1
|
Guan J, Yao L, Chung CR, Xie P, Zhang Y, Deng J, Chiang YC, Lee TY. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J Chem Inf Model 2023; 63:7886-7898. [PMID: 38054927 DOI: 10.1021/acs.jcim.3c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Inflammation is a biological response to harmful stimuli, aiding in the maintenance of tissue homeostasis. However, excessive or persistent inflammation can precipitate a myriad of pathological conditions. Although current treatments such as NSAIDs, corticosteroids, and immunosuppressants are effective, they can have side effects and resistance issues. In this backdrop, anti-inflammatory peptides (AIPs) have emerged as a promising therapeutic approach against inflammation. Leveraging machine learning methods, we have the opportunity to accelerate the discovery and investigation of these AIPs more effectively. In this study, we proposed an advanced framework by ensemble machine learning and deep learning for AIP prediction. Initially, we constructed three individual models with extremely randomized trees (ET), gated recurrent unit (GRU), and convolutional neural networks (CNNs) with attention mechanism and then used stacking architecture to build the final predictor. By utilizing various sequence encodings and combining the strengths of different algorithms, our predictor demonstrated exemplary performance. On our independent test set, our model achieved an accuracy, MCC, and F1-score of 0.757, 0.500, and 0.707, respectively, clearly outperforming other contemporary AIP prediction methods. Additionally, our model offers profound insights into the feature interpretation of AIPs, establishing a valuable knowledge foundation for the design and development of future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
2
|
Zhao L, Li J, Mo G, Cao D, Li C, Huang G, Jiang L, Chen G, Yao H, Peng X. Recombinant protein EBI3 attenuates Clonorchis sinensis-induced liver fibrosis by inhibiting hepatic stellate cell activation in mice. Parasit Vectors 2023; 16:246. [PMID: 37480105 PMCID: PMC10360228 DOI: 10.1186/s13071-023-05863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Chronic infection with Clonorchis sinensis can cause hepatobiliary fibrosis and even lead to hepatobiliary carcinoma. Epstein-Barr virus-induced gene 3 protein (EBI3) is a subunit of interleukin 35, which can regulate inflammatory response and the occurrence of fibrotic diseases. Previous studies have reported that the expression of EBI3 in the serum of patients with liver cirrhosis is reduced. The present study aims to investigate the biological effects of EBI3 on liver fibrosis caused by C. sinensis and the underlying molecular mechanisms. METHODS We first established a mouse model of liver fibrosis induced by C. sinensis infection and then measured the serum expression of EBI3 during the inflammatory and fibrotic phase. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses were performed to investigate the potential role of EBI3 in liver fibrosis by regulating the extracellular matrix structural constituent and collagen catabolic process. Recombinant protein EBI3 (rEBI3) was added to hepatic stellate cells (HSCs) in vitro with C. sinensis antigen to explore its function. Finally, the therapeutic effect of rEBI3 was verified by intravenous injection into C. sinensis-infected mice. RESULTS The results showed that the serum expression of EBI3 increased in the inflammatory response phase but decreased in the fibrotic phase. The excretory-secretory products of C. sinensis (Cs.ESP) were able to stimulate HSC activation, while rEBI3 reduced the activation of HSCs induced by Cs.ESP. Also, the protein expression of gp130 and downstream protein expressions of JAK1, p-JAK1, STAT3 and p-STAT3 in HSCs were increased after rEBI3 incubation. Finally, intravenously injected rEBI3 inhibited hepatic epithelial-mesenchymal transition in C. sinensis-infected mice by inhibiting HSC activation and reducing liver injury. CONCLUSION This study confirms that rEBI3 can attenuate C. sinensis-induced liver fibrosis by inhibiting HSC activation and may be one of the potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Lei Zhao
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jia Li
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Gang Mo
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Deping Cao
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Chun Li
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guoyang Huang
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Liping Jiang
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Gen Chen
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Hongbing Yao
- Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xiaohong Peng
- Guangxi University Key Laboratory of Pathogenic Biology, Guilin Medical University, Guilin, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Aschenbrenner D, Ye Z, Zhou Y, Hu W, Brooks I, Williams I, Capitani M, Gartner L, Kotlarz D, Snapper SB, Klein C, Muise AM, Marsden BD, Huang Y, Uhlig HH. Pathogenic Interleukin-10 Receptor Alpha Variants in Humans - Balancing Natural Selection and Clinical Implications. J Clin Immunol 2023; 43:495-511. [PMID: 36370291 PMCID: PMC9892166 DOI: 10.1007/s10875-022-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ziqing Ye
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Zhou
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhui Hu
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Isabel Brooks
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Isabelle Williams
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- SenTcell Ltd., London, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF) and Deutsches Zentrum für Kinder- und Jugendgesundheit, Partner site Munich, Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Brian D Marsden
- Centre of Medicines Discovery, NDM, University of Oxford, Oxford, OX3 7DQ, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Department of Pediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Center, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Meng R, Fu Y, Zhang Y, Mou Y, Liu G, Fan H. Indoleamine 2,3-dioxygenase 1 signaling orchestrates immune tolerance in Echinococcus multilocularis-infected mice. Front Immunol 2022; 13:1032280. [PMID: 36439161 PMCID: PMC9691980 DOI: 10.3389/fimmu.2022.1032280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
The cestode Echinococcus multilocularis larva infection causes lethal zoonotic alveolar echinococcosis (AE), a disease posing a great threat to the public health worldwide. This persistent hepatic tumor-like disease in AE patients has been largely attributed to aberrant T cell responses, of which Th1 responses are impeded, whilst Th2 and regulatory T cell responses are elevated, creating an immune tolerogenic microenvironment in the liver. However, the immune tolerance mechanisms are not fully understood. Dendritic cells (DCs) are key cellular components in facilitating immune tolerance in chronic diseases, including AE. Here, we demonstrate that indoleamine 2,3-dioxygenase 1-deficient (IDO1-/-) mice display less severe AE as compared to wild-type (WT) mice during the infection. Mechanistically, IDO1 prevents optimal T cells responses by programming DCs into a tolerogenic state. Specifically, IDO1 prevents the maturation and migration potential of DCs, as shown by the significantly enhanced expression of the antigen-presenting molecule (MHC II), costimulatory molecules (CD80 and CD86), and chemokine receptors (CXCR4 and CCR7) in infected IDO1-/- mice as compared to infected wild-type mice. More importantly, the tolerogenic phenotype of DCs is partly reverted in IDO1-/- mice, as indicated by enhanced activation, proliferation, and differentiation of both CD4+ and CD8+ - T cells upon infection with Echinococcus multilocularis, in comparison with WT mice. Interestingly, in absence of IDO1, CD4+ T cells are prone to differentiate to effector memory cells (CD44+CD62L-); in contrast, CD8+ T cells are highly biased to the central memory phenotype (CD44+CD62L+). Overall, these data are the first to demonstrate the essential role of IDO1 signaling in inducing immunosuppression in mice infected with Echinococcus multilocularis.
