1
|
de Matos TRA, Palka APG, de Souza C, Fragoso SP, Pavoni DP. Detection of avian reovirus (ARV) by ELISA based on recombinant σB, σC and σNS full-length proteins and protein fragments. J Med Microbiol 2024; 73. [PMID: 38935078 DOI: 10.1099/jmm.0.001836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.
Collapse
Affiliation(s)
- Tatiana Reichert Assunção de Matos
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Ana Paula Gori Palka
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
- Instituto de Tecnologia do Paraná/Tecpar, Curitiba/PR, Brazil
| | - Claudemir de Souza
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| | - Stenio Perdigão Fragoso
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Daniela Parada Pavoni
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| |
Collapse
|
2
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
3
|
Spencer JA, Penfound T, Salehi S, Aranha MP, Wade LE, Agarwal R, Smith JC, Dale JB, Baudry J. Cross-reactive immunogenicity of group A streptococcal vaccines designed using a recurrent neural network to identify conserved M protein linear epitopes. Vaccine 2021; 39:1773-1779. [PMID: 33642159 DOI: 10.1016/j.vaccine.2021.01.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal sequence of the protein defines the more than 200 M types of Strep A and also contains epitopes that elicit opsonic antibodies, some of which cross-react with heterologous M types. Current efforts to develop broadly protective M protein-based vaccines are directed at identifying potential cross-protective epitopes located in the N-terminal regions of cluster-related M proteins for use as vaccine antigens. In this study, we have used a comprehensive approach using the recurrent neural network ABCpred and IEDB epitope conservancy analysis tools to predict 16 residue linear B-cell epitopes from 117 clinically relevant M types of Strep A (~88% of global Strep A infections). To examine the immunogenicity of these epitope-based vaccines, nine peptides that together shared ≥60% sequence identity with 37 heterologous M proteins were incorporated into two recombinant hybrid protein vaccines, in which the epitopes were repeated 2 or 3 times, respectively. The combined immune responses of immunized rabbits showed that the vaccines elicited significant levels of antibodies against all nine vaccine epitopes present in homologous N-terminal 1-50 amino acid synthetic M peptides, as well as cross-reactive antibodies against 16 of 37 heterologous M peptides predicted to contain similar epitopes. The epitope-specificity of the cross-reactive antibodies was confirmed by ELISA inhibition assays and functional opsonic activity was assayed in HL-60-based bactericidal assays. The results provide important information for the future design of broadly protective M protein-based Strep A vaccines.
Collapse
Affiliation(s)
- Jay A Spencer
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, United States
| | - Tom Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sanaz Salehi
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Lauren E Wade
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, United States.
| |
Collapse
|
4
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
5
|
Bi W, Xu W, Cheng L, Xue J, Wang Q, Yu F, Xia S, Wang Q, Li G, Qin C, Lu L, Su L, Jiang S. IgG Fc-binding motif-conjugated HIV-1 fusion inhibitor exhibits improved potency and in vivo half-life: Potential application in combination with broad neutralizing antibodies. PLoS Pathog 2019; 15:e1008082. [PMID: 31805154 PMCID: PMC6894747 DOI: 10.1371/journal.ppat.1008082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
The clinical application of conventional peptide drugs, such as the HIV-1 fusion inhibitor enfuvirtide, is limited by their short half-life in vivo. To overcome this limitation, we developed a new strategy to extend the in vivo half-life of a short HIV-1 fusion inhibitory peptide, CP24, by fusing it with the human IgG Fc-binding peptide (IBP). The newly engineered peptide IBP-CP24 exhibited potent and broad anti-HIV-1 activity with IC50 values ranging from 0.2 to 173.7 nM for inhibiting a broad spectrum of HIV-1 strains with different subtypes and tropisms, including those resistant to enfuvirtide. Most importantly, its half-life in the plasma of rhesus monkeys was 46.1 h, about 26- and 14-fold longer than that of CP24 (t1/2 = 1.7 h) and enfuvirtide (t1/2 = 3 h), respectively. IBP-CP24 intravenously administered in rhesus monkeys could not induce significant IBP-CP24-specific antibody response and it showed no obvious in vitro or in vivo toxicity. In the prophylactic study, humanized mice pretreated with IBP-CP24 were protected from HIV-1 infection. As a therapeutic treatment, coadministration of IBP-CP24 and normal human IgG to humanized mice with chronic HIV-1 infection resulted in a significant decrease of plasma viremia. Combining IBP-CP24 with a broad neutralizing antibody (bNAb) targeting CD4-binding site (CD4bs) in gp120 or a membrane proximal external region (MPER) in gp41 exhibited synergistic effect, resulting in significant dose-reduction of the bNAb and IBP-CP24. These results suggest that IBP-CP24 has the potential to be further developed as a new HIV-1 fusion inhibitor-based, long-acting anti-HIV drug that can be used alone or in combination with a bNAb for treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Wenwen Bi
