Epe1H297A, a canonical JmjC mutant, suppressed red-white variegation, but entirely failed to remove already-established ectopic heterochromatin, suggesting that Epe1 prevented stochastic de novo deposition of ectopic H3K9me in an NTA-dependent but JmjC-independent manner, while its JmjC domain mediated removal of H3K9me from established ectopic heterochromatin. Our results suggest that Epe1 not only limits the distribution of heterochromatin but also controls the balance between suppression and retention of heterochromatin-mediated epigenetic diversification. Suppression of unscheduled epigenetic alterations is important for maintenance of homogeneity among clones, while emergence of epigenetic differences is also important for adaptation or differentiation. The mechanisms that balance both processes warrant further investigation. Epe1, a fission yeast JmjC domain-containing protein, is thought to be an H3K9me demethylase that targets ectopic heterochromatin via its JmjC-dependent demethylation function. Here we found that loss of epe1 induced stochastic ectopic heterochromatin formation genome-wide, suggesting that the fission yeast genome had multiple potential heterochromatin formation sites, which were protected by Epe1. We found that Epe1 prevented deposition of ectopic H3K9me independently of its JmjC-mediated demethylation before heterochromatin establishment. By contrast, Epe1 could attack already-established ectopic heterochromatin via its JmjC domain, but demethylation was not 100% effective, which provided a basis for epigenetic variation. Together, our findings indicate that Epe1 is involved in both maintenance and alteration of heterochromatin distribution, and shed light on the mechanisms controlling individual-specific epigenome profiles.
Collapse
|
25
|
Okita AK, Zafar F, Su J, Weerasekara D, Kajitani T, Takahashi TS, Kimura H, Murakami Y, Masukata H, Nakagawa T. Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol 2019; 2:17. [PMID: 30652128 PMCID: PMC6329695 DOI: 10.1038/s42003-018-0251-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintaining centromere integrity remains elusive. Here, we found in fission yeast that heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres. Mutations in Clr4/Suv39 methyltransferase increased the formation of isochromosomes, whose breakpoints were located in centromere repeats. H3K9A and H3K9R mutations also increased GCRs, suggesting that Clr4 suppresses centromeric GCRs via H3K9 methylation. HP1 homologs Swi6 and Chp2 and the RNAi component Chp1 were the chromodomain proteins essential for full suppression of GCRs. Remarkably, mutations in RNA polymerase II (RNAPII) or Tfs1/TFIIS, the transcription factor that facilitates restart of RNAPII after backtracking, specifically bypassed the requirement of Clr4 for suppressing GCRs. These results demonstrate that heterochromatin suppresses GCRs by repressing Tfs1-dependent transcription of centromere repeats.
Collapse
Affiliation(s)
- Akiko K. Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Dayalini Weerasekara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Takuya Kajitani
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 Japan
- Present Address: Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853 USA
| | - Tatsuro S. Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
- Present Address: Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| |
Collapse
|
26
|
Bao K, Shan CM, Moresco J, Yates J, Jia S. Anti-silencing factor Epe1 associates with SAGA to regulate transcription within heterochromatin. Genes Dev 2018; 33:116-126. [PMID: 30573453 PMCID: PMC6317313 DOI: 10.1101/gad.318030.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
In this study, Bao et al. investigated how transcription is regulated within heterochromatin in fission yeast. They show that overexpressed Epe1 associates with SAGA and recruits SAGA to heterochromatin regions (which leads to an increase in histone acetylation, transcription of repeats, and the disruption of heterochromatin) and that Epe1 recruits SAGA to regulate transcription within heterochromatin when expressed at normal levels. Heterochromatin is a highly condensed form of chromatin that silences gene transcription. Although high levels of transcriptional activities disrupt heterochromatin, transcription of repetitive DNA elements and subsequent processing of the transcripts by the RNAi machinery are required for heterochromatin assembly. In fission yeast, a JmjC domain protein, Epe1, promotes transcription of DNA repeats to facilitate heterochromatin formation, but overexpression of Epe1 leads to heterochromatin defects. However, the molecular function of Epe1 is not well understood. By screening the fission yeast deletion library, we found that heterochromatin defects associated with Epe1 overexpression are alleviated by mutations of the SAGA histone acetyltransferase complex. Overexpressed Epe1 associates with SAGA and recruits SAGA to heterochromatin regions, which leads to increased histone acetylation, transcription of repeats, and the disruption of heterochromatin. At its normal expression levels, Epe1 also associates with SAGA, albeit weakly. Such interaction regulates histone acetylation levels at heterochromatin and promotes transcription of repeats for heterochromatin assembly. Our results also suggest that increases of certain chromatin protein levels, which frequently occur in cancer cells, might strengthen relatively weak interactions to affect the epigenetic landscape.
