1
|
Song X, Hu R, Chen Y, Xiao M, Zhang H, Wu S, Lu Q. The structure of TRAF7 coiled-coil trimer provides insight into its function in zebrafish embryonic development. J Mol Cell Biol 2024; 16:mjad083. [PMID: 38178633 PMCID: PMC11216086 DOI: 10.1093/jmcb/mjad083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024] Open
Abstract
TRAF7 serves as a crucial intracellular adaptor and E3 ubiquitin ligase involved in signal transduction pathways, contributing to immune responses, tumor progression, and embryonic development. Somatic mutations within the coiled-coil (CC) domain and WD40 repeat domain of TRAF7 could cause brain tumors, while germline pathogenic mutations contribute to severe developmental abnormalities. However, the precise molecular mechanism underlying TRAF7 involvement in embryonic development remains unclear. In this study, we employed zebrafish as an in vivo model system. TRAF7 knock down caused defects in zebrafish embryonic development. We determined the crystal structure of TRAF7 CC domain at 3.3 Å resolution and found that the CC region trimerization was essential for TRAF7 functionality during zebrafish embryonic development. Additionally, disease-causing mutations in TRAF7 CC region could impair the trimer formation, consequently impacting early embryonic development of zebrafish. Therefore, our study sheds light on the molecular mechanism of TRAF7 CC trimer formation and its pivotal role in embryonic development.
Collapse
Affiliation(s)
- Xiaozhen Song
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi Chen
- Laboratory of Development and Diseases and State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Man Xiao
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hong Zhang
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
De Gasperi R, Csernoch L, Dienes B, Gonczi M, Chakrabarty JK, Goeta S, Aslan A, Toro CA, Karasik D, Brown LM, Brotto M, Cardozo CP. Septin 7 interacts with Numb to preserve sarcomere structural organization and muscle contractile function. eLife 2024; 12:RP89424. [PMID: 38695862 PMCID: PMC11065422 DOI: 10.7554/elife.89424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.
Collapse
Affiliation(s)
- Rita De Gasperi
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Spinal Cord Damage Research Center, James J. Peters VA Medical CenterBronxUnited States
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- ELKH-DE Cell Physiology Research Group, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Monika Gonczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Jayanta K Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Abdurrahman Aslan
- Spinal Cord Damage Research Center, James J. Peters VA Medical CenterBronxUnited States
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Carlos A Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical CenterBronxUnited States
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan UniversitySafedIsrael
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation,University of Texas at ArlingtonAustinUnited States
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical CenterBronxUnited States
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Gasperi RD, Csernoch L, Dienes B, Gonczi M, Chakrabarty JK, Goeta S, Aslan A, Toro CA, Karasik D, Brown LM, Brotto M, Cardozo CP. Septin 7 Interacts With Numb To Preserve Sarcomere Structural Organization And Muscle Contractile Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540467. [PMID: 37461567 PMCID: PMC10350061 DOI: 10.1101/2023.05.11.540467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Here, we investigated mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development including asymmetric cell division, cell-type specification and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (NumbL) in mouse myofibers caused weakness, disorganization of sarcomeres and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, NumbL knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb, that Septin 7 is a potential Numb binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.
Collapse
|
4
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
6
|
Roberts BM, Deemer SE, Smith DL, Mobley JA, Musi N, Plaisance EP. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front Nutr 2022; 9:1041026. [PMID: 36458175 PMCID: PMC9707703 DOI: 10.3389/fnut.2022.1041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah E. Deemer
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
- San Antonio Geriatric Research, Education, and Clinical Center, San Antonio, TX, United States
| | - Eric P. Plaisance
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Eric P. Plaisance,
| |
Collapse
|
7
|
Yuxiong Y, Xujin X, Yi T, Ya C, Yujuan L, Shanshan H, Huiwen W. Brain-specific TRAF7 deletion ameliorates traumatic brain injury by suppressing MEKK3-regulated glial inflammation and neuronal death. Int Immunopharmacol 2021; 103:108219. [PMID: 34953447 DOI: 10.1016/j.intimp.2021.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022]
Abstract
Neuronal death and neuroinflammation play critical roles in regulating the progression of traumatic brain injury (TBI). However, associated pathogenesis has not been fully understood. Tumor necrosis factor receptor-associated factor 7 (TRAF7), as the unique noncanonical member of the TRAF family, mediates various essential biological processes. Nevertheless, the effects of TRAF7 on TBI are still unclear. In this study, we showed that TRAF7 expression was markedly up-regulated in cortex and hippocampus of mice after TBI. Brain-specific TRAF7 deletion markedly ameliorated neuronal death in cortical and hippocampal samples of TBI mice, accompanied with cognitive impairments and motor dysfunction. Moreover, the aberrant activation of astrocyte and microglia in cortex and hippocampus of TBI mice was significantly restrained by TRAF7 conditional knockout in brain, as indicated by the increased expression of GFAP and Iba1. In addition, the releases of pro-inflammatory factors caused by TBI were also considerably diminished by brain-specific TRAF7 knockout, which were largely through the blockage of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. Importantly, mitogen-activated protein kinase kinase kinase 3 (MEKK3) expression levels were greatly enhanced in cortex and hippocampus of mice with TBI, while being dramatically ameliorated by TRAF7 knockout in brain. Mechanistically, we showed that TRAF7 directly interacted with MEKK3. Of note, MEKK3 over-expression almost abrogated the capacity of TRAF7 knockout to mitigate neuronal death and neuroinflammation in the isolated primary cortical neurons and glial cells upon oxygen-glucose-deprivation/reperfusion (OGD/R) stimulation. Collectively, TRAF7 may be an important molecular switch that leads to TBI in a MEKK3-dependent manner, and can be served as a therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Yin Yuxiong
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Xiang Xujin
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Tang Yi
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Chen Ya
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Li Yujuan
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Hu Shanshan
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China
| | - Wang Huiwen
- Department of Anesthesiology, the 940(th) Hospital of Joint Logistics Support Force, Lanzhou, Gansu 730050, China.