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (LL); (LS); (SJ)
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (LL); (LS); (SJ)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail: (LL); (LS); (SJ)
| |
Collapse
|
6
|
Xu W, Pu J, Su S, Hua C, Su X, Wang Q, Jiang S, Lu L. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41. AIDS 2019; 33:1545-1555. [PMID: 30932963 DOI: 10.1097/qad.0000000000002208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To revisit the mechanism of action of enfuvirtide (T20) and based on the newly defined mechanism, design an analogous peptide of T20 with improved antiviral activity. DESIGN We compared the inhibitory activity of T20 with that of T1144 on six-helix bundle (6HB) formation at different time after coculture of HIV type 1 (HIV-1) envelope (Env)-expressing Chinese hamster ovary (CHO-Env) cells and CD4-expressing MT-2 cells at 31.5 °C and with that of T20-SF, an analogous peptide of T20 with an additional tryptophan-rich motif, on hemolysis mediated by FP-P, which contains fusion peptide and fusion peptide (FP) proximal region (FPPR), and HIV-1 infection. METHODS Inhibitory activity of peptides on 6HB formation was tested in a temperature-controlled cell-cell fusion assay by flow cytometry using 6HB-specific mAb 2G8; on HIV-1 infection and fusion was assessed by p24 and cell-cell fusion assays. Interaction between different peptides or peptide and antibody was evaluated by ELISA. RESULTS T20 could inhibit 6HB formation at early, but not late, stage of HIV-1 fusion, whereas T1144 was effective at both stages. T20-SF is much more effective than T20 in binding to FP-P and inhibiting infection of HIV-1, including T20-resistant strains, and FP-P-mediated hemolysis. CONCLUSION Results suggest that T20 has a double-target mechanism, by which its N-terminal and C-terminal portions bind to N-terminal heptad repeat and FPPR, respectively. T20-SF designed based on this new mechanism exhibits significantly improved anti-HIV-1 activity because it targets the triple sites in gp41, including N-terminal heptad repeat, FPPR, and fusion peptide. Thus, this study provides clues for designing novel HIV fusion inhibitors with improved antiviral activity.
Collapse
|
7
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. J Virol 2019; 93:JVI.02119-18. [PMID: 30842326 PMCID: PMC6498063 DOI: 10.1128/jvi.02119-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials. Studies in animal models are essential prerequisites for clinical trials of candidate HIV vaccines. Small animals, such as rabbits, are used to evaluate promising strategies prior to further immunogenicity and efficacy testing in nonhuman primates. Our goal was to determine how HIV-specific vaccine-elicited antibody responses, epitope specificity, and Fc-mediated functions in the rabbit model can predict those in the rhesus macaque (RM) model. Detailed comparisons of the HIV-1-specific IgG response were performed on serum from rabbits and RM given identical modified vaccinia virus Ankara-prime/gp120-boost immunization regimens. We found that vaccine-induced neutralizing antibody, gp120-binding antibody levels and immunodominant specificities, antibody-dependent cellular phagocytosis of HIV-1 virions, and antibody-dependent cellular cytotoxicity (ADCC) responses against gp120-coated target cells were similar in rabbits and RM. However, we also identified characteristics of humoral immunity that differed across species. ADCC against HIV-infected target cells was elicited in rabbits but not in RM, and we observed differences among subdominantly targeted epitopes. Human Fc receptor binding assays and analysis of antibody-cell interactions indicated that rabbit vaccine-induced antibodies effectively recruited and activated human natural killer cells, while vaccine-elicited RM antibodies were unable to activate either human or RM NK cells. Thus, our data demonstrate that both Fc-independent and Fc-dependent functions of rabbit antibodies can be measured with commonly used in vitro assays; however, the ability of immunogenicity studies performed in rabbits to predict responses in RM will vary depending on the particular immune parameter of interest. IMPORTANCE Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials.