Collapse
Affiliation(s)
- Ru Meng
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), The Research Key Laboratory for Echinococcosis of Qinghai Province, Qinghai University, Xining, China
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Yaogang Zhang
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Yalin Mou
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Gongguan Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haining Fan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), The Research Key Laboratory for Echinococcosis of Qinghai Province, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| |
Collapse
|
6
|
Xie X, Wu Z, Wu Y, Liu J, Chen X, Shi X, Wei C, Li J, Lv J, Li Q, Tang L, He S, Zhan T, Tang Z. Cysteine protease of Clonorchis sinensis alleviates DSS-induced colitis in mice. PLoS Negl Trop Dis 2022; 16:e0010774. [PMID: 36084127 PMCID: PMC9491586 DOI: 10.1371/journal.pntd.0010774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Currently, inflammatory bowel disease (IBD) has become a global chronic idiopathic disease with ever-rising morbidity and prevalence. Accumulating evidence supports the IBD-hygiene hypothesis that helminths and their derivatives have potential therapeutic value for IBD. Clonorchis sinensis (C. sinensis) mainly elicit Th2/Treg-dominated immune responses to maintain long-term parasitism in the host. This study aimed to evaluate the therapeutic effects of cysteine protease (CsCP) and adult crude antigen (CsCA) of C. sinensis, and C. sinensis (Cs) infection on DSS-induced colitis mice.
Methods
BALB/c mice were given 5% DSS daily for 7 days to induce colitis. During this period, mice were treated with rCsCP, CsCA or dexamethasone (DXM) every day, or Cs infection which was established in advance. Changes in body weight, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, myeloperoxidase (MPO) activity levels, regulatory T cell (Treg) subset levels, colon gene expression levels, serum cytokine levels, and biochemical indexes were measured.
Results
Compared with Cs infection, rCsCP and CsCA alleviated the disease activity of acute colitis more significant without causing abnormal blood biochemical indexes. In comparison, rCsCP was superior to CsCA in attenuating colonic pathological symptoms, enhancing the proportion of Treg cells in spleens and mesenteric lymph nodes, and improving the secretion of inflammatory-related cytokines (e.g., IL-2, IL-4, IL-10 and IL-13) in serum. Combined with RNA-seq data, it was revealed that CsCA might up-regulate the genes related to C-type lectin receptor and intestinal mucosal repair related signal pathways (e.g., Cd209d, F13a1 and Cckbr) to reduce colon inflammation and benefit intestinal mucosal repair. Dissimilarly, rCsCP ameliorated colitis mainly through stimulating innate immunity, such as Toll like receptor (TLR) signaling pathway, down-regulating the expression of inflammatory cytokines (e.g., IL-12b, IL-23r and IL-7), thereby restraining the differentiation of Th1/Th17 cells.
Conclusions
Both rCsCP and CsCA showed good therapeutic effects on the treatment of acute colitis, but rCsCP is a better choice. rCsCP is a safe, effective, readily available and promising therapeutic agent against IBD mainly by activating innate immunity and regulating the IL-12/IL-23r axis.
Collapse
Affiliation(s)
- Xiaoying Xie
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Yuhong Wu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jing Liu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xinyuan Chen
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoqian Shi
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiheng Wei
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiasheng Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiahui Lv
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Parasitology, Guangxi Medical University, Nanning, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Tingzheng Zhan
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| |
Collapse
|
7
|
Oreskovic Z, Levá L, Chlebová K, Hlavová K, Tesařík R, Gebauer J, Faldyna M. Effects of IFNγ and IL4 rich microenvironment on porcine monocyte-derived dendritic cell activation in vitro. Res Vet Sci 2022; 145:54-62. [DOI: 10.1016/j.rvsc.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
|
8
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
9
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
10
|
Zhang XH, Huang D, Li YL, Chang B. Novel mechanism of hepatobiliary system damage and immunoglobulin G4 elevation caused by Clonorchis sinensis infection. World J Clin Cases 2021; 9:6639-6653. [PMID: 34447811 PMCID: PMC8362508 DOI: 10.12998/wjcc.v9.i23.6639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Clonorchis sinensis infection is still a major public health problem. It is estimated that more than 15 million people worldwide are infected, especially in Northeast China, Taiwan, South Korea, and North Vietnam. The detection of Clonorchis sinensis eggs in feces and bile is still the only gold standard for the diagnosis of Clonorchis sinensis infection, and new detection methods are needed to improve the detection rate. After Clonorchis sinensis invades the human body, it mainly parasitizes the hepatobiliary tract. Therefore, it is closely related to hepatobiliary diseases such as cholangitis, bile duct stones, liver fibrosis, and cholangiocarcinoma. The increase in immunoglobulin G4 (IgG4) caused by Clonorchis sinensis infection is rare and there are few reports about the relevant mechanism. It may be related to the inflammatory factors interleukin (IL)-4, IL-10, and IL-13 produced by human phagocytes, T cells, B cells, and other immune cells in the process of resisting the invasion of Clonorchis sinensis. However, this finding still needs further clarification and confirmation. This article reviews the epidemiology, clinical manifestations, serology, imaging, pathogenic mechanism, and control measures of Clonorchis sinensis infection to help establish the diagnostic process for Clonorchis sinensis. We report novel mechanisms of IgG4 elevation due to Clonorchis sinensis infection to provide more experience and a theoretical basis for clinical diagnosis and treatment of this infection.
Collapse
Affiliation(s)
- Xin-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Die Huang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
11
|
Antifibrotic and anthelminthic effect of casticin on Schistosoma mansoni-infected BALB/c mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:314-322. [PMID: 34167886 DOI: 10.1016/j.jmii.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE Schistosomiasis is an important tropical disease caused by Schistosoma. Although the pathogenesis of liver fibrosis has been intensively studied, the choice of effective treatment is still inadequate. In this study, we aimed to investigate the potential of using Casticin to treat Schistosoma mansoni-induced liver fibrosis. METHODS BALB/c mice were divided into three groups - control, infection, and treatment group. The infection and treatment group were percutaneously infected with 100-120 cercariae. Mice from the treatment group were treated with 20 mg/kg/day Casticin for 14 consecutive days to investigate the potential protective effects of Casticin. Mice were sacrificed and were used for histological, RNA, protein, and parasite burden analysis. RESULTS Our results showed that hepatic fibrosis was significantly attenuated, as indicated by histology and reduction of fibrotic markers such as collagen AI, transforming growth factor β (TGF-β), and α-smooth muscle actin (α-SMA). Furthermore, Casticin treatment significantly reduced worm burden. Anthelmintic effect of Casticin was also observed by scanning electron microscopy. CONCLUSION Collectively, our study suggested that Casticin may be a beneficial candidate in treating S. mansoni infection.