Collapse
Affiliation(s)
- Kehan Bao
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
27
|
The binding of Chp2's chromodomain to methylated H3K9 is essential for Chp2's role in heterochromatin assembly in fission yeast. PLoS One 2018; 13:e0201101. [PMID: 30110338 PMCID: PMC6093649 DOI: 10.1371/journal.pone.0201101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
The binding of heterochromatin protein 1 (HP1) to lysine 9–methylated histone H3 (H3K9me) is an essential step in heterochromatin assembly. Chp2, an HP1-family protein in the fission yeast Schizosaccharomyces pombe, is required for heterochromatic silencing. Chp2 recruits SHREC, a multifunctional protein complex containing the nucleosome remodeler Mit1 and the histone deacetylase Clr3. Although the targeting of SHREC to chromatin is thought to occur via two distinct modules regulated by the SHREC components Chp2 and Clr2, it is not clear how Chp2’s chromatin binding regulates SHREC function. Here, we show that H3K9me binding by Chp2’s chromodomain (CD) is essential for Chp2’s silencing function and for SHREC’s targeting to chromatin. Cells expressing a Chp2 mutant with defective H3K9me binding (Chp2-W199A) have a silencing defect, with a phenotype similar to that of chp2-null cells. Genetic analysis using a synthetic silencing system revealed that a Chp2 mutant and SHREC-component mutants had similar phenotypes, suggesting that Chp2’s function also affects SHREC’s chromatin binding. Size-exclusion chromatography of native protein complexes showed that Chp2-CD’s binding of H3K9me3 ensures Clr3’s chromatin binding, and suggested that SHREC’s chromatin binding is mediated by separable functional modules. Interestingly, we found that the stability of the Chp2 protein depended on the Clr3 protein’s histone deacetylase activity. Our findings demonstrate that Chp2’s H3K9me binding is critical for SHREC function and that the two modules within the SHREC complex are interdependent.
Collapse
|
28
|
New insights into donor directionality of mating-type switching in Schizosaccharomyces pombe. PLoS Genet 2018; 14:e1007424. [PMID: 29852001 PMCID: PMC6007933 DOI: 10.1371/journal.pgen.1007424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Mating-type switching in Schizosaccharomyces pombe entails programmed gene conversion events regulated by DNA replication, heterochromatin, and the HP1-like chromodomain protein Swi6. The whole mechanism remains to be fully understood. Using a gene deletion library, we screened ~ 3400 mutants for defects in the donor selection step where a heterochromatic locus, mat2-P or mat3-M, is chosen to convert the expressed mat1 locus. By measuring the biases in mat1 content that result from faulty directionality, we identified in total 20 factors required for donor selection. Unexpectedly, these included the histone H3 lysine 4 (H3K4) methyltransferase complex subunits Set1, Swd1, Swd2, Swd3, Spf1 and Ash2, the BRE1-like ubiquitin ligase Brl2 and the Elongator complex subunit Elp6. The mutant defects were investigated in strains with reversed donor loci (mat2-M mat3-P) or when the SRE2 and SRE3 recombination enhancers, adjacent to the donors, were deleted or transposed. Mutants in Set1C, Brl2 or Elp6 altered balanced donor usage away from mat2 and the SRE2 enhancer, towards mat3 and the SRE3 enhancer. The defects in these mutants were qualitatively similar to heterochromatin mutants lacking Swi6, the NAD+-dependent histone deacetylase Sir2, or the Clr4, Raf1 or Rik1 subunits of the histone H3 lysine 9 (H3K9) methyltransferase complex, albeit not as extreme. Other mutants showed clonal biases in switching. This was the case for mutants in the NAD+-independent deacetylase complex subunits Clr1, Clr2 and Clr3, the casein kinase CK2 subunit Ckb1, the ubiquitin ligase component Pof3, and the CENP-B homologue Cbp1, as well as for double mutants lacking Swi6 and Brl2, Pof3, or Cbp1. Thus, we propose that Set1C cooperates with Swi6 and heterochromatin to direct donor choice to mat2-P in M cells, perhaps by inhibiting the SRE3 recombination enhancer, and that in the absence of Swi6 other factors are still capable of imposing biases to donor choice. Effects of chromatin structure on recombination can be studied in the fission yeast S. pombe where two heterochromatic loci, mat2 and mat3, are chosen in a cell-type specific manner to convert the expressed mat1 locus and switch the yeast mating-type. The system has previously revealed the determining role of heterochromatin, histone H3K9 methylation and HP1 family protein Swi6, in donor selection. Here, we find that other chromatin modifiers and protein complexes, including components of the histone H3K4 methyltransferase complex Set1C, the histone H2B ubiquitin ligase HULC and Elongator, also participate in donor selection. Our findings open up new research paths to study mating-type switching in fission yeast and the roles of these complexes in recombination.