Collapse
|
9
|
Su S, Rasquinha G, Du L, Wang Q, Xu W, Li W, Lu L, Jiang S. A Peptide-Based HIV-1 Fusion Inhibitor with Two Tail-Anchors and Palmitic Acid Exhibits Substantially Improved In Vitro and Ex Vivo Anti-HIV-1 Activity and Prolonged In Vivo Half-Life. Molecules 2019; 24:molecules24061134. [PMID: 30901967 PMCID: PMC6470885 DOI: 10.3390/molecules24061134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/29/2023] Open
Abstract
Enfuvirtide (T20) is the first U.S. FDA-approved HIV fusion inhibitor-based anti-HIV drug. Its clinical application is limited because of its low potency and short half-life. We previously reported that peptide HP23-E6-IDL, containing both N- and C-terminal anchor-tails, exhibited stronger potency and a better resistance profile than T20. Here we designed an analogous peptide, YIK, by introducing a mutation, T639I, and then a lipopeptide, YIK-C16, by adding palmitic acid (C16) at the C-terminus of YIK. We found that YIK-C16 was 4.4- and 3.6-fold more potent than HP23-E6-IDL and YIK against HIV-1IIIB infection and 13.3- and 10.5-fold more effective than HP23-E6-IDL and YIK against HIV-1Bal infection, respectively. Consistently, the ex vivo anti-HIV-1IIIB activity, as determined by the highest dilution-fold of the serum causing 50% inhibition of HIV-1 infection, of YIK-C16 in the sera of pretreated mice was remarkably higher than that of YIK or HP23-E6-IDL. The serum half-life (t1/2 = 5.9 h) of YIK-C16 was also significantly longer than that of YIK (t1/2 = 1.3 h) and HP23-E6-IDL (t1/2 = 1.0 h). These results suggest that the lipopeptide YIK-C16 shows promise for further development as a new anti-HIV drug with improved anti-HIV-1 activity and a prolonged half-life.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Giselle Rasquinha
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Yang Z, Liu X, Sun Z, Li J, Tan W, Yu W, Zhang M. Identification of a HIV Gp41-Specific Human Monoclonal Antibody With Potent Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2018; 9:2613. [PMID: 30519238 PMCID: PMC6251304 DOI: 10.3389/fimmu.2018.02613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/23/2018] [Indexed: 01/23/2023] Open
Abstract
Antibody-Dependent Cellular Cytotoxicity (ADCC) is a major mechanism of protection against viral infections in vivo. Identification of HIV-1-specific monoclonal antibodies (mAbs) with potent ADCC activity may help develop an effective HIV-1 vaccine. In present study, we isolated such human mAb, designated E10, from an HIV-1-infected patient sample by single B cell sorting and single cell PCR. E10 bound to gp140 trimer and linear peptides derived from gp41 membrane proximal external region (MPER). E10 epitope (QEKNEQELLEL) overlapped with mAb 2F5 epitope. However, E10 differentiated from 2F5 in neutralization breadth and potency, as well as ADCC activity. E10 showed low neutralization activity and narrow spectrum of neutralization compared to 2F5, but it mediated higher ADCC activity than 2F5 at low antibody concentration. Fine mapping of E10 epitope may potentiate MPER-based subunit vaccine development.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Tuberculosis Prevention, Shenzhen Center for Chronic Disease Control, Shenzhen, China.,AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zehua Sun
- National Jewish Health, Denver, CO, United States
| | - Jingjing Li
- AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Weiguo Tan
- Department of Tuberculosis Prevention, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Weiye Yu
- Department of Tuberculosis Prevention, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Meiyun Zhang
- AIDS Institute, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
11
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
12
|
Billerbeck S. Small Functional Peptides and Their Application in Superfunctionalizing Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sonja Billerbeck
- Columbia University; Department of Chemistry; 550 West 120th Street New York NY 10027 USA
| |
Collapse
|
13
|
