1
|
Assig K, Lichtenegger S, Bui LNH, Mosbacher B, Vu ATN, Erhart D, Trinh TT, Steinmetz I. Rational design of an acidic erythritol (ACER) medium for the enhanced isolation of the environmental pathogen Burkholderia pseudomallei from soil samples. Front Microbiol 2023; 14:1213818. [PMID: 37469425 PMCID: PMC10353019 DOI: 10.3389/fmicb.2023.1213818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
The soil bacterium Burkholderia pseudomallei causes melioidosis, a potentially fatal and greatly underdiagnosed tropical disease. Detection of B. pseudomallei in the environment is important to trace the source of infections, define risk areas for melioidosis and increase the clinical awareness. Although B. pseudomallei polymerase chain reaction (PCR)-based environmental detection provides important information, the culture of the pathogen remains essential but is still a methodological challenge. B. pseudomallei can catabolize erythritol, a metabolic pathway, which is otherwise rarely encountered among bacteria. We recently demonstrated that replacing threonine with erythritol as a single carbon source in the pH-neutral threonine-basal salt solution (TBSS-C50) historically used improved the isolation of B. pseudomallei from rice paddy soils. However, further culture medium parameters for an optimized recovery of B. pseudomallei strains from soils are still ill-defined. We, therefore, aimed to design a new erythritol-based medium by systematically optimizing parameters such as pH, buffer capacity, salt and nutrient composition. A key finding of our study is the enhanced erythritol-based growth of B. pseudomallei under acidic medium conditions. Our experiments with B. pseudomallei strains from different geographical origin led to the development of a phosphate-buffered acidic erythritol (ACER) medium with a pH of 6.3, higher erythritol concentration of 1.2%, supplemented vitamins and nitrate. This highly selective medium composition shortened the lag phase of B. pseudomallei cultures and greatly increased growth densities compared to TBSS-C50 and TBSS-C50-based erythritol medium. The ACER medium led to the highest enrichments of B. pseudomallei as determined from culture supernatants by quantitative PCR in a comparative validation with soil samples from the central part of Vietnam. Consequently, the median recovery of B. pseudomallei colony forming units on Ashdown's agar from ACER subcultures was 5.4 times higher compared to TBSS-C50-based erythritol medium (p = 0.005) and 30.7 times higher than TBSS-C50 (p < 0.001). In conclusion, our newly developed ACER medium significantly improves the isolation of viable B. pseudomallei from soils and, thereby, has the potential to reduce the rate of false-negative environmental cultures in melioidosis risk areas.
Collapse
Affiliation(s)
- Karoline Assig
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Sabine Lichtenegger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Linh N. H. Bui
- Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Bettina Mosbacher
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Anh T. N. Vu
- Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Daniel Erhart
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Trung T. Trinh
- Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
2
|
Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S. Genome-wide transposon mutagenesis analysis of Burkholderia pseudomallei reveals essential genes for in vitro and in vivo survival. Front Cell Infect Microbiol 2022; 12:1062682. [PMID: 36619746 PMCID: PMC9816413 DOI: 10.3389/fcimb.2022.1062682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined. Methods We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen. Results Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice. Discussion The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.