| |
Collapse
|
8
|
Xu Z, Mei S, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Dong B, Oyelami FO, Wu J, Peng X. Genome-Wide Assessment of Runs of Homozygosity and Estimates of Genomic Inbreeding in a Chinese Composite Pig Breed. Front Genet 2021; 12:720081. [PMID: 34539748 PMCID: PMC8440853 DOI: 10.3389/fgene.2021.720081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/06/2021] [Indexed: 01/31/2023] Open
Abstract
The primary purpose of the current study was to assess the genetic diversity, runs of homozygosity (ROH) and ROH islands in a Chinese composite pig and explore hotspot regions for traces of selection. First, we estimated the length, number, and frequency of ROH in 262 Xidu black pigs using the Porcine SNP50 BeadChip and compared the estimates of inbreeding coefficients, which were calculated based on ROHs (FROH) and homozygosity (FHOM). Our result shows that a total of 7,248 ROH exceeding 1Mb were detected in 262 pigs. In addition, Sus scrofa chromosome (SSC) 8 and SSC10, respectively, has the highest and lowest chromosome coverage by ROH. These results suggest that inbreeding estimation based on total ROH may be a useful method, especially for crossbreed or composite populations. We also calculated an inbreeding coefficient of 0.077 from the total ROH. Eight ROH islands were found in this study. These ROH islands harbored genes associated with fat deposition, muscular development, reproduction, ear shape, and adaptation, such as TRAF7, IGFBP7, XPO1, SLC26A8, PPARD, and OR1F1. These findings may help to understand the effects of environmental and artificial selection on the genome structure of composite pigs. Our results provide a basis for subsequent genomic selection (GS), and provides a reference for the hybrid utilization of other pig breeds.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Binke Dong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Favour Oluwapelumi Oyelami
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
9
|
Paprocka J, Nowak M, Nieć M, Janik I, Rydzanicz M, Robert Ś, Klaniewska M, Rutkowska K, Płoski R, Jezela-Stanek A. Case Report: Blepharophimosis and Ptosis as Leading Dysmorphic Features of Rare Congenital Malformation Syndrome With Developmental Delay - New Cases With TRAF7 Variants. Front Med (Lausanne) 2021; 8:708717. [PMID: 34513876 PMCID: PMC8428514 DOI: 10.3389/fmed.2021.708717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Germline variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) gene have recently been described in about 50 patients with developmental delay and cardiac, facial, and digital anomalies (CAFDADD). We aimed to depict further the clinical and genetic spectrum associated with TRAF7 germline variants in two additional patients, broaden the mutational spectrum, and support the characteristic clinical variety to facilitate the diagnostics of the syndrome among physician involved in the evaluation of patients with developmental delay/congenital malformations.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Nowak
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Nieć
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Izabela Janik
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Śmigiel Robert
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Klaniewska
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
10
|
Hu S, Wang L, Xie X, Yang X, Cai L, Zhu A. Molecular characterization and functional analysis of tumor necrosis factor receptor-associated factor 2/7 and tumor necrosis factor receptor 1-associated death domain protein from Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2020; 103:385-402. [PMID: 32387478 DOI: 10.1016/j.fsi.2020.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we characterized tumor necrosis factor receptor-associated factor 2/7 (lcTRAF2/7) and TNFR1-associated death domain protein (lcTRADD) in Larimichthys crocea (L. crocea) and examined their expression profiles in tissues of Vibrio-challenged and unchallenged fish. The coding sequences of lcTRAF2, lcTRAF7, and lcTRADD were 1488, 2454, and 744 nucleotides, and they encoded proteins of 495, 344, and 248 amino acids, respectively. The results of phylogenetic analysis revealed that lcTRAF2, lcTRAF7, and lcTRADD were closest to Oplegnathus fasciatus (85%), Xiphophorus maculatus (97%), and Acanthochromis polyacanthus (65%), respectively. Multiple sequence alignment showed that lcTRAF2 and lcTRAF7 were highly conserved with other vertebrate TRAFs in their functional domains; however, lcTRADD was poorly conserved. The results of quantitative real-time polymerase chain reaction analysis indicated that lcTRAF2, lcTRAF7, and lcTRADD were constitutively expressed in the spleen, liver, kidney, heart, brain, gill, bladder, skin, fin, eye, and muscle. After challenging fish with Vibrio parahaemolyticus, the mRNA expression levels of lcTRAF2, lcTRAF7, and lcTRADD were upregulated in liver, spleen, and kidney. Immunofluorescence staining revealed that lcTRAF2 and lcTRADD were cytoplasmic in localization, whereas lcTRAF7 targeted both the cytoplasm and nucleus. In addition, the NF-κB protein level was upregulated after lipopolysaccharide stimulation in lcTRAF2, lcTRAF7, or lcTRADD overexpressing cells. Taken collectively, these results have improved our understanding of the functions of TRAF2, TRAF7, and TRADD in pathogenic infections in teleosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiyi Zhu