HIV-1 Env DNA prime plus gp120 and gp70-V1V2 boosts induce high level of V1V2-specific IgG and ADCC responses and low level of Env-specific IgA response: implication for improving RV144 vaccine regimen. Emerg Microbes Infect 2017; 6:e102. [PMID: 29184156 PMCID: PMC5717091 DOI: 10.1038/emi.2017.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 11/08/2022]
|
14
|
Su S, Ma Z, Hua C, Li W, Lu L, Jiang S. Adding an Artificial Tail-Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile. Molecules 2017; 22:molecules22111996. [PMID: 29156603 PMCID: PMC6150406 DOI: 10.3390/molecules22111996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of human immunodeficiency virus type 1 (HIV-1) envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide), can bind to the N-terminal heptad repeat (NHR) of gp41 and block six-helix bundle (6-HB) formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6) and adding IDL (Ile-Asp-Leu) to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor-tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide's antiviral efficacy and its genetic barrier to resistance.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Yang W, Sun Z, Hua C, Wang Q, Xu W, Deng Q, Pan Y, Lu L, Jiang S. Chidamide, a histone deacetylase inhibitor-based anticancer drug, effectively reactivates latent HIV-1 provirus. Microbes Infect 2017; 20:626-634. [PMID: 29126877 DOI: 10.1016/j.micinf.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Although combination antiretroviral therapy (cART) is highly effective in suppressing human immunodeficiency virus type 1 (HIV-1) replication, it fails to eradicate the virus from HIV-1-infected individuals because HIV-1 integrates into the resting CD4+ T cells, establishing latently infected reservoirs. Histone deacetylation is a key element in regulating HIV-1 latent infection. Chidamide, a new anticancer drug, is a novel type of selective histone deacetylase inhibitor. Here we showed that chidamide effectively reactivated HIV-1 latent provirus in different latently infected cell lines in a dose- and time-dependent manner. Chidamide had relatively low cytotoxicity to peripheral blood mononuclear cells (PBMCs) and other latent cell lines. We have demonstrated that chidamide reactivated HIV-1 latent provirus through the NF-κB signaling pathway. The replication of the newly reactivated HIV-1 could then be effectively inhibited by the anti-HIV-1 drugs Zidovudine, Nevirapine, and Indinavir. Therefore, chidamide might be used in combination with cART for functional HIV-1 cure.
Collapse
Affiliation(s)
- Wenqian Yang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Zhiwu Sun
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Qiwen Deng
- Shenzhen Nanshan People's Hospital of Shenzhen University, Shenzhen 518052, China
| | - Yanbin Pan
- Aris Pharmaceuticals Inc., Bristol, PA19007, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China; Shenzhen Nanshan People's Hospital of Shenzhen University, Shenzhen 518052, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
16
|
A Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope on H7N9 Influenza Hemagglutinin. Cell Host Microbe 2017; 22:471-483.e5. [PMID: 28966056 PMCID: PMC6290738 DOI: 10.1016/j.chom.2017.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Abstract
The H7N9 influenza virus causes high-mortality disease in humans but no effective therapeutics are available. Here we report a human monoclonal antibody, m826, that binds to H7 hemagglutinin (HA) and protects against H7N9 infection. m826 binds to H7N9 HA with subnanomolar affinity at acidic pH and 10-fold lower affinity at neutral pH. The high-resolution (1.9 Å) crystal structure of m826 complexed with H7N9 HA indicates that m826 binds an epitope that may be fully exposed upon pH-induced conformational changes in HA. m826 fully protects mice against lethal challenge with H7N9 virus through mechanisms likely involving antibody-dependent cell-mediated cytotoxicity. Interestingly, immunogenetic analysis indicates that m826 is a germline antibody, and m826-like sequences can be identified in H7N9-infected patients, healthy adults, and newborn babies. These m826 properties offer a template for H7N9 vaccine immunogens, a promising candidate therapeutic, and a tool for exploring mechanisms of virus infection inhibition by antibodies.