Collapse
Affiliation(s)
- Yee-Chin Wong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Raeece Naeem
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Moataz Abd El Ghany
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia,School of Public Health, The University of Sydney, Sydney, NSW, Australia,Centre for Infectious Disease and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | | | - Arnab Pain
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia,*Correspondence: Sheila Nathan,
| |
Collapse
|
3
|
Aung NM, Su KK, Chantratita N, Tribuddharat C. Workflow for Identification of <i>Burkholderia pseudomallei</i> Clinical Isolates in Myanmar. Jpn J Infect Dis 2022; 76:106-112. [PMID: 36450576 DOI: 10.7883/yoken.jjid.2022.508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Burkholderia pseudomallei, the highly infectious and causative organism of melioidosis, was first identified in Myanmar in 1911. B. pseudomallei was identified in Myanmar because of its genetic relatedness to Burkholderia species. In this study, we identified two isolates of Burkholderia cenocepacia, two Acinetobacter baumannii complexes, and 18 clinical isolates of B. pseudomallei using Vitek 2. These isolates were first screened using a latex agglutination test, which showed positive results in 20 of the 22 isolates. All isolates were cultured on Ashdown՚s agar and further tested using molecular methods. Specific PCR for type III secretion system (TTSs) gene clusters indicated 19 B. pseudomallei isolates out of 22 isolates. Furthermore, 16S rRNA and recA gene sequencing were used as the gold standard methods and yielded the same results. RapID NF Plus detected 16 B. pseudomallei out of 22 isolates. Vitek 2 and RapID NF Plus should be considered key tools in the diagnosis of melioidosis and surveillance of B. pseudomallei in Myanmar; however, accurate identification must be confirmed by TTS1 PCR. This study evaluated the presumptive workflow for the investigation of B. pseudomallei infections using different methods and options, in line with the available equipment.
Collapse
Affiliation(s)
- Nay Myo Aung
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Khine Khine Su
- Department of Microbiology, Defense Services Medical Academy, Myanmar
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Chanwit Tribuddharat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
4
|
Shaw T, Assig K, Tellapragada C, Wagner GE, Choudhary M, Göhler A, Eshwara VK, Steinmetz I, Mukhopadhyay C. Environmental Factors Associated With Soil Prevalence of the Melioidosis Pathogen Burkholderia pseudomallei: A Longitudinal Seasonal Study From South West India. Front Microbiol 2022; 13:902996. [PMID: 35847064 PMCID: PMC9283100 DOI: 10.3389/fmicb.2022.902996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Melioidosis is a seasonal infectious disease in tropical and subtropical areas caused by the soil bacterium Burkholderia pseudomallei. In many parts of the world, including South West India, most cases of human infections are reported during times of heavy rainfall, but the underlying causes of this phenomenon are not fully understood. India is among the countries with the highest predicted melioidosis burden globally, but there is very little information on the environmental distribution of B. pseudomallei and its determining factors. The present study aimed (i) to investigate the prevalence of B. pseudomallei in soil in South West India, (ii) determine geochemical factors associated with B. pseudomallei presence and (iii) look for potential seasonal patterns of B. pseudomallei soil abundance. Environmental samplings were performed in two regions during the monsoon and post-monsoon season and summer from July 2016 to November 2018. We applied direct quantitative real time PCR (qPCR) together with culture protocols to overcome the insufficient sensitivity of solely culture-based B. pseudomallei detection from soil. A total of 1,704 soil samples from 20 different agricultural sites were screened for the presence of B. pseudomallei. Direct qPCR detected B. pseudomallei in all 20 sites and in 30.2% (517/1,704) of all soil samples, whereas only two samples from two sites were culture-positive. B. pseudomallei DNA-positive samples were negatively associated with the concentration of iron, manganese and nitrogen in a binomial logistic regression model. The highest number of B. pseudomallei-positive samples (42.6%, p < 0.0001) and the highest B. pseudomallei loads in positive samples [median 4.45 × 103 genome equivalents (GE)/g, p < 0.0001] were observed during the monsoon season and eventually declined to 18.9% and a median of 1.47 × 103 GE/g in summer. In conclusion, our study from South West India shows a wide environmental distribution of B. pseudomallei, but also considerable differences in the abundance between sites and within single sites. Our results support the hypothesis that nutrient-depleted habitats promote the presence of B. pseudomallei. Most importantly, the highest B. pseudomallei abundance in soil is seen during the rainy season, when melioidosis cases occur.