Collapse
|
12
|
Jittimanee S, Wongratanacheewin S, Kaewraemruaen C, Jittimanee J. Opisthorchis viverrini antigens up-regulates the expression of CD80 and MHC class II in JAWSII mouse dendritic cells and promotes IL-10 and TGF-β secretions. Parasitol Int 2021; 84:102401. [PMID: 34082134 DOI: 10.1016/j.parint.2021.102401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APC) involved in the initiation of immune responses. Maturation of DCs is characterized by the high expression of major histocompatibility complex (MHC) class II and co-stimulatory clusters of differentiation (CD) 40, CD80, and CD86 molecules. Matured DCs are required for T cell differentiation and proliferation. However, the response of DCs to Opisthorchis viverrini antigens has not yet been understood. Therefore, this study sought to determine the expression of surface molecules of JAWSII mouse DCs stimulated by crude somatic (CS) and excretory-secretory (ES) antigens of O. viverrini. ES antigen significantly induced only mRNA expression of CD80 and MHC class II in JAWSII mouse DCs, while CS antigen promoted up-regulation of both mRNA and protein levels of CD80 and MHC class II, indicating relative maturation of JAWII mouse DCs. Moreover, the secreted cytokines from the co-cultures of O. viverrini antigens stimulated JAWSII DC with naïve CD4+ T cells was determined. Significantly increased levels of immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) were found. The up-regulation of these cytokines may indicate the response of regulatory T cells (Treg) to CS antigen-stimulated JAWSII DC. These findings may lead to a better understanding of the role that DCs play in O. viverrini infection.
Collapse
Affiliation(s)
- Suphattra Jittimanee
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Chamraj Kaewraemruaen
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campas, Nakhon Pathom, 73140, Thailand.
| | - Jutharat Jittimanee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
13
|
Wan-Nor-Amilah WAW, Syifaa'-Liyana ML, Azlina Y, Shafizol Z, Nurul AA. In Vitro Immunomodulatory Activity of Aqueous Quercus infectoria Gall Extract. Oman Med J 2021; 36:e265. [PMID: 34113461 PMCID: PMC8167420 DOI: 10.5001/omj.2021.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/07/2020] [Indexed: 11/15/2022] Open
Abstract
Objectives Our study reports the immunomodulatory potency of Quercus infectoria gall extract in vitro. The aqueous extract was prepared and examined for its effects on cell proliferation, phagocytic activity, nitric oxide (NO) production, and cytokine synthesis by murine macrophages. Methods Proliferative, phagocytic activity, and NO production of extract-treated and control cells were studied using proliferative assay, flow cytometry, and Griess reaction, respectively. An enzyme-linked immunosorbent assay was performed to determine the levels of pro- and anti-inflammatory cytokines in the macrophage culture. Results Treated macrophages had a higher proliferative rate and phagocytic activity compared to untreated macrophages. The cell treatment with an extract concentration of 64 μg/mL demonstrated a significant decrease in NO production (p < 0.001). An increase in cytokine levels (IL-2, IL-5, IL-10, IL-17A, IL-23, TGF-β1) was observed; however, this increase was not statistically significant. Conclusions Our study suggests that gall extract possesses the potential for augmenting immunomodulatory activity by cellular mediated mechanism and could play a role in regulating the innate immune response.
Collapse
Affiliation(s)
| | | | - Yahya Azlina
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zainuddin Shafizol
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Asma Abdullah Nurul
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
14
|
Banijamali RS, Soleimanjahi H, Soudi S, Karimi H. Mesenchymal stem cells support delivery and boost the efficacy of oncolytic reoviruses in TC-1 tumor cells. J Cell Biochem 2021; 122:1360-1375. [PMID: 34056765 DOI: 10.1002/jcb.29955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022]
Abstract
Cancer has remained a major health problem around the world. Mesenchymal stem cells (MSCs)-based therapy exhibits a therapeutic effect via different mechanisms. By using MSCs as carrier cells, the major problem of clearance of oncolytic viruses is resolved by neutralizing antibodies before they react with cancer cells. The aim of this study was to characterize the effect of infected MSCs by reovirus type-3 Dearing (T3D) for in vitro cancer therapy. Adipose-derived MSCs (AD-MSCs) were infected with reovirus T3D and its biological properties were evaluated. Then, the effects of reovirus-infected AD-MSCs on cytokine profile, nitric oxide (NO) production, and apoptosis induction in TC-1 cells were assessed. Our results indicated that the differentiation potential of AD-MSCs was affected by reovirus. However, phenotypes were not affected after infection. Then, the effects of reovirus-infected AD-MSCs in TC-1 cells showed an increased amount of tumor necrosis factor-alpha (TNF-α) and NO production and a decreased amount of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10). Moreover, apoptosis significantly increased via coculturing of TC-1 cells with infected AD-MSCs, compared with control, and both internal and external apoptosis pathways are activated in experimental groups. In conclusion, the data showed that with increasing TNF-α and NO production and reducing IL-10 and TGF-β production, AD-MSCs can enhance the oncolytic effect of reovirus in cancer cells. Furthermore, the results suggested that AD-MSCs can be used as effective carrier cells candidate for reovirus T3D to maximize their anticancer cell activity.