Collapse
|
17
|
Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Front Immunol 2017; 8:1154. [PMID: 28970835 PMCID: PMC5609547 DOI: 10.3389/fimmu.2017.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated by the human immune system and their elicitation by vaccination will be a key point to protect against the wide range of viral diversity. The membrane proximal external region (MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is considered as an attractive vaccine target. However, despite many attempts to design MPER-based immunogens, further study is still needed to understand its structural complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. These particular features compromise the development of MPER-specific neutralizing responses during natural infection and limit the number of bNAbs isolated against this region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles for immunogen development. Nevertheless, the analysis of MPER humoral responses elicited during natural infection as well as the MPER bNAbs isolated to date highlight that the human immune system is capable of generating MPER protective antibodies. Here, we discuss the recent advances describing the immunologic and biochemical features that make the MPER a unique HIV-1 vulnerability site, the different strategies to generate MPER-neutralizing antibodies in immunization protocols and point the importance of extending our knowledge toward new MPER epitopes by the isolation of novel monoclonal antibodies. This will be crucial for the redesign of immunogens able to skip non-neutralizing MPER determinants.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| |
Collapse
|
18
|
Cerutti N, Loredo-Varela JL, Caillat C, Weissenhorn W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr Opin HIV AIDS 2017; 12:250-256. [PMID: 28422789 DOI: 10.1097/coh.0000000000000364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW We summarize the latest research on the progress to understand the neutralizing epitopes present within the membrane proximal external region (MPER) of the HIV-1 fusion protein subunit gp41. RECENT FINDINGS The HIV-1 fusion protein subunit gp41 contains a highly conserved sequence that is essential for membrane fusion and targeted by broadly neutralizing antibodies such as 2F5, 4E10, Z13e1, and 10E8. These antibodies recognize a linear gp41 epitope with high affinity, but require additional hydrophobic sequences present in their heavy chain CDR3 for neutralization. Recent structural studies on mAbs 4E10 and 10E8 provide molecular details for specific interactions with lipids and implicate part of the transmembrane region as the relevant 10E8 epitope. Although many different approaches have been applied to engineer gp41 immunogens that can induce broadly neutralizing antibodies directed toward MPER, only modest success has yet been reported. SUMMARY The new structural details on the complex gp41-lipidic epitope will spur new approaches to design gp41-MPER immunogens that might induce broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Nichole Cerutti
- aUniversity Grenoble Alpes bCEA cCNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | |
Collapse
|
19
|
Identification of Protective B-Cell Epitopes within the Novel Malaria Vaccine Candidate Plasmodium falciparum Schizont Egress Antigen 1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00068-17. [PMID: 28468980 DOI: 10.1128/cvi.00068-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 02/03/2023]
Abstract
Naturally acquired antibodies to Plasmodium falciparum schizont egress antigen 1 (PfSEA-1A) are associated with protection against severe malaria in children. Vaccination of mice with SEA-1A from Plasmodium berghei (PbSEA-1A) decreases parasitemia and prolongs survival following P. berghei ANKA challenge. To enhance the immunogenicity of PfSEA-1A, we identified five linear B-cell epitopes using peptide microarrays probed with antisera from nonhuman primates vaccinated with recombinant PfSEA-1A (rPfSEA-1A). We evaluated the relationship between epitope-specific antibody levels and protection from parasitemia in a longitudinal treatment-reinfection cohort in western Kenya. Antibodies to three epitopes were associated with 16 to 17% decreased parasitemia over an 18-week high transmission season. We are currently designing immunogens to enhance antibody responses to these three epitopes.