Collapse
Affiliation(s)
- Tushar Shaw
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Karoline Assig
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Chaitanya Tellapragada
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Madhu Choudhary
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - André Göhler
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Centre for Antimicrobial Resistance and Education, Manipal Academy of Higher Education, Manipal, India
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Ivo Steinmetz,
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Centre for Emerging and Tropical Diseases, Manipal Academy of Higher Education, Manipal, India
- Chiranjay Mukhopadhyay,
| |
Collapse
|
5
|
FRICKMANN HAGEN, POPPERT SVEN. No hints for abundance of Bacillus anthracis and Burkholderia pseudomallei in 100 environmental samples from Cameroon. Eur J Microbiol Immunol (Bp) 2021; 11:57-61. [PMID: 34478403 PMCID: PMC8614492 DOI: 10.1556/1886.2021.00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Little is known on the abundance of the pathogens Bacillus anthracis and Burkholderia pseudomallei in environmental samples in Cameroon. Therefore, 100 respective samples were assessed in a proof-of-principle assessment. METHODS DNA residuals from nucleic acid extractions of 100 environmental samples, which were collected between 2011 and 2013 in the Mapé Basin of Cameroon, were screened for B. anthracis and B. pseudomallei by real-time PCR. The samples comprised soil samples with water contact (n = 88), soil samples without water contact (n = 6), plant material with water contact (n = 3), water (n = 2), and soil from a hospital dressing room (n = 1). RESULTS B. anthracis and B. pseudomallei were detected in none of the samples assessed. CONCLUSION The results indicate that at least a quantitatively overwhelming, ubiquitous occurrence of B. anthracis and B. pseudomallei in the environment in Cameroon is highly unlikely. However, the number and choice of the assessed samples limit the interpretability of the results.
Collapse
Affiliation(s)
- HAGEN FRICKMANN
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - SVEN POPPERT
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| |
Collapse
|
6
|
Yuan Y, Yao Z, Xiao E, Zhang J, Wang B, Ma B, Li Y, Yan W, Wang S, Ma Q, Xu J, Wang Y, Fan E. The first imported case of melioidosis in a patient in central China. Emerg Microbes Infect 2019; 8:1223-1228. [PMID: 31429668 PMCID: PMC6713098 DOI: 10.1080/22221751.2019.1654839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the first imported case of melioidosis from Laos in central China. COMPACT VITEK2 identification system and PCR, as well as sequencing methods confirmed that the patient was infected by Burkholderia pseudomallei, a bacterial species closely related to an isolate detected in Thailand. These findings are highly valuable for an early diagnosis, treatment and to prevent the spread of this emerging infectious disease in central China.
Collapse
Affiliation(s)
- Youhua Yuan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Zonghui Yao
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Erhui Xiao
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University Zhengzhou , People's Republic of China
| | - Jiangfeng Zhang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Baoya Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Bing Ma
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Yi Li
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Wenjuan Yan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Shanmei Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Qiong Ma
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Junhong Xu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Yuming Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| | - Enguo Fan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , People's Republic of China
| |
Collapse
|
7
|
Dance DA, Knappik M, Dittrich S, Davong V, Silisouk J, Vongsouvath M, Rattanavong S, Pierret A, Newton PN, Amornchai P, Wuthiekanun V, Langla S, Limmathurotsakul D. Evaluation of consensus method for the culture of Burkholderia pseudomallei in soil samples from Laos. Wellcome Open Res 2018; 3:132. [PMID: 30569022 PMCID: PMC6283377 DOI: 10.12688/wellcomeopenres.14851.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Background: We have previously shown that PCR following enrichment culture is the most sensitive method to detect Burkholderia pseudomallei in environmental samples. Here we report an evaluation of the published consensus method for the culture of B. pseudomallei from Lao soil in comparison with our conventional culture method and with PCR with or without prior broth enrichment. Methods: One hundred soil samples were collected from a field known to contain B. pseudomallei and processed by: (i) the conventional method, (ii-iii) the consensus method using media prepared in either Laos or Thailand, and (iv) the consensus method performed in Thailand, as well as by (v) PCR following direct extraction of DNA from soil and (vi) PCR following broth pre-enrichment. Results: The numbers of samples in which B. pseudomallei was detected were 42, 10, 7, 6, 6 and 84, respectively. However, two samples were positive by the consensus method but negative by conventional culture, and one sample was negative by PCR following enrichment although B. pseudomallei was isolated by the conventional culture method. Conclusions/Discussion: The results show that no single method will detect all environmental samples that contain B. pseudomallei. People conducting environmental surveys for this organism should be aware of the possibility of false-negative results using the consensus culture method. An approach that entails screening using PCR after enrichment, followed by the evaluation of a range of different culture methods on PCR-positive samples to determine which works best in each setting, is recommended.