- Zhejiang Ocean University, China.
| |
Collapse
|
11
|
Recognition of TRAIP with TRAFs: Current understanding and associated diseases. Int J Biochem Cell Biol 2019; 115:105589. [DOI: 10.1016/j.biocel.2019.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
12
|
Suryadevara V, Willis MS. Walk the Line: The Role of Ubiquitin in Regulating Transcription in Myocytes. Physiology (Bethesda) 2019; 34:327-340. [PMID: 31389777 PMCID: PMC6863375 DOI: 10.1152/physiol.00055.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/06/2023] Open
Abstract
The ubiquitin-proteasome offers novel targets for potential therapies with their specific activities and tissue localization. Recently, the expansion of our understanding of how ubiquitin ligases (E3s) specifically regulate transcription has demonstrated their roles in skeletal muscle, complementing their roles in protein quality control and protein degradation. This review focuses on skeletal muscle E3s that regulate transcription factors critical to myogenesis and the maintenance of skeletal muscle wasting diseases.
Collapse
Affiliation(s)
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Internal Medicine, Krannert Institute of Cardiology and Division of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
13
|
Xu D, Zhao W, Wang C, Zhu H, He M, Zhu X, Liu W, Wang F, Fan J, Chen C, Cui D, Cui Z. Up-regulation of TNF Receptor-associated Factor 7 after spinal cord injury in rats may have implication for neuronal apoptosis. Neuropeptides 2018; 71:81-89. [PMID: 30100091 DOI: 10.1016/j.npep.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
TNF receptor-associated factor 7 (TRAF7), is an E3 ubiquitin ligase for several proteins involved in the activation of TLR-dependent NF-kappaB signaling. TRAF7 links TNF receptor family proteins to signaling pathways, thus participates in regulating cell death and survival mediated by TNF family ligands. To date, the biological function of TRAF7 after spinal cord injury (SCI) is still with limited acquaintance. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of TRAF7 expression in the spinal cord. Our results showed that TRAF7 was up-regulated significantly after SCI, which was paralleled with the levels of the apoptotic protein active caspase-3. Immunofluorescent labeling showed that TRAF7 was co-localizated with active caspase-3 in neurons. To further investigate the function of TRAF7, an apoptosis model was established in primary neuronal cells. When TRAF7 was knocked down by specific short interfering RNA (siRNA), the protein levels of active caspase-3 and the number of apoptotic primary neurons were significantly decreased in our study. Taken together, our findings suggest that the change of TRAF7 protein expression plays a key role in neuronal apoptosis after SCI.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Hao Zhu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng 224005, People's Republic of China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Xinhui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Fei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Daoran Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
14
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018; 9:2111. [PMID: 30294322 PMCID: PMC6158389 DOI: 10.3389/fimmu.2018.02111] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M. Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
16
|
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett 2018; 196:113-118. [PMID: 29378215 DOI: 10.1016/j.imlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
17
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018. [PMID: 30294322 DOI: 10.3389/fimmu.2018.02111/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
18
|
Zotti T, Scudiero I, Vito P, Stilo R. The Emerging Role of TRAF7 in Tumor Development. J Cell Physiol 2017; 232:1233-1238. [PMID: 27808423 PMCID: PMC5347962 DOI: 10.1002/jcp.25676] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022]
Abstract
The seven members of the tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally discovered and characterized as signaling adaptor molecules coupled to the cytoplasmic regions of receptors of the TNF-R superfamily. Functionally, TRAFs act both as a scaffold and/or enzymatic proteins to regulate activation of mitogen-activated protein kinases (MAPKs) and transcription factors of nuclear factor-κB family (NF-κB). Given the wide variety of stimuli intracellularly conveyed by TRAF proteins, they are physiologically involved in multiple biological processes, including embryonic development, tissue homeostasis, and regulation of innate and adaptive immune responses. In the last few years, it has become increasingly evident the involvement of TRAF7, the last member of the TRAF family to be discovered, in the genesis and progression of several human cancers, placing TRAF7 in the spotlight as a novel tumor suppressor protein. In this paper, we review and discuss the literature recently produced on this subject. J. Cell. Physiol. 232: 1233-1238, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tiziana Zotti