Collapse
|
29
|
Begnis M, Apte MS, Masuda H, Jain D, Wheeler DL, Cooper JP. RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes. Genes Dev 2018; 32:537-554. [PMID: 29654060 PMCID: PMC5959237 DOI: 10.1101/gad.311712.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
In this study, Begnis et al. show that HAATI, which is a mode of telomerase-minus survival in which canonical telomeres are superseded by blocks of nontelomeric rDNA heterochromatin that have spread to all chromosome ends, is formed and maintained. Their findings demonstrate that HAATI arises when telomere loss triggers a newly recognized illegitimate recombination pathway that requires RNAi factors, uncovering novel roles for ncRNAs in assembling a telomere-free chromosome end protection device. The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming “HAATIrDNA” chromosomes), it is dispensable for HAATIrDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors—despite the absence of telomere repeats—and secure end protection. Sequence analysis of HAATIrDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device.
Collapse
Affiliation(s)
- Martina Begnis
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom
| | - Manasi S Apte
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hirohisa Masuda
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - David Lee Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
30
|
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Collapse
|
31
|
Joh RI, Khanduja JS, Calvo IA, Mistry M, Palmieri CM, Savol AJ, Ho Sui SJ, Sadreyev RI, Aryee MJ, Motamedi M. Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs. Mol Cell 2017; 64:1088-1101. [PMID: 27984744 DOI: 10.1016/j.molcel.2016.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 01/10/2023]
Abstract
Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jasbeer S Khanduja
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Isabel A Calvo
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Meeta Mistry
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrej J Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shannan J Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Martin J Aryee
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
32
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
33
|
Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, Shanker S, Baños Sanz JI, Partridge JF, Schalch T. SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules. Mol Cell 2017; 62:207-221. [PMID: 27105116 DOI: 10.1016/j.molcel.2016.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.
Collapse
Affiliation(s)
- Godwin Job
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christiane Brugger
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Tao Xu
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yvan Pfister
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sreenath Shanker
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - José I Baños Sanz
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Thomas Schalch
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
34
|
Spivey EC, Jones SK, Rybarski JR, Saifuddin FA, Finkelstein IJ. An aging-independent replicative lifespan in a symmetrically dividing eukaryote. eLife 2017; 6:e20340. [PMID: 28139976 PMCID: PMC5332158 DOI: 10.7554/elife.20340] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 12/28/2022] Open
Abstract
The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
Collapse
Affiliation(s)
- Eric C Spivey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - Stephen K Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - James R Rybarski
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Fatema A Saifuddin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| |
Collapse
|
35
|
Cam HP, Whitehall S. Analysis of Heterochromatin in Schizosaccharomyces pombe. Cold Spring Harb Protoc 2016; 2016:2016/11/pdb.top079889. [PMID: 27803258 DOI: 10.1101/pdb.top079889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This introduction briefly describes the biology of heterochromatin in the fission yeast Schizosaccharomyces pombe We highlight some of the salient features of fission yeast that render it an excellent unicellular eukaryote for studying heterochromatin. We then discuss key aspects of heterochromatin that are of interest to those in the field, and last we introduce experimental approaches often used to investigate heterochromatin.