Collapse
Affiliation(s)
- David A.B. Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael Knappik
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Médecins Sans Frontières, Maputo, Mozambique
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Foundation for Innovative Diagnostics, Geneva, Switzerland
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Joy Silisouk
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Alain Pierret
- Institut de Recherche pour le Développement (IRD), iEES-Paris (IRD, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRA, UPEC, Université Paris Diderot), Department of Agricultural Land Management (DALaM), Vientiane, Lao People's Democratic Republic
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Dance DA, Knappik M, Dittrich S, Davong V, Silisouk J, Vongsouvath M, Rattanavong S, Pierret A, Newton PN, Amornchai P, Wuthiekanun V, Langla S, Limmathurotsakul D. Evaluation of consensus method for the culture of Burkholderia pseudomallei in soil samples from Laos. Wellcome Open Res 2018; 3:132. [PMID: 30569022 PMCID: PMC6283377 DOI: 10.12688/wellcomeopenres.14851.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 10/05/2023] Open
Abstract
Background: We have previously shown that PCR following enrichment culture is the most sensitive method to detect Burkholderia pseudomallei in environmental samples. Here we report an evaluation of the published consensus method for the culture of B. pseudomallei from Lao soil in comparison with our conventional culture method and with PCR with or without prior broth enrichment. Methods: One hundred soil samples were collected from a field known to contain B. pseudomallei and processed by: (i) the conventional method, (ii-iii) the consensus method using media prepared in either Laos or Thailand, and (iv) the consensus method performed in Thailand, as well as by (v) PCR following direct extraction of DNA from soil and (vi) PCR following broth pre-enrichment. Results: The numbers of samples in which B. pseudomallei was detected were 42, 10, 7, 6, 6 and 84, respectively. However, two samples were positive by the consensus method but negative by conventional culture, and one sample was negative by PCR following enrichment although B. pseudomallei was isolated by the conventional culture method. Conclusions/Discussion: The results show that no single method will detect all environmental samples that contain B. pseudomallei. People conducting environmental surveys for this organism should be aware of the possibility of false-negative results using the consensus culture method. An approach that entails screening using PCR after enrichment, followed by the evaluation of a range of different culture methods on PCR-positive samples to determine which works best in each setting, is recommended.
Collapse
Affiliation(s)
- David A.B. Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael Knappik
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Médecins Sans Frontières, Maputo, Mozambique
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Foundation for Innovative Diagnostics, Geneva, Switzerland
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Joy Silisouk
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Alain Pierret
- Institut de Recherche pour le Développement (IRD), iEES-Paris (IRD, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRA, UPEC, Université Paris Diderot), Department of Agricultural Land Management (DALaM), Vientiane, Lao People's Democratic Republic
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Lui G, Tam A, Tso EYK, Wu AKL, Zee J, Choi KW, Lam W, Chan MC, Ting WM, Hung IFN. Melioidosis in Hong Kong. Trop Med Infect Dis 2018; 3:tropicalmed3030091. [PMID: 30274487 PMCID: PMC6161032 DOI: 10.3390/tropicalmed3030091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022] Open
Abstract
Melioidosis, although endemic in many parts of Southeast Asia, has not been systematically studied in Hong Kong, which is a predominantly urban area located in the subtropics. This review describes the early outbreaks of melioidosis in captive animals in Hong Kong in the 1970s, as well as the early reports of human clinical cases in the 1980s. A review of all hospitalized human cases of culture-confirmed melioidosis in the last twenty years showed an increasing trend in the incidence of the disease, with significant mortality observed. The lack of awareness of this disease among local physicians, the delay in laboratory diagnosis and the lack of epidemiological surveillance are among the greatest challenges of managing melioidosis in the territory.