Collapse
Affiliation(s)
- Razieh S Banijamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Nguyen TM, Mandiki SNM, Salomon JMAJ, Baruti JB, Thi NTT, Nguyen TH, Nhu TQ, Kestemont P. Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E.coli LPS as modified by different dietary plant oils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103828. [PMID: 32798494 DOI: 10.1016/j.dci.2020.103828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Dietary lipids could modify fatty acid (FA) composition in fish tissues. Long chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (ARA), eicosapentaneoic acid (EPA) and docosahexaenoic acid (DHA) are able to modulate the immune status in fish through an inflammatory process but their availability may be limited when fish are exclusively fed plant oils. This study was conducted to evaluate how to maximise the utilisation of dietary plant oil for an efficient inflammatory response in common carp head kidney leukocytes (HKLs) exposed to a gram-negative bacterial endotoxin, Escherichia coli lipopolysaccharides (LPS). HKLs were isolated from fish fed cod liver oil (CLO), linseed oil (LO), sesame oil (SO) a blend of SO and LO (SLO, v:v 1:1), and these plant oil diets supplemented with DHA (SO + DHA, SOD) or ARA (LO + ARA, LOA) for 6 weeks. Cells were then exposed to LPS at a dose of 10 μg/mL for 4 and 24 h. Peroxidase activity, total Ig, and NO levels were measured in the culture medium, while cells were used for expression analyses of candidate genes in pattern recognition (tlr-4), eicosanoid metabolism (pge2, 5-lox), pro-inflammatory (il-1, il-6, il-8, tnf-α, nf-kb, inos, cxc), anti-inflammatory (il-10, nf-kbi, tgf-β1) responses, and cytoprotective (gpx-1, prdx-3) processes. Results showed that LPS induced significantly inflammatory responses, evidenced by a high level of almost all the targeted humoral immune parameters and/or gene expression. Expression of inflammatory cytokines and other inflammatory mediators was upregulated after 4 h-LPS exposure and reverted to basal levels after 24 h. HKLs from fish fed SLO, LOA, or SOD diet exhibited a more efficient regulation of acute inflammatory processes than those fed CLO diet. The results indicate that the immune competence of fish fed plant oil mixture was comparable to the one of fish fed fish oil diet. Moreover, the supplementation of ARA or DHA induced similar immunomodulation in common carp.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Jean M A J Salomon
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Joel Bondekwe Baruti
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Nang Thu Tran Thi
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; Pharmacology Department, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Truong Quynh Nhu
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| |
Collapse
|
16
|
Badri M, Ghaffarifar F, Hassan ZM, Dalimi A, Cortes H. Immunoregulatory Effects of Somatic Extract of Toxocara canis on Airway Inflammations in Murine Model. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:500-510. [PMID: 33884007 PMCID: PMC8039495 DOI: 10.18502/ijpa.v15i4.4855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: The immunomodulatory role of many parasites is well-documented. The current study designed to assess the immunoregulatory effects of the somatic extract (SE) of Toxocara canis on murine model of airway inflammations. Methods: The experiment was performed in department of parasitology of Tarbiat Mo-dares University, Tehran, Iran from November 2018 to May 2019. Totally 30 female BALB/c mice divided into one control group and two experimental groups (10 mice in each group). The ovalbumin (OVA) group was sensitized with OVA in alum, while the SE group was administered with SE and OVA in alum intraperitoneally. The control group was injected with PBS in alum. Then, SE and OVA groups were intranasally challenged with OVA for three consecutive days and the control group encountered with PBS at the same time. One day after the last challenge, real-time PCR and histopathology survey were conducted on isolated lung tissues. Results: The gene expression of IL-25, IL-33, TNF-α and TLR-4 in SE group was significantly lower than OVA group (P<0.05). The level of IL-10, TGF-β and IFN-γ were considerably higher than the OVA group (P<0.05). The inflammation was reduced in SE group, as the total cell number of bronchoalveolar lavage fluid was less than OVA group. Based on the histopathology findings the inflammation was decreased in SE group compared to the OVA group. Conclusion: Although, an inhibitory effect of SE of T. canis on airway inflammations was detected, there is still a long way ahead regarding the indication of the precise mechanisms.
Collapse
Affiliation(s)
- Milad Badri
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair M Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hélder Cortes
- Victor Caeiro Laboratory of Parasitology, MED-Mediterranean Institute for Agriculture, Environment and Development, Department of Veterinary Medicine, IIFA, University of Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
17
|
Yan C, Fang F, Zhang YZ, Dong X, Wu J, Liu HL, Fan CY, Koda S, Zhang BB, Yu Q, Wang L, Wang YG, Chen JX, Zheng KY. Recombinant CsHscB of carcinogenic liver fluke Clonorchis sinensis induces IL-10 production by binding with TLR2. PLoS Negl Trop Dis 2020; 14:e0008643. [PMID: 33044969 PMCID: PMC7549790 DOI: 10.1371/journal.pntd.0008643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clonorchis sinensis, a fluke dwelling in the intrahepatic bile ducts causes clonorchiasis, which affect about 15 million people wide-distributed in eastern Asia. During C. sinensis infection, worm-host interaction results in activation of patterns recognition receptors (PRRs) such as Toll-like receptors (TLRs) and further triggers immune responses, which determines the outcome of the infection. However, the mechanisms by which pathogen-associated molecules patterns from C. sinensis interact with TLRs were poorly understood. In the present study, we assumed that the molecules from C. sinensis may regulate host immune responses via TLR2 signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we have identified a ~34 kDa CsHscB from C. sinensis which physically bound with TLR2 as demonstrated by molecular docking and pull-down assay. We also found that recombinant CsHscB (rCsHscB) potently activates macrophage to express various proteins including TLR2, CD80, MHCII, and cytokines like IL-6, TNF-α, and IL-10, but rCsHscB failed to induce IL-10 in macrophages from Tlr2-/- mice. Moreover, ERK1/2 activation was required for rCsHscB-induced IL-10 production in macrophages. In vivo study revealed that rCsHscB triggered a high production of IL-10 in the wild-type (WT) but not in Tlr2-/- mice. Consistently, the phosphorylation of ERK1/2 was also attenuated in Tlr2-/- mice compared to the WT mice, after the treatment with rCsHscB. CONCLUSIONS/SIGNIFICANCE Our data thus demonstrate that rCsHscB from C. sinensis interacts with TLR2 to be endowed with immune regulatory activities, and may have some therapeutic implications in future beyond parasitology.
Collapse
Affiliation(s)
- Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Fan Fang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yu-Zhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Xin Dong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | | | - Chun-Yang Fan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- College of Bioinformatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yu-Gang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center of Malaria, Schistosomiasis, and Filariasis, Shanghai, P. R. China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
- * E-mail:
| |
Collapse
|
18
|
MiR-374b-5p Regulates T Cell Differentiation and Is Associated with rEg.P29 Immunity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8024763. [PMID: 32908913 PMCID: PMC7463394 DOI: 10.1155/2020/8024763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease caused by Echinococcus granulosus (Eg) infection. Our previous study confirmed that recombinant Eg.P29 (rEg.P29) could protect against echinococcus granulosus secondary infection in sheep and mice. The aim of the study was to investigate the association between immunoprotection of rEg.P29 vaccine and mmu-miR-374b-5p (miR-374b-5p) and study the immunity influence of miR-374b-5p on CD4+ T cells in mice spleen. MiR-374b-5p level was significantly increased after the second-week and the fourth week of vaccination with rEg.P29. Overexpression of miR-374b-5p increased IFN-γ, IL-2, IL-17A mRNA levels and decreased IL-10 mRNA levels in CD4+ T cells. Moreover, the inhibition of miR-374b-5p decreased IFN-γ and IL-17A and increased IL-10 mRNA levels in CD4+ T cells; this was further confirmed by the flow cytometry. The vaccination of rEg.P29 enhanced miR-374b-5p expression that was associated with a higher Th1 and Th17 immune response, a lower IL-10 mRNA production with miR-374b-5p overexpression, a lower Th1 immune response, and a higher IL-10 mRNA levels with miR-374b-5p inhibitions. To sum up, these data suggest that miR-374b-5p may participate in rEg.P29 immunity by regulating Th1 and Th17 differentiation.