Collapse
Affiliation(s)
- Hugh P Cam
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Simon Whitehall
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, United Kingdom
| |
Collapse
|
36
|
Jain R, Iglesias N, Moazed D. Distinct Functions of Argonaute Slicer in siRNA Maturation and Heterochromatin Formation. Mol Cell 2016; 63:191-205. [PMID: 27397687 PMCID: PMC5576859 DOI: 10.1016/j.molcel.2016.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/05/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Small-RNA (sRNA)-guided transcriptional gene silencing by Argonaute (Ago)-containing complexes is fundamental to genome integrity and epigenetic inheritance. The RNA cleavage ("Slicer") activity of Argonaute has been implicated in both sRNA maturation and target RNA cleavage. Typically, Argonaute slices and releases the passenger strand of duplex sRNA to generate active silencing complexes, but it remains unclear whether slicing of target nascent RNAs, or other RNAi components, also contributes to downstream transcriptional silencing. Here, we develop a strategy for loading the fission yeast Ago1 with a single-stranded sRNA guide, which bypasses the requirement for slicer activity in generation of active silencing complexes. We show that slicer-defective Ago1 can mediate secondary sRNA generation, H3K9 methylation, and silencing similar to or better than wild-type and associates with chromatin more efficiently. The results define an ancient and minimal sRNA-mediated chromatin silencing mechanism, which resembles the germline-specific sRNA-dependent transcriptional silencing pathways in Drosophila and mammals.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Tange Y, Chikashige Y, Takahata S, Kawakami K, Higashi M, Mori C, Kojidani T, Hirano Y, Asakawa H, Murakami Y, Haraguchi T, Hiraoka Y. Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes Cells 2016; 21:812-32. [PMID: 27334362 DOI: 10.1111/gtc.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.
Collapse
Affiliation(s)
- Yoshie Tange
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kei Kawakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masato Higashi
- Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan.,Laboratory of Electron Microscopy, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
38
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
39
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-97. [PMID: 26849908 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
40
|
Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H, Nagao K, Obuse C, Takahata S, Murakami Y. Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 2016; 44:4147-62. [PMID: 26792892 PMCID: PMC4872076 DOI: 10.1093/nar/gkw008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/30/2015] [Indexed: 01/09/2023] Open
Abstract
In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2–Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi 332-0012, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shinya Takahata
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
41
|
Grézy A, Chevillard-Briet M, Trouche D, Escaffit F. Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 2015; 27:599-607. [PMID: 26700317 PMCID: PMC4750920 DOI: 10.1091/mbc.e15-05-0316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
Abstract
A new compaction pathway of mammalian pericentric heterochromatin is identified, which relies on H4K12ac by Tip60, probably followed by recruitment of BRD2, and therefore chromatin compaction, which can contribute to genetic stability. Pericentric heterochromatin is a highly compacted structure required for accurate chromosome segregation in mitosis. In mammals, it relies on methylation of histone H3K9 by Suv39H enzymes, which provides a docking site for HP1 proteins, therefore mediating heterochromatin compaction. Here we show that, when this normal compaction pathway is defective, the histone acetyltransferase Tip60 is recruited to pericentric heterochromatin, where it mediates acetylation of histone H4K12. Furthermore, in such a context, depletion of Tip60 leads to derepression of satellite transcription, decompaction of pericentric heterochromatin, and defects in chromosome segregation in mitosis. Finally, we show that depletion of BRD2, a double bromodomain–containing protein that binds H4K12ac, phenocopies the Tip60 depletion with respect to heterochromatin decompaction and defects in chromosome segregation. Taking the results together, we identify a new compaction pathway of mammalian pericentric heterochromatin relying on Tip60 that might be dependent on BRD2 recruitment by H4K12 acetylation. We propose that the underexpression of Tip60 observed in many human tumors can promote genetic instability via defective pericentric heterochromatin.
Collapse
Affiliation(s)
- Aude Grézy
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| |
Collapse
|
42
|
Sadeghi L, Prasad P, Ekwall K, Cohen A, Svensson JP. The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Rep 2015; 16:1673-87. [PMID: 26518661 PMCID: PMC4687421 DOI: 10.15252/embr.201541214] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022] Open
Abstract
The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1–Paf1 [a subcomplex of the RNA polymerase II‐associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high‐resolution genomewide ChIP (ChIP–exo). Loss of Leo1–Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi‐independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1–Paf1 promotes chromatin state fluctuations by enhancing histone turnover.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Amikam Cohen
- Department of Microbiology and Molecular Genetics, IMRIC The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
43
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
44
|
Bayne EH, Bijos DA, White SA, de Lima Alves F, Rappsilber J, Allshire RC. A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast. Genome Biol 2015; 15:481. [PMID: 25274039 PMCID: PMC4210515 DOI: 10.1186/s13059-014-0481-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 12/20/2022] Open
Abstract
Background Heterochromatin plays important roles in the regulation and stability of eukaryotic genomes. Both heterochromatin components and pathways that promote heterochromatin assembly, including RNA interference, RNAi, are broadly conserved between the fission yeast Schizosaccharomyces pombe and humans. As a result, fission yeast has emerged as an important model system for dissecting mechanisms governing heterochromatin integrity. Thus far, over 50 proteins have been found to contribute to heterochromatin assembly at fission yeast centromeres. However, previous studies have not been exhaustive, and it is therefore likely that further factors remain to be identified. Results To gain a more complete understanding of heterochromatin assembly pathways, we have performed a systematic genetic screen for factors required for centromeric heterochromatin integrity. In addition to known RNAi and chromatin modification components, we identified several proteins with previously undescribed roles in heterochromatin regulation. These included both known and newly characterised splicing-associated proteins, which are required for proper processing of centromeric transcripts by the RNAi pathway, and COP9 signalosome components Csn1 and Csn2, whose role in heterochromatin assembly can be explained at least in part by a role in the Ddb1-dependent degradation of the heterochromatin regulator Epe1. Conclusions This work has revealed new factors involved in RNAi-directed heterochromatin assembly in fission yeast. Our findings support and extend previous observations that implicate components of the splicing machinery as a platform for RNAi, and demonstrate a novel role for the COP9 signalosome in heterochromatin regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0481-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth H Bayne
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. Proc Natl Acad Sci U S A 2015; 112:12139-44. [PMID: 26371315 DOI: 10.1073/pnas.1508749112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 4-4.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin.