Collapse
Affiliation(s)
- Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
| | - Anthony Tam
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| | - Eugene Y K Tso
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China.
| | - Alan K L Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.
| | - Jonpaul Zee
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, China.
| | - Kin Wing Choi
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China.
| | - Wilson Lam
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China.
| | - Man Chun Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, China.
| | - Wan Man Ting
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China.
| | - Ivan F N Hung
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
- Carol Yu Centre for Infection, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518172, China.
| |
Collapse
|
10
|
In Vitro Susceptibility of Ceftolozane-Tazobactam against Burkholderia pseudomallei. Antimicrob Agents Chemother 2018; 62:AAC.00103-18. [PMID: 29483111 DOI: 10.1128/aac.00103-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Wang H, Chen YL, Teng SH, Xu ZP, Xu YC, Hsueh PR. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Clinical and Environmental Isolates of Burkholderia pseudomallei. Front Microbiol 2016; 7:415. [PMID: 27092108 PMCID: PMC4824763 DOI: 10.3389/fmicb.2016.00415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is not represented in the current version of Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system. A total of 66 isolates of B. pseudomallei, including 30 clinical isolates collected from National Taiwan University Hospital (NTUH, n = 27) and Peking Union Medical College Hospital (PUMCH, n = 3), and 36 isolates of genetically confirmed strains, including 13 from clinical samples and 23 from environmental samples, collected from southern Taiwan were included in this study. All these isolates were identified by partial 16S rDNA gene sequencing analysis and the Bruker Biotyper MALDI-TOF MS system. Among the 30 isolates initially identified as B. pseudomallei by conventional identification methods, one was identified as B. cepacia complex (NTUH) and three were identified as B. putida (PUMCH) by partial 16S rDNA gene sequencing analysis and Bruker Biotyper MALDI-TOF MS system. The Bruker Biotyper MALDI-TOF MS system misidentified 62 genetically confirmed B. pseudomallei isolates as B. thailandensis or Burkholderia species (score values, 1.803–2.063) when the currently available database (DB 5627) was used. However, using a newly created MALDI-TOF MS database (including B. pseudomallei NTUH-3 strain), all isolates were correctly identified as B. pseudomallei (score values >2.000, 100%). An additional 60 isolates of genetically confirmed B. cepacia complex and B. putida were also evaluated by the Bruker Biotyper MALDI-TOF MS system using the newly created database and none of these isolates were identified as B. pseudomallei. MALDI-TOF MS is a versatile and robust tool for the rapid identification of B. pseudomallei using the enhanced database.
Collapse
Affiliation(s)
- He Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, China
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University Kaohsiung, Taiwan
| | - Shih-Hua Teng
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University Tao-Yuan, Taiwan
| | - Zhi-Peng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, China
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| |
Collapse
|
12
|
The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia. Epidemiol Infect 2016; 144:1924-32. [PMID: 26935879 DOI: 10.1017/s0950268816000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease.
Collapse
|
13
|
Lau SKP, Lee KC, Lo GCS, Ding VSY, Chow WN, Ke TYH, Curreem SOT, To KKW, Ho DTY, Sridhar S, Wong SCY, Chan JFW, Hung IFN, Sze KH, Lam CW, Yuen KY, Woo PCY. Metabolomic Profiling of Plasma from Melioidosis Patients Using UHPLC-QTOF MS Reveals Novel Biomarkers for Diagnosis. Int J Mol Sci 2016; 17:307. [PMID: 26927094 PMCID: PMC4813170 DOI: 10.3390/ijms17030307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins (SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - George C S Lo
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Vanessa S Y Ding
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Tony Y H Ke
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Shirly O T Curreem
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kelvin K W To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Deborah T Y Ho
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Sally C Y Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jasper F W Chan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ivan F N Hung
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
14
|