Collapse
|
19
|
Phillips NA, Lillico DM, Qin R, McAllister M, El-Din MG, Belosevic M, Stafford JL. Inorganic fraction of oil sands process-affected water induces mammalian macrophage stress gene expression and acutely modulates immune cell functional markers at both the gene and protein levels. Toxicol In Vitro 2020; 66:104875. [DOI: 10.1016/j.tiv.2020.104875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
|
20
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
21
|
HEMATI F, MIRSADRAEI M, HEMATI M, MOHEBALIAN H, BORJI H. Marshallagia marshalli Antigen Strengthens Dendritic Cell Mediated T Lymphocyte Regulation on Asthmatic Patients. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:40-47. [PMID: 32489374 PMCID: PMC7244837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The current study was conducted to investigate the antigenic effect of Marshallagia marshalli on the treatment of asthma by measuring the secreted inhibitory cytokine. METHODS Case patients and controls were selected from clinics in Mashhad, Khorasan Razavi Province, Northeastern Iran in 2017-18. In this experimental study, peripheral blood mononuclear cells (PBMCs) were isolated from 15 patients with asthma and 10 healthy controls and were cultured. PBMCs were then converted to tolerogenic DCs through exposure to GM-CSF, IL-4 and M. marshalli antigen. Then, tolerogenic DCs were exposed to autologous T cells for five days and finally, the level of secreted TGF-β1 was measured. RESULTS The mean TGF-β1 level in the control and control groups was 210.2 ± 8.2 and 225.4 ± 6.1 pq/ml, respectively. The results showed that TGF-β1 levels in both groups significantly increased in both groups (P<0.001). In addition, TGF-β1 levels in the case group were significantly higher than the control group (P<0.001). CONCLUSION M. marshalli antigen increase the level of TGF-β1 and can create antigen-bearing dendritic cells and shift T lymphocytes to the regulatory type. This parasite can be used in dendritic cell therapy to control allergic diseases.
Collapse
Affiliation(s)
- Fatemeh HEMATI
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid MIRSADRAEI
- Department of Clinical Sciences, Mashhad Azad University of Medical Sciences, Mashhad, Iran
| | - Milad HEMATI
- Atherosclerosis Prevention Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi MOHEBALIAN
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan BORJI
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran,Correspondence
| |
Collapse
|
22
|
Chen Q, Liu Y, Jeong HW, Stehling M, Dinh VV, Zhou B, Adams RH. Apelin + Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury. Cell Stem Cell 2019; 25:768-783.e6. [PMID: 31761723 PMCID: PMC6900750 DOI: 10.1016/j.stem.2019.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy and chemotherapy disrupt bone vasculature, but the underlying causes and mechanisms enabling vessel regeneration after bone marrow (BM) transplantation remain poorly understood. Here, we show that loss of hematopoietic cells per se, in response to irradiation and other treatments, triggers vessel dilation, permeability, and endothelial cell (EC) proliferation. We further identify a small subpopulation of Apelin-expressing (Apln+) ECs, representing 0.003% of BM cells, that is critical for physiological homeostasis and transplant-induced BM regeneration. Genetic ablation of Apln+ ECs or Apln-CreER-mediated deletion of Kitl and Vegfr2 disrupt hematopoietic stem cell (HSC) maintenance and contributions to regeneration. Consistently, the fraction of Apln+ ECs increases substantially after irradiation and promotes normalization of the bone vasculature in response to VEGF-A, which is provided by transplanted hematopoietic stem and progenitor cells (HSPCs). Together, these findings reveal critical functional roles for HSPCs in maintaining vascular integrity and for Apln+ ECs in hematopoiesis, suggesting potential targets for improving BM transplantation. Loss of hematopoietic cells phenocopies irradiation-induced vascular defects Identification and characterization of Apln+ ECs in adult BM Apln+ ECs regulate HSC maintenance and steady-state hematopoiesis Apln+ ECs expand, respond to HSPCs, and drive post-transplantation recovery
Collapse
Affiliation(s)
- Qi Chen
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Yang Liu
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Units, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Van Vuong Dinh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, A-2112, Shanghai 200031, China
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
23
|
Wen ZH, Lin YY, Chang YC, Tang CC, Hsieh SP, Lee HP, Sung CS, Chen WF, Lee CH, Hsuan Jean Y. The COX-2 inhibitor etoricoxib reduces experimental osteoarthritis and nociception in rats: The roles of TGF-β1 and NGF expressions in chondrocytes. Eur J Pain 2019; 24:209-222. [PMID: 31495059 DOI: 10.1002/ejp.1478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disease, especially affecting the knee joint. Etoricoxib, a highly selective cyclooxygenase (COX)-2 inhibitor which can reduce postoperative pain after orthopaedic surgery. The aim of this study was to investigate the effects of oral etoricoxib on the development of OA and to examine concomitant changes in the nociceptive behaviour of rats. METHOD OA was induced in wistar rats by anterior cruciate ligament transection (ACLT) of the right knee. The ACLT + etoricoxib groups received 6.7 or 33.3 mg/kg of oral etoricoxib three times a week for 12 consecutive weeks, starting at week 8 after ACLT. Nociceptive behaviours and changes in knee joint width during OA development were analyzed. Histopathological studies were then performed on the cartilage. Immunohistochemical analysis was performed to examine the effect of etoricoxib on the expression of transforming growth factor-beta (TGF-β) and nerve growth factor (NGF) in articular cartilage chondrocytes. RESULTS OA rats receiving etoricoxib showed a significantly lower degree of cartilage degeneration than the rats receiving placebo. Nociceptive behaviour studies showed significant improvement in the ACLT + etoricoxib groups compared to that in the ACLT group. Moreover, etoricoxib attenuated NGF expression, but increased TGF-β expression, in OA-affected cartilage. CONCLUSIONS Oral etoricoxib in a rat OA model (a) attenuates the development of OA, (b) concomitantly reduces nociception, and (c) modulates chondrocyte metabolism, possibly by inhibiting NGF expression and increasing TGF-β expression. SIGNIFICANCE Oral administration of etoricoxib can attenuate the development of OA, with an associated attenuation of nociceptive behaviour in an experimental rat OA model. Moreover, etoricoxib attenuated NGF expression, but enhanced TGF-β expression in OA-affected chondrocytes. These findings may pave the way for further investigations of etoricoxib as a potential therapeutic target for the treatment of the inflammatory component in OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yen-You Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Yi-Chen Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chi-Chieh Tang
- Department of Early Childhood Education, National Pintung University, Pingtung, Taiwan
| | - Shih-Peng Hsieh
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hsin-Pai Lee
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chian-Her Lee
- Department of Orthopedic, School of Medicine, Taipei Medical University, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| |
Collapse
|
24
|
Khatun MS, Hasan MM, Kurata H. PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Front Genet 2019; 10:129. [PMID: 30891059 PMCID: PMC6411759 DOI: 10.3389/fgene.2019.00129] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Numerous inflammatory diseases and autoimmune disorders by therapeutic peptides have received substantial consideration; however, the exploration of anti-inflammatory peptides via biological experiments is often a time-consuming and expensive task. The development of novel in silico predictors is desired to classify potential anti-inflammatory peptides prior to in vitro investigation. Herein, an accurate predictor, called PreAIP (Predictor of Anti-Inflammatory Peptides) was developed by integrating multiple complementary features. We systematically investigated different types of features including primary sequence, evolutionary and structural information through a random forest classifier. The final PreAIP model achieved an AUC value of 0.833 in the training dataset via 10-fold cross-validation test, which was better than that of existing models. Moreover, we assessed the performance of the PreAIP with an AUC value of 0.840 on a test dataset to demonstrate that the proposed method outperformed the two existing methods. These results indicated that the PreAIP is an accurate predictor for identifying AIPs and contributes to the development of AIPs therapeutics and biomedical research. The curated datasets and the PreAIP are freely available at http://kurata14.bio.kyutech.ac.jp/PreAIP/.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan.,Biomedical Informatics R&D Center, Kyushu Institute of Technology, Fukuoka, Japan
| |
Collapse
|
25
|
Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019; 17:21. [PMID: 30832675 PMCID: PMC6399872 DOI: 10.1186/s12964-019-0334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Daniel Gendron
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Center, 2000 College Street, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada.