Collapse
|
20
|
Tan Y, Tong P, Wang J, Zhao L, Li J, Yu Y, Chen YH, Wang J. The Membrane-Proximal Region of C-C Chemokine Receptor Type 5 Participates in the Infection of HIV-1. Front Immunol 2017; 8:478. [PMID: 28484468 PMCID: PMC5402540 DOI: 10.3389/fimmu.2017.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
The initial infection and transmission of HIV-1 requires C-C chemokine receptor type 5 (CCR5). Here, we report that the membrane-proximal region (MPR, aa 22-38) of CCR5 participates in the infection of HIV-1. First, MPR-specific antibodies elicited in mice dose-dependently inhibited the infection of CCR5-tropic HIV-1. Second, substituting MPR with the same region from other co-receptors significantly impaired HIV-1 infection, while the key residues identified by alanine scanning mutagenesis formed an exposed leucine zipper-like structure. Moreover, a peptide derived from MPR could block the infection of a number of HIV-1 strains only before the formation of gp41 six-helix bundle, coincide with the early interaction between CCR5 and the gp120 protein during HIV-1 infection. These promising results ensured the potential of this previously uncharacterized domain as a starting point for the development of antiviral drugs, blocking antibodies, and HIV vaccines.
Collapse
Affiliation(s)
- Yue Tan
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Pei Tong
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Junyi Wang
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Lei Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jing Li
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Yang Yu
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Ying-Hua Chen
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Ji Wang
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity. AIDS 2017; 31:885-894. [PMID: 28121713 DOI: 10.1097/qad.0000000000001415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES During HIV-1 fusion process, the N-terminal heptad repeat (NHR) of the HIV-1 glycoprotein 41 (gp41) interacts with the C-terminal heptad repeat (CHR) to form the fusion active six-helix bundle, thus being an effective target for the design of CHR peptide-based HIV-1 fusion inhibitors. To overcome the limitations of the simplified helix wheel model of six-helix bundle, we herein developed a novel HIV-1 gp41 NHR-CHR-NHR tripartite model for the rational design of HIV-1 fusion inhibitors with improved antiviral activities. DESIGN Based on the crystal structure of six-helix bundle, we evaluated the NHR-binding properties of each residue in CHR. In this new tripartite model, CHR residues were divided into three groups: major binding, nonbinding, and assistant binding sites. METHODS Eight CHR peptides were designed and synthesized to confirm the validity of the tripartite model. Their affinities to NHR and inhibitory activities were analyzed. RESULTS In this tripartite model, replacements in assistant binding sites either increased or decreased the inhibition of HIV-1 infection. We identified three peptides with mutations of the residues in CHR at the assistant binding sites in our tripartite model but nonbinding sites in the helical wheel model. These mutant peptides had anti-HIV-1 activity up to 26-fold more potent than that of C34, a CHR peptide designed on the basis of the helix wheel model. CONCLUSION These data verified the superiority and validity of our new tripartite model for the rational design of HIV-1 fusion inhibitors. This approach can be adapted for designing viral fusion inhibitors against other enveloped viruses with class I membrane fusion protein.
Collapse
|
22
|
Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection. Front Immunol 2017; 8:100. [PMID: 28280494 PMCID: PMC5322207 DOI: 10.3389/fimmu.2017.00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Palatnik
- Programa de Pós-Graduação em Clínica Médica, Faculdade de Medicina-Hospital Universitario Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors. J Virol 2016; 91:JVI.01445-16. [PMID: 27795416 DOI: 10.1128/jvi.01445-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins. IMPORTANCE The hydrophobic groove of the human immunodeficiency virus type 1 (HIV-1) gp41 NHR trimer has been known as the classic drug target to develop fusion inhibitors derived from the gp41 CHR. Here, we developed a novel and simple strategy to improve the existing peptide-based HIV fusion inhibitors. We identified a shallow pocket adjacent to the groove in the NHR trimer and added a short artificial peptide consisting of three amino acids (IDL) to the C terminus of a fusion inhibitor to fit this new target. The inhibition activity of this new conjugated peptide was significantly enhanced, by 77-fold, making it much more potent than T20 (enfuvirtide) and suggesting that the IDL tail can be adopted for optimizing existing HIV-1 CHR peptide fusion inhibitors. This new approach of identifying a potential binding pocket outside the traditional target and creating an artificial tail anchor can be widely applied to design novel fusion inhibitors against other class I enveloped viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
|