Collapse
|
46
|
Audergon PNCB, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL, Allshire RC. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 2015; 348:132-5. [PMID: 25838386 PMCID: PMC4397586 DOI: 10.1126/science.1260638] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.
Collapse
Affiliation(s)
- Pauline N C B Audergon
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandra Catania
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Alexander Kagansky
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Pin Tong
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Manu Shukla
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
47
|
Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol 2014; 35:662-74. [PMID: 25487573 PMCID: PMC4301722 DOI: 10.1128/mcb.01102-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.
Collapse
|
48
|
Wang J, Lawry ST, Cohen AL, Jia S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 2014; 71:4841-52. [PMID: 25192661 PMCID: PMC4234687 DOI: 10.1007/s00018-014-1725-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
49
|
Cohen AL, Jia S. Noncoding RNAs and the borders of heterochromatin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:835-47. [PMID: 25044367 DOI: 10.1002/wrna.1249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Eukaryotic genomes contain long stretches of repetitive DNA sequences, which are the preferred sites for the assembly of heterochromatin structures. The formation of heterochromatin results in highly condensed chromosomal domains that limit the accessibility of DNA to the transcription and recombination machinery to maintain genome stability. Heterochromatin has the tendency to spread, and the formation of boundaries that block heterochromatin spreading is required to maintain stable gene expression patterns. Recent work has suggested that noncoding RNAs (ncRNAs) are involved in regulating boundary formation in addition to their well-established roles in chromatin regulation. Here, we present a review of our current understanding of the involvement of ncRNA at the boundaries of heterochromatin, highlighting their mechanisms of action in different settings.
Collapse
Affiliation(s)
- Allison L Cohen
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
50
|
Joh RI, Palmieri CM, Hill IT, Motamedi M. Regulation of histone methylation by noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1385-94. [PMID: 24954181 DOI: 10.1016/j.bbagrm.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Cells can adapt to their environment and develop distinct identities by rewiring their transcriptional networks to regulate the output of key biological pathways without concomitant mutations to the underlying genes. These alterations, called epigenetic changes, persist stably through mitotic or, in some instances, meiotic cell divisions. In eukaryotes, heritable changes to chromatin structure are a prominent, but not exclusive, mechanism by which epigenetic changes are mediated. These changes are initiated by sequence-specific events, which trigger a cascade of molecular interactions resulting in feedback mechanisms, alterations in chromatin structure, histone posttranslational modifications (PTMs), and ultimately establishment of distinct transcriptional states. In recent years, advances in next generation sequencing have led to the discovery of several novel classes of noncoding RNAs (ncRNAs). In addition to their well-established cytoplasmic roles in posttranscriptional regulation of gene expression, ncRNAs have emerged as key regulators of epigenetic changes via chromatin-dependent mechanisms in organisms ranging from yeast to man. They function by affecting chromatin structure, histone PTMs, and the recruitment of transcriptional activating or repressing complexes. Among histone PTMs, lysine methylation serves as the binding substrate for the recruitment of key protein complexes involved in the regulation of genome architecture, stability, and gene expression. In this review, we will outline the known mechanisms by which ncRNAs of different origins regulate histone methylation, and in doing so contribute to a variety of genome regulatory functions in eukaryotes.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Ian T Hill
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|