| |
Collapse
|
26
|
Gutierrez L, Jang M, Zhang T, Akhtari M, Alachkar H. Midostaurin reduces Regulatory T cells markers in Acute Myeloid Leukemia. Sci Rep 2018; 8:17544. [PMID: 30510164 PMCID: PMC6277419 DOI: 10.1038/s41598-018-35978-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy in which the only curative approach is allogeneic stem cell transplant (Allo-HSCT). The recognition and elimination of leukemic clones by donor T-cells contribute significantly to Allo-HSCT success. FLT3-ITD, a common mutation in AML, is associated with poor prognosis. Recently, midostaurin became the first FDA approved FLT3-inhibitor for pre-transplant patients with FLT3-ITD in combination with standard therapy. In addition to their multikinase activity which may affect T-cell signaling, FLT3-inhibitors induce apoptosis of malignant cells which may also enhance antigen presentation to activate T-cells. Considering the increased clinical use of these inhibitors in patients with AML, and the limited clinical benefit derived from their use as single agents, understanding how FLT3-inhibitors affect T cell population and function is needed to improve their clinical benefit. We examined the effect of four different FLT3 inhibitors (midostaurin, sorafenib, tandutinib, and quizartenib) on T cell populations in peripheral blood mononuclear cells (PBMC) obtained from healthy donors and from patients with AML. Midostaurin exhibited a significant decrease in CD4 + CD25 + FOXP3+ T cell population and FOXP3 mRNA expression in healthy and AML PBMCs. Similarly, samples collected from patients with AML treated with midostaurin showed a reduction in Tregs markers. Interferon-γ(IFN-γ), tumor necrosis factor-α(TNF-α), and IL-10 levels were also reduced following midostaurin treatment. Considering the FDA approval of midostaurin for use in patients with AML in the pre-transplant setting, our finding will have important clinical implication as it provides the rationale for functional investigation of the use of midostaurin in post-transplant patients.
Collapse
Affiliation(s)
- Lucas Gutierrez
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Miran Jang
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Tian Zhang
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Mojtaba Akhtari
- Norris Comprehensive Cancer Center, USC, Los Angeles, CA, USA
| | - Houda Alachkar
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, USC, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Kao YF, Wu YHS, Chou CH, Fu SG, Liu CW, Chai HJ, Chen YC. Manufacture and characterization of anti-inflammatory liposomes from jumbo flying squid (Dosidicus gigas) skin phospholipid extraction. Food Funct 2018; 9:3986-3996. [PMID: 29974091 DOI: 10.1039/c8fo00767e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-inflammation properties of marine phospholipids enriched with n-3 fatty acids contribute to anti-inflammatory and inflammation-resolving mediators. Functional squid-skin (SQ) liposomes were manufactured from squid-skin phospholipids, and their anti-inflammatory effects were investigated. SQ liposomes included phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and lysophosphatidylcholine (Lyso-PC), and had an approximate diameter of 100 mm. When RAW264.7 cells were treated with the SQ liposome, no (p > 0.05) cytotoxicity was observed below a concentration of 7.5 mg mL-1. An SQ-liposome pretreatment of lipopolysaccharide (LPS)-induced RAW 264.7 cells showed decreased (p < 0.05) prostaglandin E2 (PGE2), nitric oxide (NO), interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). The engulfment of SQ liposomes by the RAW264.7 cells resulted in lower (p < 0.05) LPS-induced intracellular levels of reactive oxygen species. Furthermore, an SQ-liposome administration ameliorated (p < 0.05) carrageenan-induced paw edema in mice. SQ liposomes may act via apoptotic mimicry to elicit the resolution of inflammation and prevent chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Keelung City 202, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Helminth Antigen-Conditioned Dendritic Cells Generate Anti-Inflammatory Cd4 T Cells Independent of Antigen Presentation via Major Histocompatibility Complex Class II. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2589-2604. [PMID: 30121255 DOI: 10.1016/j.ajpath.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.
Collapse
|
29
|
Li X, Yan B. Research on the effect of cytokine concentration on the immune level and survival conditions of elderly patients with sepsis. Exp Ther Med 2018; 16:842-846. [PMID: 30112039 PMCID: PMC6090424 DOI: 10.3892/etm.2018.6221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
The present study was carried out to investigate the effect of cytokine (CK) concentrations on the immune phenotype and survival conditions of elderly patients with sepsis. A total of 112 elderly patients with sepsis who were admitted to The Affiliated Hospital of Medical School, Ningbo University for treatment between June 2015 and June 2017 were enrolled as the subjects. According to each patient's condition, they were divided into the mild sepsis group (n=68) and the severe sepsis group (n=44). Additionally, a further 60 patients without sepsis who were admitted to the Intensive Care Unit (ICU) of this hospital during the same period were recruited as the control group. The levels of CK, tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-8, procalcitonin (PCT), endothelin-1 (ET-1) and IL-10 were detected, and the assessment system for immune levels was established. The levels of TNF-α, IL-6, IL-8, PCT, ET-1 and IL-10 in the serum of patients in the mild and severe sepsis groups were significantly higher than those in the control group (P<0.05), and the levels in the severe sepsis group were significantly higher than those in the mild sepsis group (P<0.05). Among the 112 sepsis patients, there were 30 mortalities (26.79%) within 30 days, of which the levels of TNF-α, IL-6, IL-8, PCT, ET-1 and IL-10 were significantly higher than those in the surviving patients (P<0.05). Between the mild and severe sepsis groups, as well as the number of mortalities and surviving patients, there were statistically significant differences when comparing the immunological phenotypes (P<0.05). These findings indicated that the levels of TNF-α, IL-6, IL-8, PCT, ET-1 and IL-10 were associated with the condition and prognosis of elderly patients with sepsis, and the assessment system for immune levels based on the levels of these indicators was conducive to the stipulation of individualized immune regulation procedure and prognostic evaluation of sepsis.