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | | | - Pasquale Vito
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Romania Stilo
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| |
Collapse
|
19
|
Wang L, Wang L, Zhang S, Qu G, Zhang D, Li S, Liu S. Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep 2012; 29:283-7. [PMID: 23128672 DOI: 10.3892/or.2012.2121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 11/06/2022] Open
Abstract
p53 is a key tumor suppressor and a master regulator of various signaling pathways, such as those related to apoptosis, cell cycle and DNA repair. In this study, we found a pronounced cytosolic accumulation of the p53 protein in a panel of breast cancer specimens. Several mutations lead to p53 accumulation by disruption of MDM2-mediated p53 degradation. However, gene sequencing revealed no p53 mutation in the majority of our samples. Through search for other possible p53 E3 ligases by mRNA and protein expression analysis, downregulation of TNF receptor-associated factor 7 (TRAF7) expression was found in these breast tumors. We further identified TRAF7 as an E3 ligase for K48-linked ubiquitination of p53 in vitro. These results suggested that the p53 accumulation was due to the defects of TRAF7-mediated ubiquitination. The downregulation of TRAF7 also correlated with poor prognosis in a breast cancer cohort. Collectively, TRAF7-mediated ubiquitination of p53 plays a critical role in breast cancer development, and these insights may aid in the development of novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Lixin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) have been discovered and characterized by their capacity to link tumor necrosis factor receptors (TNFR) family proteins to signaling pathways that transduce the cellular effects mediated by TNF family ligands. There are seven known mammalian TRAF proteins (TRAF1-7), that share a domain organization made of a modular structure, characteristic of adaptor proteins whose function is to link structurally dissimilar factors. Functionally, TRAF proteins mediate the assembly of cytoplasmic signal transducers and regulatory molecules downstream of receptors complexes. Despite the similarities in the signaling pathways activated by the different TRAF proteins, each appears to play distinct physiological roles. TRAF7 is the last member of the TRAF family that has been identified. Yet, the functional characterization of TRAF7 presents some aspects still obscure and poorly defined, making this protein arguably the most mysterious member of the family. In fact, recent data indicate that TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In addition, TRAF7 regulates activation of cellular stress pathways, as well as unconventional ubiquitination events and differentiation of muscle tissue. In this review, we try to summarize the most recent advances in our understanding of TRAF7 function and the biological processes of this protein is involved in.
Collapse
Affiliation(s)
- Tiziana Zotti
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Benevento, Italy
| | | | | |
Collapse
|
21
|
Zotti T, Uva A, Ferravante A, Vessichelli M, Scudiero I, Ceccarelli M, Vito P, Stilo R. TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO) and p65/RelA protein and represses NF-kappaB activation. J Biol Chem 2011; 286:22924-33. [PMID: 21518757 DOI: 10.1074/jbc.m110.215426] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are cytoplasmic regulatory molecules that function as signal transducers for receptors involved in both innate and adaptive humoral immune responses. In this study, we show that TRAF7, the unique noncanonical member of the TRAF family, physically associates with IκB kinase/NF-κB essential modulator (NEMO) and with the RelA/p65 (p65) member of the NF-κB transcription factor family. TRAF7 promotes Lys-29-linked polyubiquitination of NEMO and p65 that results in lysosomal degradation of both proteins and altered activation. TRAF7 also influences p65 nuclear distribution. Microarray expression data are consistent with an inhibitory role for TRAF7 on NF-κB and a positive control of AP-1 transcription factor. Finally, functional data indicate that TRAF7 promotes cell death. Thus, this study identifies TRAF7 as a NEMO- and p65-interacting molecule and brings important information on the ubiquitination events that control NF-κB transcriptional activity.
Collapse
Affiliation(s)
- Tiziana Zotti
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|