Lau SKP, Lam CW, Curreem SOT, Lee KC, Chow WN, Lau CCY, Sridhar S, Wong SCY, Martelli P, Hui SW, Yuen KY, Woo PCY. Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway. Cell Biosci 2015; 5:26. [PMID: 26097677 PMCID: PMC4475313 DOI: 10.1186/s13578-015-0018-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an emerging pathogen that causes melioidosis, a serious and potentially fatal disease which requires prolonged antibiotics to prevent relapse. However, diagnosis of melioidosis can be difficult, especially in culture-negative cases. While metabolomics represents an uprising tool for studying infectious diseases, there were no reports on its applications to B. pseudomallei. To search for potential specific biomarkers, we compared the metabolomics profiles of culture supernatants of B. pseudomallei (15 strains), B. thailandensis (3 strains), B. cepacia complex (14 strains), P. aeruginosa (4 strains) and E. coli (3 strains), using ultra-high performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS). Multi- and univariate analyses were used to identify specific metabolites in B. pseudomallei. RESULTS Principal component and partial-least squares discrimination analysis readily distinguished the metabolomes between B. pseudomallei and other bacterial species. Using multi-variate and univariate analysis, eight metabolites with significantly higher levels in B. pseudomallei were identified. Three of the eight metabolites were identified by MS/MS, while five metabolites were unidentified against database matching, suggesting that they may be potentially novel compounds. One metabolite, m/z 144.048, was identified as 4-methyl-5-thiazoleethanol, a degradation product of thiamine (vitamin B1), with molecular formula C6H9NOS by database searches and confirmed by MS/MS using commercially available authentic chemical standard. Two metabolites, m/z 512.282 and m/z 542.2921, were identified as tetrapeptides, Ile-His-Lys-Asp with molecular formula C22H37N7O7 and Pro-Arg-Arg-Asn with molecular formula C21H39N11O6, respectively. To investigate the high levels of 4-methyl-5-thiazoleethanol in B. pseudomallei, we compared the thiamine degradation pathways encoded in genomes of B. pseudomallei and B. thailandensis. While both B. pseudomallei and B. thailandensis possess thiaminase I which catalyzes degradation of thiamine to 4-methyl-5-thiazoleethanol, thiM, which encodes hydroxyethylthiazole kinase responsible for degradation of 4-methyl-5-thiazoleethanol, is present and expressed in B. thailandensis as detected by PCR/RT-PCR, but absent or not expressed in all B. pseudomallei strains. This suggests that the high 4-methyl-5-thiazoleethanol level in B. pseudomallei is likely due to the absence of hydroxyethylthiazole kinase and hence reduced downstream degradation. CONCLUSION Eight novel biomarkers, including 4-methyl-5-thiazoleethanol and two tetrapeptides, were identified in the culture supernatant of B. pseudomallei.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shirly O T Curreem
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sally C Y Wong
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Suk-Wai Hui
- Ocean Park Corporation, Aqua City, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
15
|
Lau SKP, Sridhar S, Ho CC, Chow WN, Lee KC, Lam CW, Yuen KY, Woo PCY. Laboratory diagnosis of melioidosis: past, present and future. Exp Biol Med (Maywood) 2015; 240:742-51. [PMID: 25908634 DOI: 10.1177/1535370215583801] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized "in house" assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis . Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Chi-Chun Ho
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
|
17
|
Li PH, Chau CH, Wong PC. Melioidosis mycotic aneurysm: An uncommon complication of an uncommon disease. Respir Med Case Rep 2014; 14:43-6. [PMID: 26029577 PMCID: PMC4356043 DOI: 10.1016/j.rmcr.2014.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Melioidosis is often considered an exotic and uncommon disease in most parts of the world. However it is an endemic disease in Southeast Asia and Northern Australia with an expanding distribution. Melioidosis can involve almost any organ and can deteriorate rapidly. In this report, we describe a rapidly fatal case of a mycotic aneurysm associated with melioidosis despite aggressive antibiotic therapy. The morbidity and mortality of this uncommon complication remains high despite prompt diagnosis and treatment. Especially when treating persistent/recurrent melioidosis, the physician's caution to the development of mycotic aneurysms is imperative so that early treatment and surgical intervention may be considered.
Collapse
Affiliation(s)
- Philip H Li
- Tuberculosis and Chest Unit, Grantham Hospital, Hong Kong
| | - Chi Hung Chau
- Tuberculosis and Chest Unit, Grantham Hospital, Hong Kong
| | | |
Collapse
|