Collapse
Affiliation(s)
- Xuguang Li
- ICU, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Biqing Yan
- ICU, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
30
|
Guo F, Ding Y, Yu X, Cai X. Effect of dexmedetomidine, midazolam, and propofol on lipopolysaccharide-stimulated dendritic cells. Exp Ther Med 2018; 15:5487-5494. [PMID: 29904429 DOI: 10.3892/etm.2018.6094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Dexmedetomidine, midazolam and propofol are common sedative drugs used in the intensive care unit. Lipopolysaccharides (LPS) are a potent inducer of human dendritic cells (DCs) maturation and survival, which induces cytokine production. The present study aimed to investigate the effect and mechanisms of sedative drugs on LPS-induced cytokine production in DCs. The mouse bone marrow-derived dendritic DC2.4 cell line was used in the present study. The Cell Counting Kit-8 assay was used to measure the viability of cells. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 mRNA expression levels and contents were measured using reverse transcription-quantitative polymerase chain reaction and ELISA, respectively. The expression levels of proteins associated with nuclear factor-κB (NF-κB) and mitogen activated protein kinase signaling pathways were assessed by western blotting. The three sedatives had different roles on TNF-α, IL-1β, IL-6, and IL-10 mRNA expression levels and content in DCs. Dexmedetomidine promoted inflammatory cytokine production at high clinical concentrations (10, 1 and 0.1 µM), however suppressed them at the lowest clinical concentration (0.001 µM), which was associated with NF-κB and c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) signaling. Midazolam inhibited inflammatory cytokine production via suppression of the NF-κB and JNK signaling pathways. Propofol partly inhibited inflammatory cytokine production, including IL-1β and IL-6, and the anti-inflammatory effect may result from inhibition of JNK-MAPK, and enhanced NF-κB and extracellular signal-regulated kinase-MAPK signaling at clinical concentrations. The present study helped to elucidate the function of sedatives in LPS-induced cytokine production in DCs, which will facilitate rational implementation of these sedatives in patients undergoing tracheal intubation with sepsis or multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Feng Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xue Yu
- Department of Medicine, Tengzhou Central People's Hospital, Zaozhuang, Shandong 277500, P.R. China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
31
|
Singla B, Ghoshal P, Lin H, Wei Q, Dong Z, Csányi G. PKCδ-Mediated Nox2 Activation Promotes Fluid-Phase Pinocytosis of Antigens by Immature Dendritic Cells. Front Immunol 2018; 9:537. [PMID: 29632528 PMCID: PMC5879126 DOI: 10.3389/fimmu.2018.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Aims Macropinocytosis is a major endocytic pathway by which dendritic cells (DCs) internalize antigens in the periphery. Despite the importance of DCs in the initiation and control of adaptive immune responses, the signaling mechanisms mediating DC macropinocytosis of antigens remain largely unknown. The goal of the present study was to investigate whether protein kinase C (PKC) is involved in stimulation of DC macropinocytosis and, if so, to identify the specific PKC isoform(s) and downstream signaling mechanisms involved. Methods Various cellular, molecular and immunological techniques, pharmacological approaches and genetic knockout mice were utilized to investigate the signaling mechanisms mediating DC macropinocytosis. Results Confocal laser scanning microscopy confirmed that DCs internalize fluorescent antigens (ovalbumin) using macropinocytosis. Pharmacological blockade of classical and novel PKC isoforms using calphostin C abolished both phorbol ester- and hepatocyte growth factor-induced antigen macropinocytosis in DCs. The qRT-PCR experiments identified PKCδ as the dominant PKC isoform in DCs. Genetic studies demonstrated the functional role of PKCδ in DC macropinocytosis of antigens, their subsequent maturation, and secretion of various T-cell stimulatory cytokines, including IL-1α, TNF-α and IFN-β. Additional mechanistic studies identified NADPH oxidase 2 (Nox2) and intracellular superoxide anion as important players in DC macropinocytosis of antigens downstream of PKCδ activation. Conclusion The findings of the present study demonstrate a novel mechanism by which PKCδ activation via stimulation of Nox2 activity and downstream redox signaling promotes DC macropinocytosis of antigens. PKCδ/Nox2-mediated antigen macropinocytosis stimulates maturation of DCs and secretion of T-cell stimulatory cytokines. These findings may contribute to a better understanding of the regulatory mechanisms in DC macropinocytosis and downstream regulation of T-cell-mediated responses.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huiping Lin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
32
|
Dendritic Cells in Sepsis: Pathological Alterations and Therapeutic Implications. J Immunol Res 2017; 2017:3591248. [PMID: 29075648 PMCID: PMC5624156 DOI: 10.1155/2017/3591248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sepsis is the leading cause of death for critically ill patients in recent years. Dendritic cells (DCs) are important antigen-presenting cells and play a key role in immune response by regulating the innate and adaptive immunity. The number of DCs, the differentiation of monocytes into DCs, and the levels of surface molecules associated with the function of DCs are changed in the development of sepsis. There are many mechanisms involved in the alterations of DCs during sepsis, including the induction of apoptosis, reactive oxygen species generation, activation of the Wnt signaling pathway, epigenetic regulation, and variation in Toll-like receptor-dependent signaling. In this review, we present the classifications of DC subsets and mechanisms involved in the alterations of DCs in sepsis, as well as further discuss the therapeutic strategies targeting DCs in sepsis to improve the aberrant immune response and prolong the life during sepsis progression.
Collapse
|
33
|
Functional Impairment of Murine Dendritic Cell Subsets following Infection with Infective Larval Stage 3 of Brugia malayi. Infect Immun 2016; 85:IAI.00818-16. [PMID: 27799335 DOI: 10.1128/iai.00818-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
Filarial parasites cause functional impairment of host dendritic cells (DCs). However, the effects of early infection on individual DC subsets are not known. In this study, we infected BALB/c mice with infective stage 3 larvae of the lymphatic filarial parasite Brugia malayi (Bm-L3) and studied the effect on fluorescence-activated cell sorter (FACS)-sorted DC subsets. While myeloid DCs (mDCs) accumulated by day 3 postinfection (p.i.), lymphoid DCs (LDCs) and CD8+ plasmacytoid DCs (pDCs) peaked at day 7 p.i. in the spleens and mesenteric lymph nodes (mLNs) of infected mice. Increased tumor necrosis factor alpha (TNF-α) but reduced interleukin 12 (IL-12) and Toll-like receptor 4 (TLR4), -6, and -9 and reciprocal secretion of IL-4 and IL-10 were also observed across all DC subsets. Interestingly, Bm-L3 increased the expression of CD80 and CD86 across all DC subsets but decreased that of major histocompatibility complex class II (MHC-II) on mDCs and pDCs, resulting in their impaired antigen uptake and presentation capacities, but maximally attenuated the T-cell proliferation capacity of only mDCs. Furthermore, Bm-L3 increased phosphorylated p38 (p-p38), but not p-ERK, in mDCs and LDCs but downregulated them in pDCs, along with differential modulation of protein tyrosine phosphatases SHP-1, TCPTP, PTEN, and PTP1B across all DC subsets. Taken together, we report hitherto undocumented effects of early Bm-L3 infection on purified host DC subsets that lead to their functional impairment and attenuated host T-cell response.
Collapse
|
34
|
Kaewraemruaen C, Sermswan RW, Wongratanacheewin S. Induction of regulatory T cells by Opisthorchis viverrini. Parasite Immunol 2016; 38:688-697. [PMID: 27552546 DOI: 10.1111/pim.12358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Opisthorchis viverrini causes public health problems in South-East Asia. Recently, TGF-β and IL-10 have been reported to increase in O. viverrini-infected hamsters but the sources of these cytokines are still unknown. In this study, the CD4+ T cells in infected hamsters were investigated. It was demonstrated that IL-4+ CD4+ T cells were significantly increased in hamster spleens and mesenteric lymph nodes (MLNs) during chronic infection. Interestingly, IL-10+ CD4+ T cells were also discovered at a significant level while Treg (T regulatory)-like TGF- β+ CD4+ T cells were in MLNs of infected hamsters. Moreover, the CD4+ CD25+ Foxp3+ Treg cell response was significantly found both in spleens and MLNs in infected hamsters. The findings were then confirmed by development of T-cell clones against crude somatic antigens (CSAg) in immunized BALB/c mice. Five clones named TCC21, TCC23, TCC35, TCC41 and TCC108 were established. The TCC21 was found to be the TGF-β+ CD4+ while TCC35, TCC41 and TCC108 were IL-4+ CD4+ and TCC23 was IFN-γ+ CD4+ . This TGF-β+ CD4+ T clone showed an inhibitory function in vitro in mononuclear cell proliferation via TGF-β-mediated mechanisms. This study indicated that O. viverrini-infected hamsters could induce TGF-β+ CD4+ Treg-like cells. The CSAg-specific Tregs secreted high TGF-β, and limited immune cell proliferation.
Collapse
Affiliation(s)
- C Kaewraemruaen
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand.,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - R W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Wongratanacheewin
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand. .,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
35
|
Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 2016; 5:71. [PMID: 27384714 PMCID: PMC4933995 DOI: 10.1186/s40249-016-0166-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/30/2016] [Indexed: 01/14/2023] Open
Abstract
Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.
Collapse
Affiliation(s)
- Ze-Li Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Xin-Bing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
36
|
Zakeri A, Borji H, Haghparast A. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy. Int Rev Immunol 2016; 35:219-48. [PMID: 27120222 DOI: 10.3109/08830185.2015.1096936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.
Collapse
Affiliation(s)
- Amin Zakeri
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Hassan Borji
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Alireza Haghparast
- b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,c Biotechnology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
37
|
Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern Recognition Receptors in Cancer Progression and Metastasis. CANCER GROWTH AND METASTASIS 2015; 8:25-34. [PMID: 26279628 PMCID: PMC4514171 DOI: 10.4137/cgm.s24314] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
The innate immune system is an integral component of the inflammatory response to pathophysiological stimuli. Toll-like receptors (TLRs) and inflammasomes are the major sensors and pattern recognition receptors (PRRs) of the innate immune system that activate stimulus (signal)-specific pro-inflammatory responses. Chronic activation of PRRs has been found to be associated with the aggressiveness of various cancers and poor prognosis. Involvement of PRRs was earlier considered to be limited to infection- and injury-driven carcinogenesis, where they are activated by pathogenic ligands. With the recognition of damage-associated molecular patterns (DAMPs) as ligands of PRRs, the role of PRRs in carcinogenesis has also been implicated in other non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells shed a plethora of DAMPs causing persistent activation of PRRs, leading to chronic inflammation and carcinogenesis. Such chronic activation of TLRs promotes tumor cell proliferation and enhances tumor cell invasion and metastasis by regulating pro-inflammatory cytokines, metalloproteinases, and integrins. Due to the decisive role of PRRs in carcinogenesis, targeting PRRs appears to be an effective cancer-preventive strategy. This review provides a brief account on the association of PRRs with various cancers and their role in carcinogenesis.
Collapse
Affiliation(s)
- Sanjay Pandey
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India. ; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Saurabh Singh
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - Vandana Anang
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Anant N Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - K Natarajan
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| |
Collapse
|
38
|
Long-term persistence of immunity induced by OVA-coupled gas-filled microbubble vaccination partially protects mice against infection by OVA-expressing Listeria. Biomaterials 2015; 57:153-60. [DOI: 10.1016/j.biomaterials.2015.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
|
39
|
McKay DM. Not all parasites are protective. Parasite Immunol 2015; 37:324-32. [DOI: 10.1111/pim.12160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/09/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Derek M. McKay
- Department of Physiology and Pharmacology; Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases; Gastrointestinal Research Group and Inflammation Research Network; Cumming School of Medicine, University of Calgary; Calgary AB Canada
| |
Collapse
|
40
|
Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg Nutr 2015; 3:386-406. [PMID: 25568862 DOI: 10.3978/j.issn.2304-3881.2014.11.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family are potent regulatory cytokines that affect multiple cell types of the immune system mediating pro-inflammatory or anti-inflammatory responses. In the liver, TGF-β is produced by a multitude of non-parenchymal liver cells including hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), and dendritic cells (DCs) as well as natural killer (NK) T cells among other hepatic lymphocytes. The effect of TGF-β on other cells is highly versatile. In concert with other soluble factors, it controls the maturation, differentiation and activity of various T cell subsets that either prevent or actuate infections, graft-versus-host reactions, immune diseases, and cancer formation. During the last decades, it became evident that some TGFB1 polymorphisms are associated with the pathogenesis of hepatic disease and that plasma TGF-β is a suitable biomarker to detect liver lesions. Moreover, since TGF-β has capacity to influence the quantity and quality of T cell subsets as well as their activity, it is obvious that a well-balanced TGF-β activity is essential for liver homeostasis. In the present review, we highlight some pivotal functions of TGF-β in hepatic immunobiology. We discuss its regulatory function on adaptive immunity, the impact on differentiation of various T cell subsets, its crosstalk with Toll like receptor signaling, and its contribution to functional impairment of the liver.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|